

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	55
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212a8snfa-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

R8C/2A Group, R8C/2B Group RENESAS MCU

1. Overview

1.1 Features

The R8C/2A Group and R8C/2B Group of single-chip MCUs incorporates the R8C/Tiny Series CPU core, employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

Power consumption is low, and the supported operating modes allow additional power control. These MCUs also use an anti-noise configuration to reduce emissions of electromagnetic noise and are designed to withstand EMI. Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of system components.

Furthermore, the R8C/2B Group has on-chip data flash (1 KB \times 2 blocks).

The difference between the R8C/2A Group and R8C/2B Group is only the presence or absence of data flash. Their peripheral functions are the same.

1.1.1 Applications

Electronic household appliances, office equipment, audio equipment, consumer equipment, etc.

1.1.2 Specifications

Tables 1.1 and 1.2 outlines the Specifications for R8C/2A Group and Tables 1.3 and 1.4 outlines the Specifications for R8C/2B Group.

Item	Function	Specification
CPU	Central processing	R8C/Tiny series core
010	unit	Number of fundamental instructions: 89
	unit	Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
		100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply-accumulate instruction: 16 bits \times 16 bits \times 16 bits \rightarrow 32 bits
		 Operation mode: Single-chip mode (address space: 1 Mbyte)
Momony	ROM, RAM	Refer to Table 1.5 Product List for R8C/2A Group.
Memory Dowor Supply	-	Power-on reset
Power Supply	Voltage detection	
Voltage	circuit	Voltage detection 2
Detection	Draggerennen ak la 1/O	a lanut anhu O nina
I/O Ports	Programmable I/O	Input-only: 2 pins ONOC I/O parts 55 coloritable pull up resister
	ports	CMOS I/O ports: 55, selectable pull-up resistor
		High current drive ports: 8
Clock	Clock generation	3 circuits: XIN clock oscillation circuit (with on-chip feedback resistor),
	circuits	On-chip oscillator (high-speed, low-speed)
		(high-speed on-chip oscillator has a frequency adjustment function),
		XCIN clock oscillation circuit (32 kHz)
		Oscillation stop detection: XIN clock oscillation stop detection function
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		Low power consumption modes:
		Standard operating mode (high-speed clock, low-speed clock, high-speed
		on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode
		Real-time clock (timer RE)
Interrupts		External: 5 sources, Internal: 23 sources, Software: 4 sources
		Priority levels: 7 levels
Watchdog Time		15 bits x 1 (with prescaler), reset start selectable
Timer	Timer RA	8 bits x 1 (with 8-bit prescaler) Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
		measurement mode
	Timer RB	8 bits x 1 (with 8-bit prescaler)
		Timer mode (period timer), programmable waveform generation mode (PWM
		output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RC	16 bits x 1 (with 4 capture/compare registers)
	Timer RC	16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode
		16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin)
	Timer RC Timer RD	 16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin) 16 bits × 2 (with 4 capture/compare registers)
		 16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin) 16 bits × 2 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode
		 16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin) 16 bits × 2 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 6 pins), reset synchronous PWM mode (output three-phase
		 16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin) 16 bits × 2 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 6 pins), reset synchronous PWM mode (output three-phase waveforms (6 pins), sawtooth wave modulation), complementary PWM mode
		 16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin) 16 bits × 2 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 6 pins), reset synchronous PWM mode (output three-phase waveforms (6 pins), sawtooth wave modulation), complementary PWM mode (output three-phase waveforms (6 pins), triangular wave modulation), PWM3
	Timer RD	 16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin) 16 bits × 2 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 6 pins), reset synchronous PWM mode (output three-phase waveforms (6 pins), sawtooth wave modulation), complementary PWM mode (output three-phase waveforms (6 pins), triangular wave modulation), PWM3 mode (PWM output 2 pins with fixed period)
		 16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin) 16 bits × 2 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 6 pins), reset synchronous PWM mode (output three-phase waveforms (6 pins), sawtooth wave modulation), complementary PWM mode (output three-phase waveforms (6 pins), triangular wave modulation), PWM3 mode (PWM output 2 pins with fixed period) 8 bits × 1
	Timer RD	 16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin) 16 bits × 2 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 6 pins), reset synchronous PWM mode (output three-phase waveforms (6 pins), sawtooth wave modulation), complementary PWM mode (output three-phase waveforms (6 pins), triangular wave modulation), PWM3 mode (PWM output 2 pins with fixed period) 8 bits × 1 Real-time clock mode (count seconds, minutes, hours, days of week), output
	Timer RD	 16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin) 16 bits × 2 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 6 pins), reset synchronous PWM mode (output three-phase waveforms (6 pins), sawtooth wave modulation), complementary PWM mode (output three-phase waveforms (6 pins), triangular wave modulation), PWM3 mode (PWM output 2 pins with fixed period) 8 bits × 1

