

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	83
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l451vci6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripheral		STM32	L451Vx	STM32	L451Rx	STM32L451Cx					
Flash mem	ory	256KB 512KB 256KB 512KB 256KB 512k									
SRAM		160KB									
Quad SPI				Ye	es						
	Advanced control		1 (16-bit)								
	General purpose			2 (10 1 (32	6-bit) 2-bit)						
Timers	Basic			2 (16	6-bit)						
	Low -power			2 (16	6-bit)						
	SysTick timer				1						
	Watchdog timers (independent, window)			:	2						
SPI				:	3						
Comm. interfaces	l ² C	4									
	USART UART LPUART	3 1 1									
	SAI	1									
	CAN	1									
	SDMMC		Ye	Ν	lo						
RTC		Yes									
Tamper pin	S		3	2	2	:	2				
Random ge	enerator	Yes									
GPIOs Wakeup pir	าร	8	3 5	5	2 4	3	8 3				
Capacitive Number of	sensing channels	2	:1	1	2	(6				
12-bit ADC Number of channels		1	1 6	1	1 6	1	1 0				
12-bit DAC	channels				1						
Internal vol buffer	tage reference	Y	es		Ν	0					
Analog con	nparator			2	2						
Operationa	l amplifiers				1						
Max. CPU	frequency			80 1	MHz						
Operating	voltage	1.71 to 3.6 V									

Table 2. STM32L451xx family	/ device features and	d peripheral counts

Figure 1. STM32L451xx block diagram

3.11 Clocks and startup

The clock controller (see *Figure 4*) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching:** clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **System clock source:** four different clock sources can be used to drive the master clock SYSCLK:
 - 4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
 - System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 80 MHz.
- **RC48 with clock recovery system (HSI48)**: internal RC48 MHz clock source can be used to drive the SDMMC or the RNG peripherals. This clock can be output on the MCO.
- **Auxiliary clock source:** two ultralow-power clock sources that can be used to drive the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock accuracy is ±5% accuracy.
- **Peripheral clock sources:** Several peripherals (SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC) have their own independent clock whatever the system clock. Two PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the SDMMC/RNG and the SAI.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- **Clock security system (CSS):** this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software

3.12 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.13 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to *Table 7: DMA implementation* for the features implementation.

Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations.

The two DMA controllers have 14 channels in total, each dedicated to managing memory access requests from one or more peripherals. Each has an arbiter for handling the priority between DMA requests.

The DMA supports:

- 14 independently configurable channels (requests)
- Each channel is connected to dedicated hardware DMA requests, software trigger is also supported on each channel. This configuration is done by software.
- Priorities between requests from channels of one DMA are software programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (request 1 has priority over request 2, etc.)
- Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size.
- Support for circular buffer management
- 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error) logically ORed together in a single interrupt request for each channel
- Memory-to-memory transfer
- Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral transfers
- Access to Flash, SRAM, APB and AHB peripherals as source and destination
- Programmable number of data to be transferred: up to 65536.

