

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	55
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212a8snfa-x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

R8C/2A Group, R8C/2B Group RENESAS MCU

1. Overview

1.1 Features

The R8C/2A Group and R8C/2B Group of single-chip MCUs incorporates the R8C/Tiny Series CPU core, employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

Power consumption is low, and the supported operating modes allow additional power control. These MCUs also use an anti-noise configuration to reduce emissions of electromagnetic noise and are designed to withstand EMI. Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of system components.

Furthermore, the R8C/2B Group has on-chip data flash (1 KB \times 2 blocks).

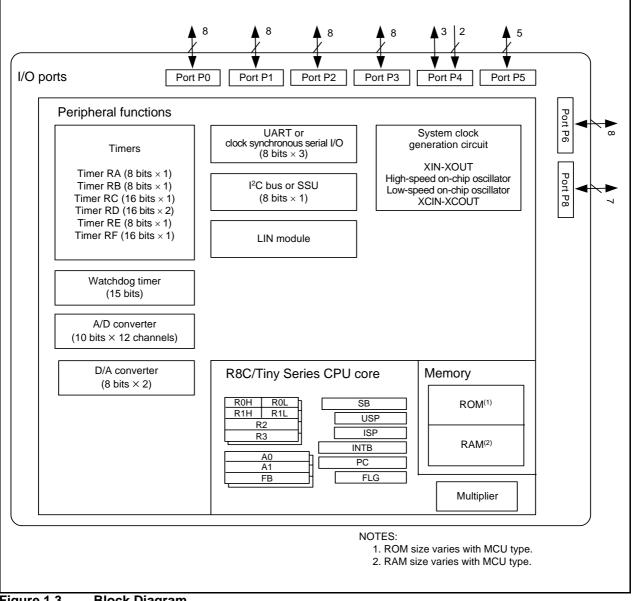
The difference between the R8C/2A Group and R8C/2B Group is only the presence or absence of data flash. Their peripheral functions are the same.

1.1.1 Applications

Electronic household appliances, office equipment, audio equipment, consumer equipment, etc.

Itom	Eurotion	
Item	Function	Specification
Serial	UARTO, UART1,	Clock synchronous serial I/O/UART × 3
Interface	UART2	
	nous Serial I/O with	1 (shared with I ² C-bus)
Chip Select (S	SU)	
I ² C bus ⁽¹⁾		1 (shared with SSU)
LIN Module		Hardware LIN: 1 (timer RA, UART0)
A/D Converter		10-bit resolution × 12 channels, includes sample and hold function
D/A Converter		8-bit resolution × 2 circuits
Flash Memory		 Programming and erasure voltage: VCC = 2.7 to 5.5 V
		 Programming and erasure endurance: 100 times
		 Program security: ROM code protect, ID code check
		 Debug functions: On-chip debug, on-board flash rewrite function
Operating Free	uency/Supply	f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V)
Voltage		f(XIN) = 10 MHz (VCC = 2.7 to 5.5 V)
		$f(XIN) = 5 \text{ MHz} (VCC = 2.2 \text{ to } 5.5 \text{ V})^{-1}$
Current consur	mption	12 mA (VCC = 5.0 V, f(XIN) = 20 MHz)
		$5.5 \text{ mA}(\text{VCC} = 3.0 \text{ V}, \hat{f}(\text{XIN}) = 10 \text{ MHz})$
		2.1 μA (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz)) 0.65 μA (VCC = 3.0 V, stop mode)
Operating Amb	pient Temperature	-20 to 85°C (N version)
Operating Ami		-40 to 85°C (D version) ⁽²⁾
		-20 to 105°C (Y version) ⁽³⁾
Package		64-pin LQFP
1 achage		Package code: PLQP0064KB-A (previous code: 64P6Q-A)
		Package code: PLQP0064GA-A (previous code: 64P6U-A)
		64-pin FLGA
		 Package code: PTLG0064JA-A (previous code: 64F0G)

Table 1.2 Specifications for R8C/2A Group (2)


NOTES:

I²C bus is a trademark of Koninklijke Philips Electronics N. V.
 Specify the D version if D version functions are to be used.
 Please contact Renesas Technology sales offices for the Y version.

1.3 **Block Diagram**

Figure 1.3 shows a Block Diagram.