 Table 1.1
 Specifications for R8C/2A Group (1)

RENESAS

Itom	Eurotion	
Item	Function	Specification
Serial	UARTO, UART1,	Clock synchronous serial I/O/UART × 3
Interface	UART2	
	nous Serial I/O with	1 (shared with I ² C-bus)
Chip Select (S	SU)	
I ² C bus ⁽¹⁾		1 (shared with SSU)
LIN Module		Hardware LIN: 1 (timer RA, UART0)
A/D Converter		10-bit resolution × 12 channels, includes sample and hold function
D/A Converter		8-bit resolution × 2 circuits
Flash Memory		 Programming and erasure voltage: VCC = 2.7 to 5.5 V
		 Programming and erasure endurance: 100 times
		 Program security: ROM code protect, ID code check
		 Debug functions: On-chip debug, on-board flash rewrite function
Operating Free	uency/Supply	f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V)
Voltage		f(XIN) = 10 MHz (VCC = 2.7 to 5.5 V)
		$f(XIN) = 5 \text{ MHz} (VCC = 2.2 \text{ to } 5.5 \text{ V})^{-1}$
Current consur	mption	12 mA (VCC = 5.0 V, f(XIN) = 20 MHz)
		$5.5 \text{ mA}(\text{VCC} = 3.0 \text{ V}, \hat{f}(\text{XIN}) = 10 \text{ MHz})$
		2.1 μA (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz)) 0.65 μA (VCC = 3.0 V, stop mode)
Operating Amb	pient Temperature	-20 to 85°C (N version)
Operating Ami		-40 to 85°C (D version) ⁽²⁾
		-20 to 105°C (Y version) ⁽³⁾
Package		64-pin LQFP
1 achage		Package code: PLQP0064KB-A (previous code: 64P6Q-A)
		Package code: PLQP0064GA-A (previous code: 64P6U-A)
		64-pin FLGA
		 Package code: PTLG0064JA-A (previous code: 64F0G)

Table 1.2 Specifications for R8C/2A Group (2)

NOTES:

I²C bus is a trademark of Koninklijke Philips Electronics N. V.
 Specify the D version if D version functions are to be used.
 Please contact Renesas Technology sales offices for the Y version.