Table 7. DMA implementation

DMA features	DMA1	DMA2
Number of regular channels	7	7

		Pin I	Numl	ber		L D				Pin fun	ctions
UFQFPN48	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function aft reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
14	G6	20	H3	29	М3	PA4	I/O	TT_a	-	SPI1_NSS, SPI3_NSS, USART2_CK, SAI1_FS_B, LPTIM2_OUT, EVENTOUT	COMP1_INM, COMP2_INM, ADC1_IN9, DAC1_OUT1
15	F5	21	F4	30	K4	PA5	I/O	TT_a	-	TIM2_CH1, TIM2_ETR, SPI1_SCK, DFSDM1_CKOUT, LPTIM2_ETR, EVENTOUT	COMP1_INM, COMP2_INM, ADC1_IN10
16	H6	22	G4	31	L4	PA6	I/O	FT_a	-	TIM1_BKIN, TIM3_CH1, SPI1_MISO, COMP1_OUT, USART3_CTS, LPUART1_CTS, QUADSPI_BK1_IO3, TIM1_BKIN_COMP2, TIM16_CH1, EVENTOUT	ADC1_IN11
17	E5	23	H4	32	M4	PA7	I/O	FT_fa	-	TIM1_CH1N, TIM3_CH2, I2C3_SCL, SPI1_MOSI, DFSDM1_DATIN0, QUADSPI_BK1_IO2, COMP2_OUT, EVENTOUT	ADC1_IN12
-	E4	24	H5	33	K5	PC4	I/O	FT_a	-	USART3_TX, EVENTOUT	COMP1_INM, ADC1_IN13
-	G5	25	H6	34	L5	PC5	I/O	FT_a	-	USART3_RX, EVENTOUT	COMP1_INP, ADC1_IN14, WKUP5
18	H5	26	F5	35	M5	PB0	I/O	FT_a	-	TIM1_CH2N, TIM3_CH3, SPI1_NSS, DFSDM1_CKIN0, USART3_CK, QUADSPI_BK1_IO1, COMP1_OUT, SAI1_EXTCLK, EVENTOUT	ADC1_IN15
19	F4	27	G5	36	M6	PB1	I/O	FT_a	-	TIM1_CH3N, TIM3_CH4, DFSDM1_DATIN0, USART3_RTS_DE, LPUART1_RTS_DE, QUADSPI_BK1_IO0, LPTIM2_IN1, EVENTOUT	COMP1_INM, ADC1_IN16
20	G4	28	G6	37	L6	PB2	I/O	FT_a	-	RTC_OUT, LPTIM1_OUT, I2C3_SMBA, DFSDM1_CKIN0, EVENTOUT	COMP1_INP
-	-	-	-	38	M7	PE7	I/O	FT	-	TIM1_ETR, DFSDM1_DATIN2, SAI1_SD_B, EVENTOUT	-

Table 16. STM32L451xx pin definitions (continued)	Table 16.	STM32L451xx	pin definitions	(continued)
---	-----------	-------------	-----------------	-------------

		D: 1							Ė	Pin functions		
	1	Pin I	Num	ber	1	e ifter		o				
UFQFPN48	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin nam (function a reset)	Pin type	I/O structur	Notes	Alternate functions	Additional functions	
-	-	-	-	39	L7	PE8	I/O	FT	-	TIM1_CH1N, DFSDM1_CKIN2, SAI1_SCK_B, EVENTOUT	-	
-	-	-	-	40	M8	PE9	I/O	FT	-	TIM1_CH1, DFSDM1_CKOUT, SAI1_FS_B, EVENTOUT	-	
-	-	-	-	41	L8	PE10	I/O	FT	-	TIM1_CH2N, TSC_G5_IO1, QUADSPI_CLK, SAI1_MCLK_B, EVENTOUT	-	
-	-	-	-	42	M9	PE11	I/O	FT	-	TIM1_CH2, TSC_G5_IO2, QUADSPI_BK1_NCS, EVENTOUT	-	
-	-	-	-	43	L9	PE12	I/O	FT	-	TIM1_CH3N, SPI1_NSS, TSC_G5_IO3, QUADSPI_BK1_IO0, EVENTOUT	-	
-	-	-	-	44	M10	PE13	I/O	FT	-	TIM1_CH3, SPI1_SCK, TSC_G5_IO4, QUADSPI_BK1_IO1, EVENTOUT	-	
-	-	-	-	45	M11	PE14	I/O	FT	-	TIM1_CH4, TIM1_BKIN2, TIM1_BKIN2_COMP2, SPI1_MISO, QUADSPI_BK1_IO2, EVENTOUT	-	
-	-	-	-	46	M12	PE15	I/O	FT	-	TIM1_BKIN, TIM1_BKIN_COMP1, SPI1_MOSI, QUADSPI_BK1_IO3, EVENTOUT	-	
21	H4	29	G7	47	L10	PB10	I/O	FT_f	-	TIM2_CH3, I2C4_SCL, I2C2_SCL, SPI2_SCK, USART3_TX, LPUART1_RX, TSC_SYNC, QUADSPI_CLK, COMP1_OUT, SAI1_SCK_A, EVENTOUT	-	
22	НЗ	30	H7	48	L11	PB11	I/O	FT_f	-	TIM2_CH4, I2C4_SDA, I2C2_SDA, USART3_RX, LPUART1_TX, QUADSPI_BK1_NCS, COMP2_OUT, EVENTOUT	-	