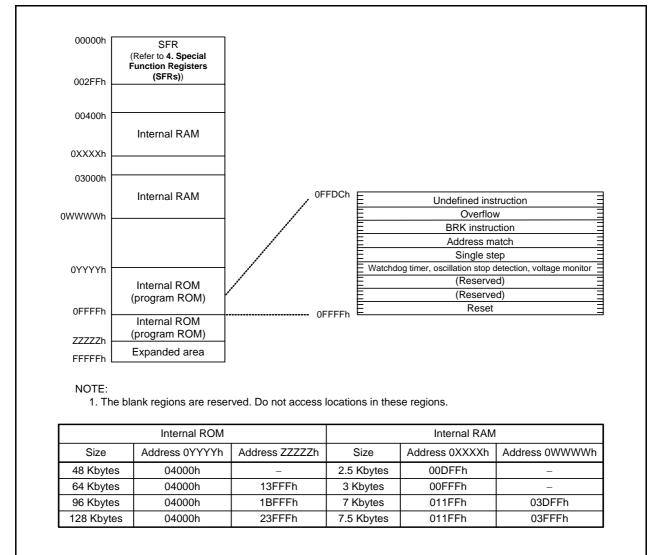
Table 1.10	Pin Functions (2)
------------	-------------------

Item	Pin Name	I/O Type	Description
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter
D/A converter	DA0 to DA1	0	D/A converter output pins
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_3 to P4_5, P5_0 to P5_4, P6_0 to P6_7, P8_0 to P8_6	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. P2_0 to P2_7 also function as LED drive ports.
Input port	P4_6, P4_7	Ι	Input-only ports

I: Input O: Output I/O: Input and output

3. Memory

3.1 R8C/2A Group


Figure 3.1 is a Memory Map of R8C/2A Group. The R8C/2A group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM area is allocated addresses 04000h to 0FFFFh.

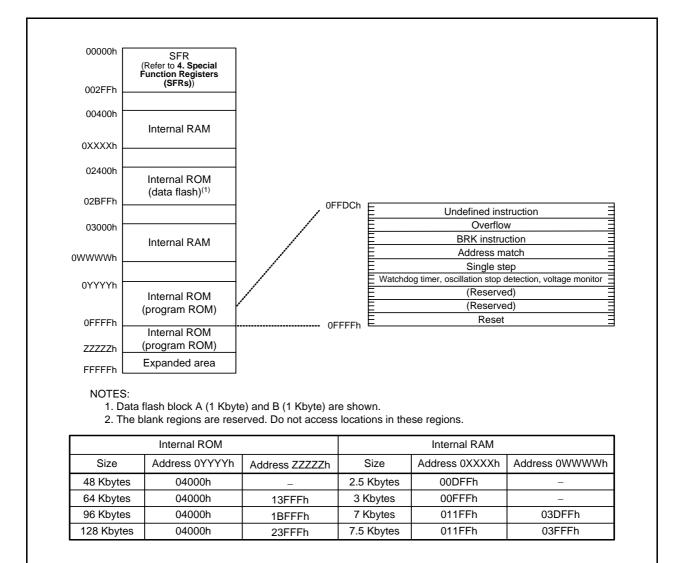
The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

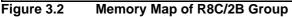
The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

3.2 R8C/2B Group

Figure 3.2 is a Memory Map of R8C/2B Group. The R8C/2B group has 1 Mbyte of address space from addresses 00000h to FFFFFh.


The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM area is allocated addresses 04000h to 0FFFFh.


The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Address	Register	Symbol	After reset
00C0h		Cymbol	
00C1h			
00C2h			
00C3h			
00C4h			
00C5h			
00C6h			
00C7h			
00C7h			
00C8h			
00C9h			
00CAn 00CBh			
00CBn 00CCh			
00CCh 00CDh			
00CDh 00CEh			
00CEn 00CFh			
00CFN 00D0h			
00D1h			
00D2h			
00D3h			
00D4h			
00D5h			
00D6h			
00D7h	D/A Decision 0	DAO	006
00D8h	D/A Register 0	DA0	00h
00D9h		DA4	
00DAh	D/A Register 1	DA1	00h
00DBh		D.4.0.01	
00DCh	D/A Control Register	DACON	00h
00DDh			
00DEh			
00DFh		20	
00E0h	Port PO Register	P0	XXh
00E1h	Port P1 Register	P1	XXh
00E2h	Port P0 Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
00E4h	Port P2 Register	P2	XXh
00E5h	Port P3 Register	P3	XXh
00E6h	Port P2 Direction Register	PD2	00h
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	XXh
00E9h	Port P5 Register	P5	XXh
00EAh	Port P4 Direction Register	PD4	00h
00EBh	Port P5 Direction Register	PD5	00h
00ECh	Port P6 Register	P6	XXh
00EDh			
00EEh	Port P6 Direction Register	PD6	00h
00EFh			
00F0h			
00F1h			
00F2h			
00F3h			
00F4h	Port P2 Drive Capacity Control Register	P2DRR	00h
00F5h	UART1 Function Select Register	U1SR	000000XXb
00F6h	-		
00F7h			
00F8h	Port Mode Register	PMR	00h
00F9h	External Input Enable Register	INTEN	00h
00FAh	INT Input Filter Select Register	INTF	00h
00FBh	Key Input Enable Register	KIEN	00h
00FCh	Pull-Up Control Register 0	PUR0	00h
00FDh	Pull-Up Control Register 1	PUR1	XX000000b
00FEh			
00FFh			
	1	I	1