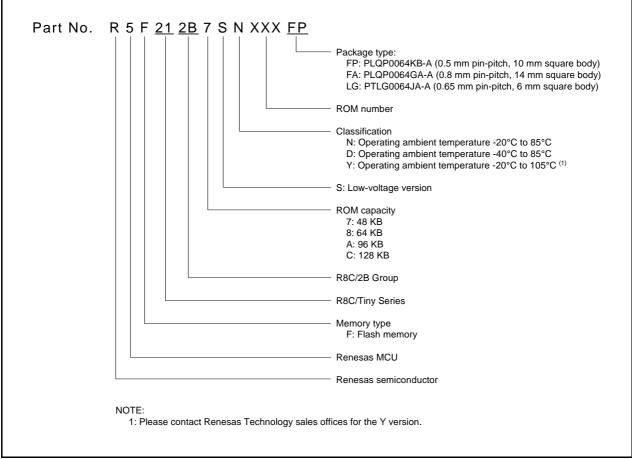


Figure 1.2 Part Number, Memory Size, and Package of R8C/2B Group

Pin				I/O Pin Func	tions for of P	eripheral N	lodules	
Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	I ² C bus	A/D Converter D/A Converter
1		P3_3				SSI		
2		P3_4				SCS	SDA	
3	MODE							
4	XCIN	P4_3						
5	XCOUT	P4_4						
6	RESET							
7	XOUT	P4_7						
8	VSS/AVSS							
9	XIN	P4_6						
10	VCC/AVCC							
11		P5_4		TRCIOD				
12		P5_3		TRCIOC				
13		P5_2		TRCIOB				
14		P5_1		TRCIOA/TRCTRG				
15		P5_0		TRCCLK				
16		P2_7		TRDIOD1				
17		P2_6		TRDIOC1				
18		P2_5		TRDIOB1				
19		P2_4		TRDIOA1				
20		P2_3		TRDIOD0				
21		P2_2		TRDIOC0				
22		P2_1		TRDIOB0				
23		P2_0		TRDIOA0/TRDCLK				
24		P1_7	INT1	TRAIO				
25		P1_6			CLK0			
26		P1_5	(INT1) ⁽¹⁾	(TRAIO) ⁽¹⁾	RXD0			
20					TXD0			
27		P1_4			TADU			
		P8_6						
29		P8_5		TRFO12				
30		P8_4		TRFO11 TRFO10/TRFI				
31 32		P8_3						
		P8_2		TRFO02				
33		P8_1		TRFO01				
34		P8_0		TRFO00 TREO				
35		P6_0						
36		P4_5	INTO	INT0				
37 38		P6_6	INT2		TXD1 RXD1			
38		P6_7	INT3					
39		P6_5			(CLK1) ^{(1)/} CLK2			
40		P6_4			RXD2			
41		P6_3			TXD2			
42		P3_1		TRBO				
43		P3_0		TRAO				
44		P3_6	(INT1) ⁽¹⁾					
45		P3_2	(INT2)(1)					

Table 1.7Pin Name Information by Pin Number (1)

NOTE:

1. Can be assigned to the pin in parentheses by a program.

Table 1.10	Pin Functions (2)
------------	-------------------

Item	Pin Name	I/O Type	Description
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter
D/A converter	DA0 to DA1	0	D/A converter output pins
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_3 to P4_5, P5_0 to P5_4, P6_0 to P6_7, P8_0 to P8_6	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. P2_0 to P2_7 also function as LED drive ports.
Input port	P4_6, P4_7	Ι	Input-only ports

I: Input O: Output I/O: Input and output

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

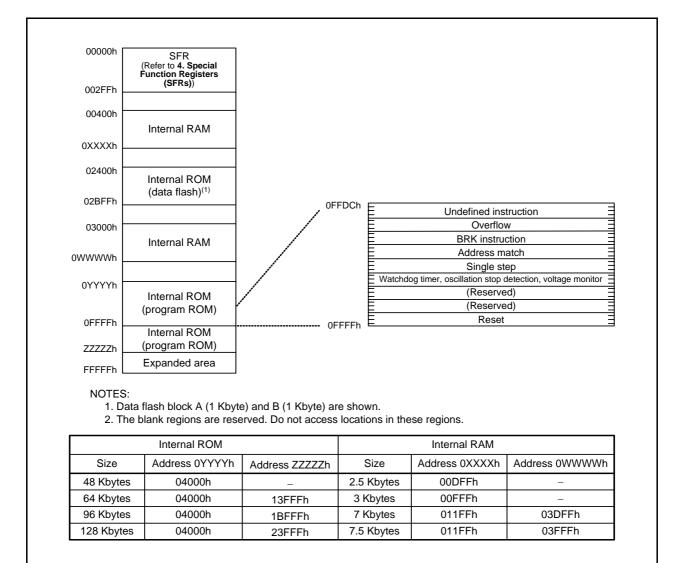
IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

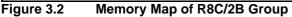
2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3.2 R8C/2B Group

Figure 3.2 is a Memory Map of R8C/2B Group. The R8C/2B group has 1 Mbyte of address space from addresses 00000h to FFFFFh.


The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM area is allocated addresses 04000h to 0FFFFh.


The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

A al cl	Desister	0	After
Address	Register	Symbol	After reset
0040h			
0041h			
0042h			
0043h			
0044h			
0045h			
0046h	T DO 1 (
0047h	Timer RC Interrupt Control Register	TRCIC	XXXXX000b
0048h	Timer RD0 Interrupt Control Register	TRDOIC	XXXXX000b
0049h	Timer RD1 Interrupt Control Register	TRD1IC	XXXXX000b
004Ah	Timer RE Interrupt Control Register	TREIC	XXXXX000b
004Bh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
004Ch	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh			
004Fh	SSU/IIC Interrupt Control Register ⁽²⁾	SSUIC / IICIC	XXXXX000b
0050h	Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	INT2 Interrupt Control Register	INT2IC	XX00X000b
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h			
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Ah	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh	Timer RF Interrupt Control Register	TRFIC	XXXXX000b
005Ch	Compare 0 Interrupt Control Register	CMP0IC	XXXXX000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00X000b
005Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
005Fh	Capture Interrupt Control Register	CAPIC	XXXXX000b
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			1
006Ch			1
006Dh			1
006Eh			1
006Fh			1
0070h			1
0071h			
0072h			
0073h			
0074h			
0075h			
0076h			
0077h			
0078h			1
0079h			
0079h			
007An			
007Bn			
007Ch			
007Dh			
007En			
007FII			

SFR Information (2)⁽¹⁾ Table 4.2

X: Undefined

NOTES:
1. The blank regions are reserved. Do not access locations in these regions.
2. Selected by the IICSEL bit in the PMR register.