Table 16.	STM32L451xx	pin definitions	(continued)
			(continued)

STM32L451xx

	Table 17. Alternate function AF0 to AF7 ⁽¹⁾												
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7				
Port		SYS_AF	TIM1/TIM2 LPTIM1	I2C4/TIM1/ TIM2/TIM3	I2C4/USART2/ CAN1/TIM1	2C1/ 2C2/ 2C3/ 2C4	SPI1/SPI2/I2C4	SPI3/DFSDM/ COMP1	USART1/ USART2/ USART3				
	PA0	-	TIM2_CH1	-	-	-	-	-	USART2_CTS				
	PA1	-	TIM2_CH2	-	-	I2C1_SMBA	SPI1_SCK	-	USART2_RTS_ DE				
	PA2	-	TIM2_CH3	-	-	-	-	-	USART2_TX				
	PA3	-	TIM2_CH4	-	-	-	-	-	USART2_RX				
	PA4	-	-	-	-	-	SPI1_NSS	SPI3_NSS	USART2_CK				
	PA5	-	TIM2_CH1	TIM2_ETR	-	-	SPI1_SCK	DFSDM1_ CKOUT	-				
	PA6	-	TIM1_BKIN	TIM3_CH1	-	-	SPI1_MISO	COMP1_OUT	USART3_CTS				
	PA7	-	TIM1_CH1N	TIM3_CH2	-	I2C3_SCL	SPI1_MOSI	DFSDM1_ DATIN0	-				
Port A	PA8	МСО	TIM1_CH1	-	-	-	-	DFSDM1_ CKIN1	USART1_CK				
Port A	PA9	-	TIM1_CH2	-	-	I2C1_SCL	-	DFSDM1_ DATIN1	USART1_TX				
	PA10	-	TIM1_CH3	-	-	I2C1_SDA	-	-	USART1_RX				
	PA11	-	TIM1_CH4	TIM1_BKIN2	-	-	SPI1_MISO	COMP1_OUT	USART1_CTS				
	PA12	-	TIM1_ETR	-	-	-	SPI1_MOSI	-	USART1_RTS_ DE				
	PA13	JTMS/SWDAT	IR_OUT	-	-	-	-	-	-				
	PA14	JTCK/SWCLK	LPTIM1_OUT	-	-	I2C1_SMBA	I2C4_SMBA	-	-				
	PA15	JTDI	TIM2_CH1	TIM2_ETR	USART2_RX	-	SPI1_NSS	SPI3_NSS	USART3_RTS_ DE				

DS11910 Rev 4

70/201

5

				Table	e 18. Alternate	function AF8 t	o AF15 ⁽¹⁾ (cont	inued)		
			AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Po	ort	UART4/ LPUART1/ CAN1/TSC CAN1		CAN1/ QUADSPI	-	SDMMC1/ COMP1/ COMP2	SAI1	TIM2/TIM15/ TIM16/LPTIM2	EVENTOUT
		PD0	-	CAN1_RX	-	-	-	-	-	EVENTOUT
		PD1	-	CAN1_TX	-	-	-	-	-	EVENTOUT
		PD2	-	TSC_SYNC	-	-	SDMMC1_ CMD	-	-	EVENTOUT
		PD3	-	-	QUADSPI_ BK2_NCS	-	-	-	-	EVENTOUT
		PD4	-	-	QUADSPI_ BK2_IO0	-	-	-	-	EVENTOUT
DS11		PD5	-	-	QUADSPI_ BK2_IO1	-	-	-	-	EVENTOUT
910 Re	Port D	PD6	-	-	QUADSPI_ BK2_IO2	-	-	SAI1_SD_A	-	EVENTOUT
¥ 4		PD7	-	-	QUADSPI_ BK2_IO3	-	-	-	-	EVENTOUT
		PD8	-	-	-	-	-	-	-	EVENTOUT
		PD9	-	-	-	-	-	-	-	EVENTOUT
		PD10	-	TSC_G6_IO1	-	-	-	-	-	EVENTOUT
		PD11	-	TSC_G6_IO2	-	-	-	-	LPTIM2_ETR	EVENTOUT
		PD12	-	TSC_G6_IO3	-	-	-	-	LPTIM2_IN1	EVENTOUT
		PD13	-	TSC_G6_IO4	-	-	-	-	LPTIM2_OUT	EVENTOUT
		PD14	-	-	-	-	-	-	-	EVENTOUT
		PD15	-	-	-	-	-	-	-	EVENTOUT