SFR Information (4)⁽¹⁾ Table 4.4

X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Address	Register	Symbol	After reset
0280h	5		
0281h			
0282h			
0283h			
0284h			
0285h			
0286h			
0287h			
0288h			
0289h 028Ah			
028Bh			
028Ch			
028Dh			
028Eh			
028Fh			
0290h	Timer RF Register	TRF	00h
0291h			00h
0292h			
0293h			
0294h			
0295h			
0296h			
0297h 0298h			
0298h 0299h			
0299h	Timer RF Control Register 0	TRFCR0	00h
029Bh	Timer RF Control Register 1	TRFCR1	00h
029Ch	Capture / Compare 0 Register	TRFM0	0000h ⁽²⁾
029Dh			FFFFh ⁽³⁾
029Eh	Compare 1 Register	TRFM1	FFh
029Fh			FFh
02A0h			
02A1h			
02A2h			
02A3h			
02A4h			
02A5h			
02A6h			
02A7h			
02A8h 02A9h			
02A9h 02AAh			
02AAn 02ABh			
02ADh 02ACh			
02ADh			
02AEh			
02AFh			
02B0h			
02B1h			
02B2h			
02B3h			
02B4h			
02B5h			
02B6h			
02B7h 02B8h			
02B8h			
02B3h			
02BAn 02BBh			
02BDh			
02BDh			
02BEh			
02BFh			
e			

Table 4.11 SFR Information (11)⁽¹⁾

NOTES: 1. The blank regions are reserved. Do not access locations in these regions. 2. After input capture mode. 3. After output compare mode.

RENESAS

Address	Register	Symbol	After reset
02C0h	A/D Register 0	AD0	XXh
02C1h			XXh
02C2h			
02C3h			
02C4h			
02C5h			
02C6h			
02C7h			
02C8h 02C9h			
02C9h			-
02CBh			
02CCh			
02CDh			
02CEh			
02CFh			
02D0h			
02D1h			
02D2h			
02D3h	A/D Control Degister 2		000010005
02D4h	A/D Control Register 2	ADCON2	00001000b
02D5h 02D6h	A/D Control Register 0	ADCON0	00000011b
02D6n 02D7h	A/D Control Register 0	ADCON0 ADCON1	0000011b 00h
02D7h			
02D9h			
02DAh			
02DBh			
02DCh			
02DDh			
02DEh			
02DFh			
02E0h			
02E1h 02E2h			
02E2h			
02E3h	Port P8 Direction Register	PD8	00h
02E5h		1 00	0011
02E6h	Port P8 Register	P8	XXh
02E7h		-	
02E8h			
02E9h			
02EAh			
02EBh			
02ECh			
02EDh			
02EEh 02EFh			
02EFh 02F0h		+	+
02F0h		+	+
02F2h			
02F3h			
02F4h		1	
02F5h			
02F6h			
02F7h			
02F8h			
02F9h			
02FAh			4
02FBh	Dull Lin Control Degister 2	DUDO	XXX00000h
02FCh 02FDh	Pull-Up Control Register 2	PUR2	XXX00000b
02FDh 02FEh			
02FEN 02FFh	Timer RF Output Control Register	TRFOUT	00h
021111			0011
FFFFh	Option Function Select Register	OFS	(Note 2)
· · · · ·			· · · · · /

Table 4.12 SFR Information (12)⁽¹⁾

X: Undefined
NOTES:

The blank regions are reserved. Do not access locations in these regions.
The OFS register cannot be changed by a program. Use a flash programmer to write to it.