RENESAS

Address	Register	Symbol	After reset
0080h			
0081h			
0082h			
0083h			
0084h			
0085h			
0086h			
0087h			
0088h			
0089h			
008Ah			
008Bh			
008Ch			
008Dh			
008Eh			
008Fh			
0090h			
0091h			
0092h			
0093h		1	1
0094h		1	1
0095h			
0096h			
0097h			
0098h			
0099h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Fh			
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UART0 Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h			XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UART0 Receive Buffer Register	UORB	XXh
00A7h			XXh
00A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
00A9h	UART1 Bit Rate Register	U1BRG	XXh
00AAh	UART1 Transmit Buffer Register	U1TB	XXh
00ABh			XXh
00ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
00ADh	UART1 Transmit/Receive Control Register 1	U1C1	00000010b
00AEh	UART1 Receive Buffer Register	U1RB	XXh
00AFh			XXh
00B0h			
00B1h			
00B2h			
00B3h			
00B4h			
00B5h			
00B6h			
00B7h			
00B8h	SS Control Register H / IIC bus Control Register 1 ⁽²⁾	SSCRH / ICCR1	00h
00B9h	SS Control Register L / IIC bus Control Register 2 ⁽²⁾	SSCRL / ICCR2	01111101b
00BAh	SS Mode Register / IIC bus Mode Register ⁽²⁾	SSMR / ICMR	00011000b
00BBh	SS Enable Register / IIC bus Interrupt Enable Register ⁽²⁾	SSER / ICIER	00h
00BCh	SS Status Register / IIC bus Status Register ⁽²⁾	SSSR / ICSR	00h / 0000X000b
00BDh	SS Mode Register 2 / Slave Address Register ⁽²⁾	SSMR2 / SAR	00h
00BDh 00BEh		SSIMR2 / SAR	
UUBEN	SS Transmit Data Register / IIC bus Transmit Data Register ⁽²⁾		FFh
00BFh	SS Receive Data Register / IIC bus Receive Data Register ⁽²⁾	SSRDR / ICDRR	FFh

SFR Information (3)⁽¹⁾ Table 4.3

X: Undefined
NOTES:

The blank regions are reserved. Do not access locations in these regions.
Selected by the IICSEL bit in the PMR register.

RENESAS

Cumbal	Parameter	Conditions		1.1		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾	R8C/2A Group	100 ⁽³⁾	-	-	times
		R8C/2B Group	1,000(3)	-	-	times
-	Byte program time		-	50	400	μS
-	Block erase time		-	0.4	9	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	-	_	μS
-	Interval from program start/restart until following suspend request		0	-	-	ns
-	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.5 Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at T_{opr} = 0 to 60°C, unless otherwise specified.

 Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis.
 If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.


5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Unit
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 0 reset valid voltage		0	-	Vdet0	V
trth	External power Vcc rise gradient ⁽²⁾		20	_	_	mV/msec

NOTES:

- 1. The measurement condition is T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This condition (external power VCC rise gradient) does not apply if $Vcc \ge 1.0 V$.
- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4. tw(por1) indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain tw(por1) for 30 s or more if $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$, maintain tw(por1) for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

The sampling clock can be selected. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.
 Vdet0 indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.

Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Table 5.15 Timing Requirements of I ² C bus Interface (
--

Sumbol	Parameter	Condition	Sta	Standard		Unit	
Symbol	Parameter	Condition	Min.	Тур.	Max.	ax.	
tSCL	SCL input cycle time		12tcyc + 600 ⁽²⁾	-	-	ns	
t SCLH	SCL input "H" width		3tcyc + 300 ⁽²⁾	-	-	ns	
tSCLL	SCL input "L" width		5tcyc + 500 ⁽²⁾	-	-	ns	
tsf	SCL, SDA input fall time		-	=	300	ns	
tSP	SCL, SDA input spike pulse rejection time		-	-	1tcyc ⁽²⁾	ns	
tBUF	SDA input bus-free time		5tcyc ⁽²⁾	_	-	ns	
t STAH	Start condition input hold time		3tcyc ⁽²⁾	-	-	ns	
t STAS	Retransmit start condition input setup time		3tcyc ⁽²⁾	_	-	ns	
t STOP	Stop condition input setup time		3tcyc ⁽²⁾	_	-	ns	
tSDAS	Data input setup time		1tcyc + 20 ⁽²⁾	-	-	ns	
t SDAH	Data input hold time		0	_	_	ns	