STM32L451xx

79/201

Pinouts and pin description

6.1.6 Power supply scheme

Figure 15. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

Ш	
e	
ដ	
Ξ.	
ñ	
<u>a</u>	
<u>0</u>	
ž	
F	
a	
¥	
P	
S	
Ę.	
c)	

STM32L451xx

			running	from Flas	h, ART e	enable (Cache C	ON Prefe	tch OFF)					
		Cond	itions				ТҮР					MAX ⁽¹⁾			
Symbol	Parameter	-	Voltage scaling	f _{HCLK}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Uni
				26 MHz	2.35	2.40	2.50	2.65	3.00	2.65	2.75	2.90	3.20	3.75	
				16 MHz	1.50	1.55	1.65	1.80	2.15	1.70	1.75	1.95	2.20	2.80	
				8 MHz	0.815	0.845	0.940	1.10	1.45	0.95	1.00	1.15	1.45	2.00	
			Range 2	4 MHz	0.465	0.495	0.595	0.760	1.10	0.55	0.60	0.75	1.05	1.60	
				2 MHz	0.295	0.320	0.420	0.580	0.910	0.35	0.40	0.55	0.85	1.40	
	I _{DD_ALL} (Run) Supply current in Run mode Supply current in Run mode ABMHz included, bypass mode PLL ON above 48 MHz all	f _{HCLK} = f _{HSE} up to 48MHz included, bypass mode		1 MHz	0.205	0.235	0.330	0.495	0.825	0.25	0.30	0.45	0.75	1.30	
I _{DD ALL}			100 kHz	0.130	0.155	0.250	0.415	0.745	0.15	0.25	0.40	0.65	1.25	m۸	
(Rūn)			80 MHz	8.45	8.50	8.65	8.90	9.25	9.45	9.50	9.75	10.10	10.75		
		peripherals disable		72 MHz	7.65	7.70	7.85	8.05	8.45	8.50	8.60	8.80	9.15	9.85	
				64 MHz	6.80	6.85	7.00	7.20	7.60	7.60	7.70	7.90	8.25	8.90	
			Range 1	48 MHz	5.10	5.15	5.25	5.45	5.85	5.70	5.80	6.00	6.35	7.00	
				32 MHz	3.45	3.50	3.60	3.80	4.20	3.85	3.95	4.15	4.50	5.15	
				24 MHz	2.60	2.65	2.80	2.95	3.35	2.95	3.05	3.20	3.55	4.20	
				16 MHz	1.80	1.85	1.95	2.15	2.50	2.00	2.10	2.30	2.60	3.25	
	Supply			2 MHz	225	260	365	550	900	275	335	470	770	1400	
I _{DD ALL}	current in	f _{HCLK} = f _{MSI}		1 MHz	130	160	270	450	800	170	225	375	670	1300	
(LPRun)	Low-power	all peripherals disab	le	400 kHz	73.0	99.5	205	385	735	105	165	325	600	1250	μΑ
				100 kHz	38.0	71.0	175	355	705	70	140	315	565	1200	

Table 27. Current consumption in Run and Low-power run modes, code with data processing

1. Guaranteed by characterization results, unless otherwise specified.

96/201

DS11910 Rev 4

	Table 38. Cur	rent cor	nsumpt	tion in	Standb	y mode	(contin	ued)					
Deremeter	Conditions				TYP					MAX ⁽¹⁾			l l mit
Parameter	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
Supply current		1.8 V	250	730	2700	6350	13850	575	1800	6350	14500	32000	
to be added in		2.4 V	250	740	2700	6150	14000	620	1800	6450	14500	32000	_ _^
when SRAM2	-	3 V	255	740	2700	6450	13500	645	1850	6500	15000	32500	- nA
is retained		3.6 V	255	755	2800	6500	13500	790	1950	6500	15000	33000	
Supply current during wakeup from Standby mode	Wakeup clock is MSI = 4 MHz. See ⁽⁴⁾ .	3 V	2.00	-	-	-	-	-	-	-	-	-	mA
	Parameter Supply current to be added in Standby mode when SRAM2 is retained Supply current during wakeup from Standby mode	Table 38. Cur Parameter Conditions Supply current to be added in Standby mode - Standby mode - when SRAM2 is retained - Supply current during wakeup from Standby mode Wakeup clock is MSI = 4 MHz. See ⁽⁴⁾ .	Table 38. Current cor Parameter Conditions Supply current to be added in Standby mode VDD Standby mode - 1.8 V when SRAM2 is retained - 2.4 V Supply current during wakeup from Standby mode 3.6 V 3.6 V	Table 38. Current consumptionParameterConditionsParameterVDD25 °CSupply current to be added in Standby mode1.8 V250Standby mode when SRAM2 is retained-1.8 V250Supply current during wakeup from Standby modeWakeup clock is MSI = 4 MHz. See ⁽⁴⁾ .3 V2.00	$\begin{tabular}{ c c c } \hline Table 38. Current consumption in \\ \hline Table 38. Current consumption in \\ \hline Conditions & & & \\ \hline Conditions & & & \\ \hline Conditions & & & \\ \hline Parameter & & & & \\ \hline Conditions & & & & \\ \hline Supply current to be added in \\ Standby mode & - & & & \\ \hline Standby mode & - & & & \\ \hline Standby mode & - & & & \\ \hline Supply current during wakeup from Standby mode & & & \\ \hline Supply current during wakeup from Standby mode & & & \\ \hline Supply current during wakeup from Standby mode & & \\ \hline Standby mode &$	Table 38. Current consumption in StandbParameterConditionsTYPParameterConditions V_{DD} 25 °C55 °C85 °CSupply current to be added in Standby mode when SRAM2 is retained1.8 V2507302700Supply current during wakeup from Standby mode-1.8 V2507402700Supply current during wakeup from Standby modeWakeup clock is MSI = 4 MHz. See ⁽⁴⁾ .3 V2.00	Table 38. Current consumption in Standby modeParameterConditionsTYPParameterConditions V_{DD} 25 °C55 °C85 °C105 °CSupply current to be added in Standby mode when SRAM2 is retained1.8 V250730270063503 V255740270061503 V25574027006450Supply current during wakeup from Standby modeWakeup clock is MSI = 4 MHz. See ⁽⁴⁾ .3 V2.00	Table 38. Current consumption in Standby modeParameterConditionsTYPParameterConditions V_{DD} 25 °C55 °C85 °C105 °C125 °CSupply current to be added in Standby mode when SRAM2 is retained1.8 V25073027006350138503 V25574027006150140003 V2557402700645013500Supply current during wakeup from Standby modeWakeup clock is MSI = 4 MHz. See ⁽⁴⁾ .3 V2.00	Table 38. Current consumption in Standby modeParameterConditionsTYPConditionsParameterConditionsVpp25 °C55 °C85 °C105 °C125 °C25 °CSupply current to be added in Standby mode when SRAM2 is retained1.8 V25073027006350138505753.6 V25574027006150140006203.6 V25574027006450135006450Supply current during wakeup from Standby modeWakeup clock is MSI = 4 MHz. See ⁽⁴⁾ .3 V2.00	Table 38. Current consumption in Standby mode (continued) Parameter Conditions TYP VDD 25 °C 85 °C 105 °C 125 °C 55 °C Supply current to be added in Standby mode when SRAM2 is retained 1.8 V 250 740 2700 6150 14000 620 1800 Supply current during wakeup from Standby mode - - 3 V 255 740 2700 6450 13500 6450 1800 Supply current during wakeup from Standby mode -	Table 38. Current consumption in Standby mode (continued) Parameter Conditions TYP MAX ⁽¹⁾ Parameter Conditions TYP MAX ⁽¹⁾ Supply current to be added in Standby mode when SRAM2 is retained 1.8 V 25°C 85°C 105°C 125°C 55°C 85°C 105°C 125°C 55°C 85°C 105°C 125°C 55°C 85°C Supply current during wakeup from Standby mode Wakeup clock is MSI = 4 MHz. See ⁽⁴⁾ . 3 V 2.00 - - - -	Table 38. Current consumption in Standby mode (continued) Parameter Conditions TYP MAX ⁽¹⁾ Parameter - VDD 25 °C 85 °C 105 °C 125 °C 55 °C 85 °C 105 °C 25 °C 55 °C 85 °C 105 °C 125 °C 55 °C 85 °C 105 °C Supply current NSRAM2 3.6 V 250 750 1800 6500 1500 Supply current <th colspan="6</td> <td>Table 38. Current consumption in Standby mode (continued) Parameter Conditions TYP MAX⁽¹⁾ - V_{DD} 25 °C 55 °C 85 °C 25 °C 55 °C 85 °C 105 °C 25 °C 55 °C 85 °C 105 °C 125 °C 55 °C 1800 6350 14500 32000 Standby mode - - 14000 6450 13500 6450 1850 6500 15000 32000 Standby mode - - - - - - - - - - -</td>	Table 38. Current consumption in Standby mode (continued) Parameter Conditions TYP MAX ⁽¹⁾ - V _{DD} 25 °C 55 °C 85 °C 25 °C 55 °C 85 °C 105 °C 25 °C 55 °C 85 °C 105 °C 125 °C 55 °C 1800 6350 14500 32000 Standby mode - - 14000 6450 13500 6450 1850 6500 15000 32000 Standby mode - - - - - - - - - - -