NOTES:

1. Vcc = 2.2 to 5.5 V, Vss = 0 V and T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. 1tcvc = 1/f1(s)

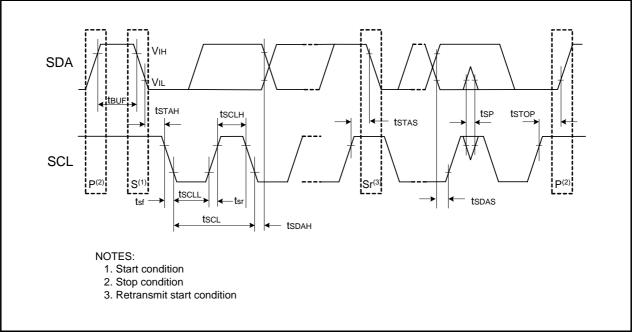


Figure 5.7 I/O Timing of I²C bus Interface

Symbol	Dere	motor	Condition		Standard			Unit
Symbol	Parameter		Condition		Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P2_0 to P2_7, XOUT	Iон = -1 mA		Vcc - 0.5	-	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Іон = -5 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT	Drive capacity HIGH	Іон = -0.1 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -50 μА	Vcc - 0.5	_	Vcc	V
Vol	Output "L" voltage	Except P2_0 to P2_7, XOUT	IoL = 1 mA		-	_	0.5	V
		P2_0 to P2_7	Drive capacity HIGH	lo∟ = 5 mA	-	-	0.5	V
			Drive capacity LOW	IoL = 1 mA	-	-	0.5	V
		XOUT	Drive capacity HIGH	IoL = 0.1 mA	-	_	0.5	V
			Drive capacity LOW	Io∟ = 50 μA	-	_	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRFI, RXD0, RXD1, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO			0.1	0.3	_	V
		RESET			0.1	0.4	-	V
Ін	Input "H" current		VI = 3 V		-	-	4.0	μA
lı∟	Input "L" current		VI = 0 V		-	_	-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V		66	160	500	kΩ
Rfxin	Feedback resistance XIN				-	3.0	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	18	-	MΩ
Vram	RAM hold voltage		During stop mode	е	1.8	-	-	V

Table 5.23	Electrical Characteristics (3) [Vcc = 3 V]

NOTE:

1. Vcc =2.7 to 3.3 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

Symbol	Parameter		Standard	
	Falanielei	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	800	-	ns
tW(CKH)	CLKi input "H" width	400	-	ns
tW(CKL)	CLKi input "L" width	400	-	ns
td(C-Q)	TXDi output delay time	-	200	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	150	-	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 to 2

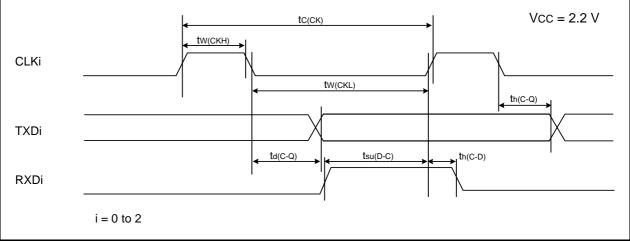


Figure 5.21 Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.36 External Interrupt INTi (i = 0, 2, 3) Input

Symbol	Parameter	Standard		Unit
Symbol	Farameter		Max.	
tw(INH)	INTO input "H" width	1000(1)	-	ns
tw(INL)	INTO input "L" width	_	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

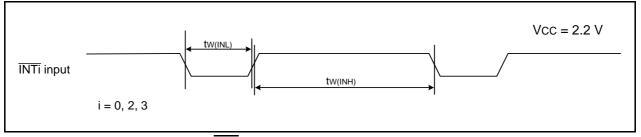
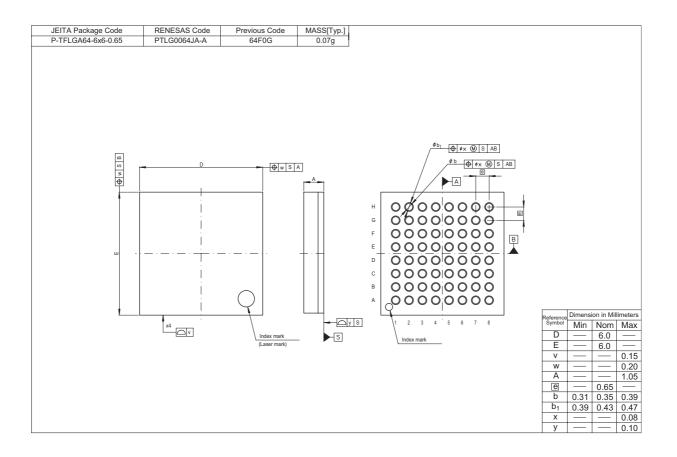



Figure 5.22 External Interrupt INTi Input Timing Diagram when VCC = 2.2 V

REVISION HISTORY

R8C/2A Group, R8C/2B Group Datasheet

D.	Description		Description
Rev. Date		Page	Summary
0.01	Apr 03, 2006	-	First Edition issued
0.10	Jun 26, 2006	All pages	Pin name revised $CMP0_0 \rightarrow TRFO00, CMP0_1 \rightarrow TRFO01, CMP0_2 \rightarrow TRFO02,$ $CMP1_0 \rightarrow TRFO10, CMP1_1 \rightarrow TRFO11, CMP1_2 \rightarrow TRFO12,$ $TRFIN \rightarrow TRFI$
		2, 4	Table 1.1 Specifications for R8C/2A Group (1) and Table 1.3 Specifications for R8C/2B Group (1); I/O Ports: • Input-only: 3 pins \rightarrow 2 pins revised Interrupts: • Internal: 17 sources \rightarrow 23 sources revised
		3, 5	Table 1.2 Specifications for R8C/2A Group (2) and Table 1.4 Specifications for R8C/2B Group (2); ROM Correction Function deleted
		8	Figure 1.3 Block Diagram revised
		9	Figure 1.4 Pin Assignment (Top View) revised
		10, 11	Table 1.7 Pin Name Information by Pin Number (1) and Table 1.8 Pin Name Information by Pin Number (2) revised
		12, 13	Table 1.9 Pin Functions (1) and Table 1.10 Pin Functions (2) revised
		19	Table 4.1 SFR Information (1); • 0008h: Module Standby Control Register, MSTCR, 00h added • 001Ch: "00h" → "00h, 10000000b" revised • NOTE6 added
		20	Table 4.2 SFR Information (2); • 005Fh: Capture Interrupt Control Register, CAPIC, XXXXX000b added
		22	Table 4.4 SFR Information (4); • 00DCh: "00DDh" → "00DCh" revised • 00F5h: "XXXX00XXb" → "00h" revised
		23	Table 4.5 SFR Information (5); • 0105h: LIN Special Function Register, LINCR2, 00h added
		30	Table 4.12 SFR Information (12); • 02C2h, 02C3h: A/D Register 1, AD1, XXh deleted • 02C4h, 02C5h: A/D Register 2, AD2, XXh deleted • 02C6h, 02C7h: A/D Register 3, AD3, XXh deleted
		31	Package Dimensions; "Diagrams showing the latest package dimensions in the "Packages" section of the Renesas Technology website." added
0.20	Sep 15, 2006	31 to 54	5. Electrical Characteristics added
0.30	Dec 22, 2006	6	Table 1.5 and Figure 1.1 revised
		7	Table 1.6 and Figure 1.2 revised
		17	Figure 3.1 revised
		18	Figure 3.2 revised

REVISION HISTORY

R8C/2A Group, R8C/2B Group Datasheet

Rev.	Date	Description		
Rev. Dale		Page	Summary	
2.00	Oct 17, 2007	33	Table 5.1; Pd: Rated Value "TBD" → "700" revised, "NOTE1" added	
		59	Package Dimensions "PTLG0064JA-A (64F0G) package" added	
2.10	Nov 26, 2007	2, 4	Table 1.1, Table 1.3 Clock: "Real-time clock (timer RE)" added	
		6, 7	Table 1.5 and Figure 1.1 revised	
		8, 9	Table 1.6 and Figure 1.2 revised	
		20, 21	Figure 3.1 and Figure 3.2 revised	
		22	Table 4.1 002Ch: High-Speed On-Chip Oscillator Control Register 7 added	
		35	Table 5.2 NOTE2 revised	
		41	Table 5.11 revised	

All trademarks and registered trademarks are the property of their respective owners.