1. Guaranteed by characterization results, unless otherwise specified.

2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

3. The supply current in Standby with SRAM2 mode is: I_{DD_ALL}(Standby) + I_{DD_ALL}(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: I_{DD_ALL}(Standby + RTC) + I_{DD_ALL}(SRAM2).

4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 42: Low-power mode wakeup timings.

			ounc		sumpti		iutuowi	moue						
Symbol	Paramotor	Conditions				ΤΥΡ					MAX ⁽¹⁾			Unit
Gymbol	i arameter	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Onit
	Supply current		1.8 V	19.0	120	720	2200	6400	38.0	350	2050	6350	19500	
	in Shutdown		2.4 V	26.0	145	855	2600	7450	62.0	400	2400	7450	22500	
I _{DD_ALL} (Shutdown)	(backup	-	3 V	37.0	185	1050	3100	8700	105	500	2850	8750	26000	nA
(GhalaOwii)	registers retained) RTC disabled		3.6 V	67.0	260	1350	3950	11000	160	650	3500	10500	30000	

Table 39. Current consumption in Shutdown mode

- 1. Guaranteed by design.
- 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
- 3. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 20: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 20: Voltage characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT OR TT unless otherwise specified).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -0.4	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	2.4	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -1.3	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 4 mA	-	0.45	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 1.62 V	V _{DDIOx} -0.45	-	V
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 2 mA	-	$0.35_{x}V_{DDIOx}$	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.62 V ≥ V _{DDIOx} ≥ 1.08 V	$0.65_{x}V_{DDIOx}$	-	
		I _{IO} = 20 mA V _{DDIOx} ≥ 2.7 V	-	0.4	
V _{OLFM+}	Output low level voltage for an FT I/O pin in FM+ mode (FT I/O with "f" option)	I _{IO} = 10 mA V _{DDIOx} ≥ 1.62 V	-	0.4	
		I _{IO} = 2 mA 1.62 V ≥ V _{DDIOx} ≥ 1.08 V	-	0.4	

Table 62. Output voltage characteristics⁽¹⁾

 The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 20: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 26* and *Table 63*, respectively.

6.3.18 Analog-to-Digital converter characteristics

Unless otherwise specified, the parameters given in *Table 67* are preliminary values derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 23: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-	1.62	-	3.6	V
V		V _{DDA} ≥ 2 V	2	-	V _{DDA}	V
VREF+	Positive relefence voltage	V _{DDA} < 2 V		V _{DDA}		V
V _{REF-}	Negative reference voltage	-		V _{SSA}		V
£		Range 1	0.14	-	80	
IADC	ADC Clock frequency	Range 2	0.14	-	26	MHZ
		Resolution = 12 bits	-	-	5.33	
	Sampling rate for FAST	Resolution = 10 bits	-	-	6.15	
	channels	Resolution = 8 bits	-	-	7.27	
£		Resolution = 6 bits	-	-	8.88	Mana
's		Resolution = 12 bits	-	-	4.21	ivisps
	Sampling rate for SLOW	Resolution = 10 bits	-	-	4.71	
	channels	Resolution = 8 bits	-	-	5.33	
		Resolution = 6 bits	-	-	6.15	
f _{TRIG}	External trigger frequency	f _{ADC} = 80 MHz Resolution = 12 bits	-	-	5.33	MHz
		Resolution = 12 bits	-	-	15	1/f _{ADC}
V _{CMIN}	Input common mode	Differential mode	(V _{REF+} + V _{REF-})/2 - 0.18	(V _{REF+} + V _{REF-})/2	(V _{REF+} + V _{REF-})/2 + 0.18	V
V _{AIN} ⁽³⁾	Conversion voltage range(2)	-	0	-	V _{REF+}	V
R _{AIN}	External input impedance	-	-	-	50	kΩ
C _{ADC}	Internal sample and hold capacitor	-	-	5	-	pF
t _{STAB}	Power-up time	-		1		conversion cycle
+	Colibration time	f _{ADC} = 80 MHz		1.45		μs
^L CAL		-		116		1/f _{ADC}

Table 67		charac	teristic	s(1) (2)
iaule 0/.	ADC	LIIAIAL	lensuu	

Symbol	Parameter	Co	onditions	Min	Тур	Мах	Unit
		DAC output	No load, middle code (0x800)	-	185	240	
		buffer ON	No load, worst code (0xF1C)	-	340	400	
		DAC output buffer OFF	No load, middle code (0x800)	-	155	205	
I _{DDV} (DAC)	DAC consumption from V _{REF+}	Sample and ho C _{SH} = 100 nF,	old mode, buffer ON, worst case	-	185 x Ton/(Ton +Toff) (4)	400 x Ton/(Ton +Toff) (4)	μA
		Sample and ho C _{SH} = 100 nF,	old mode, buffer OFF, worst case	-	155 x Ton/(Ton +Toff) (4)	205 x Ton/(Ton +Toff) (4)	

Table 73. DAC characteristics⁽¹⁾ (continued)

1. Guaranteed by design.

2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

3. Refer to Table 61: I/O static characteristics.

4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0394 reference manual for more details.

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

	•			a)		
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	VREFBUF	I _{load} = 0 μA	-	16	25	
I _{DDA} (VREF BUF)	consumption	I _{load} = 500 μA	-	18	30	μA
,	trom v _{DDA}	I _{load} = 4 mA	-	35	50	

Table 75. VREFBUF characteristics⁽¹⁾ (continued)

1. Guaranteed by design, unless otherwise specified.

2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which will follow (V_{DDA} - drop voltage).

3. Guaranteed by test in production.

4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.

5. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the V_{DDA} voltage should be in the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for V_{RS} = 0 and V_{RS} = 1.

Symbol	Parameter	Con	ditions	Min	Тур	Max	Unit
		Normal mode		-	-	500	
ILOAD	Drive current	Low-power mode	$V_{DDA} \ge 2 V$	-	-	100	
	Drive current in	Normal mode		-	-	450	μA
ILOAD_PGA	PGA mode	Low-power mode	$V_{DDA} \ge 2 V$	-	-	50	
P	Resistive load (connected to	Normal mode	V	4	-	-	
LOAD	VSSA or to VDDA)	Low-power mode	VDDA V	20	-	-	kO
R. e. e. e. e.	Resistive load in PGA mode	Normal mode	V < 2 V	4.5	-	-	K12
'`LOAD_PGA	VSSA or to V _{DDA})	Low-power mode	VDDA < 2 V	40	-	-	
C _{LOAD}	Capacitive load		-	-	-	50	pF
CMPP	Common mode	Normal mode		-	-85	-	dB
CIVIRR	rejection ratio	Low-power mode		-	-90	-	uБ
DSDD	Power supply	Normal mode	C _{LOAD} ≤ 50 pf, R _{LOAD} ≥ 4 kΩ DC	70	85	-	dB
1 3111	rejection ratio	Low-power mode	C _{LOAD} ≤ 50 pf, R _{LOAD} ≥ 20 kΩ DC	72	90	-	άĐ
		Normal mode	V _{DDA} ≥ 2.4 V	550	1600	2200	
CBW/	Gain Bandwidth	Low-power mode	(OPA_RANGE = 1)	100	420	600	<i>к</i> П-
GDW	Product	Normal mode	V _{DDA} < 2.4 V	250	700	950	KI IZ
		Low-power mode	(OPA_RANGE = 0)	40	180	280	
	Slow rate	Normal mode	V>24V	-	700	-	
SD(3)	(from 10 and	Low-power mode	V _{DDA} ≥ 2.4 V	-	180	-	V/me
	90% of output	Normal mode	V	-	300	-	v/1115
	voltage)	Low-power mode	VDDA < 2.4 V	-	80	-	
40		Normal mode		55	110	-	dB
AU	Open loop gain	Low-power mode		45	110	-	UD
Vauat ⁽³⁾	High saturation	Normal mode	I _{load} = max or R _{load} =	V _{DDA} - 100	-	-	
VOHSAT	voltage	Low-power mode	min Input at V _{DDA} .	V _{DDA} - 50	-	-	mV
V_{α}	Low saturation	Normal mode	I_{load} = max or R_{load} =	-	-	100	
VOLSAT`´	voltage	Low-power mode	min Input at 0.	-	-	50	
()	Phase margin	Normal mode		-	74	-	o
Ψm	n nase maryin	Low-power mode		-	66	-	

 Table 77. OPAMP characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Slave mode 2.7 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	13.5	
t _{v(SO)}	Data output valid time	Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	24	ns
		Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 2	-	12.5	33	
t _{v(MO)}		Master mode	-	4.5	6	
t _{h(SO)}	Data output hold time	Slave mode	7	-	-	ne
t _{h(MO)}		Master mode	0	-	-	115

Table 85. SPI characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50 %.

Ordering information 8

Example:	STM32	L	451	С	С	Т	6	TR
Device family								
STM32 = Arm [®] based 32-bit microcontroller								
Draduct time								
L = uitra-iow-power								
Device subfamily								
451: STM32L451xx								
Pin count								
C = 48 pins								
R = 64 pins								
V = 100 pins								
Flash memory size								
C = 256 KB of Flash memory								
E = 512 KB of Flash memory								
Package								
T = LQFP ECOPACK [®] 2								
U = QFN ECOPACK [®] 2								
I = UFBGA ECOPACK [®] 2								
Y = CSP ECOPACK [®] 2								
Temperature range								
6 = Industrial temperature range, -40 to 85 °C	(105 °C junction)						
2 - Industrial temperature range 40 to 125 °C	C (130 °C iunctio	n)						

TR = tape and reel xxx = programmed parts

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

DS11910 Rev 4