Cumbal	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾	R8C/2A Group	100 ⁽³⁾	-	-	times
		R8C/2B Group	1,000(3)	-	-	times
-	Byte program time		-	50	400	μS
-	Block erase time		-	0.4	9	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	_	_	μS
-	Interval from program start/restart until following suspend request		0	-	-	ns
-	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.5 Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60° C, unless otherwise specified.

 Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis.
 If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

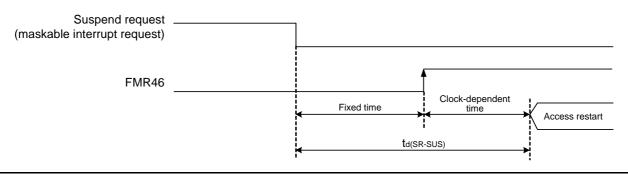


Figure 5.2 Time delay until Suspend

Table 5.7 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falanelei	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level		2.2	2.3	2.4	V
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	0.9	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	-	300	μS
Vccmin	MCU operating voltage minimum value		2.2	-	-	V

NOTES:

1. The measurement condition is Vcc = 2.2 V to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 5.8 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level		2.70	2.85	3.00	V
-	Voltage monitor 1 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.2 V to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Table 5.9 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level		3.3	3.6	3.9	V
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	0.6	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.2 V to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

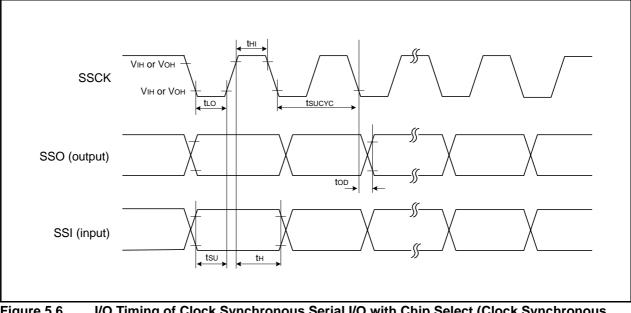


Figure 5.6 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Clock Synchronous Communication Mode)

Table 5.15 Timing Requirements of I ² C bus Interface (
--

Symbol	Parameter	Condition Min.	Sta	andard		Unit
Symbol	Parameter		Min.	Тур.	Max.	Unit
tSCL	SCL input cycle time		12tcyc + 600 ⁽²⁾	-	-	ns
t SCLH	SCL input "H" width		3tcyc + 300 ⁽²⁾	-	-	ns
tSCLL	SCL input "L" width		5tcyc + 500 ⁽²⁾	-	-	ns
tsf	SCL, SDA input fall time		-	=	300	ns
tSP	SCL, SDA input spike pulse rejection time		-	-	1tcyc ⁽²⁾	ns
tBUF	SDA input bus-free time		5tcyc ⁽²⁾	_	-	ns
t STAH	Start condition input hold time		3tcyc ⁽²⁾	-	-	ns
t STAS	Retransmit start condition input setup time		3tcyc ⁽²⁾	_	-	ns
t STOP	Stop condition input setup time		3tcyc ⁽²⁾	_	-	ns
tSDAS	Data input setup time		1tcyc + 20 ⁽²⁾	—	-	ns
t SDAH	Data input hold time		0	_	-	ns

NOTES:

1. Vcc = 2.2 to 5.5 V, Vss = 0 V and T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. 1tcvc = 1/f1(s)

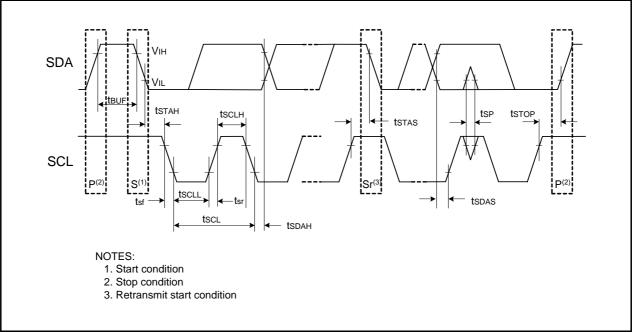


Figure 5.7 I/O Timing of I²C bus Interface

Symbol	Do	rameter	Conditio	Standard			Unit	
Symbol	Pa	ameter	Conditio	1 1	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P2_0 to P2_7,	юн = -5 mA Vcc – 2.0		-	Vcc	V	
	XOUT	Іон = -200 μА		Vcc - 0.5	-	Vcc	V	
		P2_0 to P2_7	Drive capacity HIGH	Іон = -20 mA	Vcc - 2.0	-	Vcc	V
			Drive capacity LOW	Іон = -5 mA	Vcc - 2.0	-	Vcc	V
		XOUT	Drive capacity HIGH	Іон = -1 mA	Vcc - 2.0	-	Vcc	V
			Drive capacity LOW	Іон = -500 μА	Vcc - 2.0	-	Vcc	V
Vol	Output "L" voltage	Except P2_0 to P2_7,	IOL = 5 mA	•	_	-	2.0	V
		XOUT	Ιοι = 200 μΑ		_	-	0.45	V
		P2_0 to P2_7	Drive capacity HIGH	IoL = 20 mA	_	-	2.0	V
			Drive capacity LOW	IoL = 5 mA	_	-	2.0	V
		XOUT	Drive capacity HIGH IOL = 1 mA		_	-	2.0	V
			Drive capacity LOW	IoL = 500 μA	_	-	2.0	V
VT+-VT- Hyster	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRFI, RXD0, RXD1, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO			0.1	0.5	_	V
		RESET			0.1	1.0	-	V
Ін	Input "H" current		VI = 5 V		_	_	5.0	μA
lı∟	Input "L" current		VI = 0 V		_	_	-5.0	μA
Rpullup	Pull-up resistance		VI = 0 V		30	50	167	kΩ
Rfxin	Feedback resistance	XIN			_	1.0	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	18	-	MΩ
VRAM	RAM hold voltage		During stop mode		1.8	-	-	V

Table 5.16 Electrical Characteristics (1) [Vcc = 5 V]

NOTE:

1. Vcc = 4.2 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 20 MHz, unless otherwise specified.

Symbol	Dere	ameter	Cond	SI	Unit			
Symbol	Fala	ameter	Cond		Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P2_0 to P2_7, XOUT	Iон = -1 mA		Vcc - 0.5	-	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Іон = -5 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT	Drive capacity HIGH	Іон = -0.1 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -50 μА	Vcc - 0.5	_	Vcc	V
Vol	Output "L" voltage	Except P2_0 to P2_7, XOUT	IoL = 1 mA		-	_	0.5	V
		P2_0 to P2_7	Drive capacity HIGH	lo∟ = 5 mA	-	-	0.5	V
			Drive capacity LOW	IoL = 1 mA	-	-	0.5	V
		XOUT	Drive capacity HIGH	IoL = 0.1 mA	-	_	0.5	V
			Drive capacity LOW	Io∟ = 50 μA	-	_	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRFI, RXD0, RXD1, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO			0.1	0.3	_	V
		RESET			0.1	0.4	-	V
Ін	Input "H" current		VI = 3 V		-	-	4.0	μA
lı∟	Input "L" current VI = 0 V		-	_	-4.0	μA		
Rpullup	Pull-up resistance		VI = 0 V		66	160	500	kΩ
Rfxin	Feedback resistance	XIN			-	3.0	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	18	-	MΩ
Vram	RAM hold voltage		During stop mode	е	1.8	-	-	V

Table 5.23	Electrical Characteristics (3) [Vcc = 3 V]

NOTE:

1. Vcc =2.7 to 3.3 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(CK)	CLKi input cycle time	300	-	ns	
tW(CKH)	CLKi input "H" width	150	-	ns	
tW(CKL)	CLKi Input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	70	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 to 2

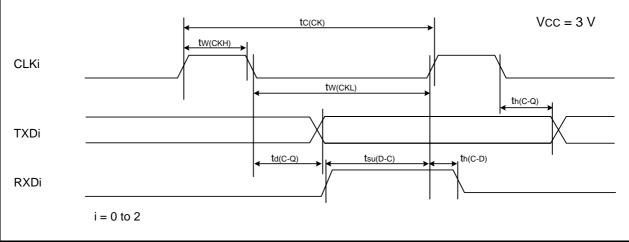
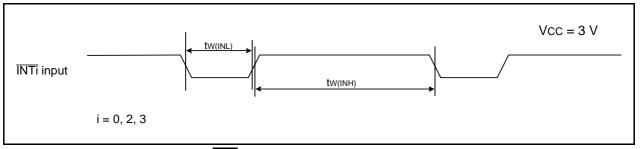
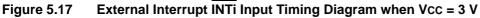


Figure 5.16 Serial Interface Timing Diagram when Vcc = 3 V

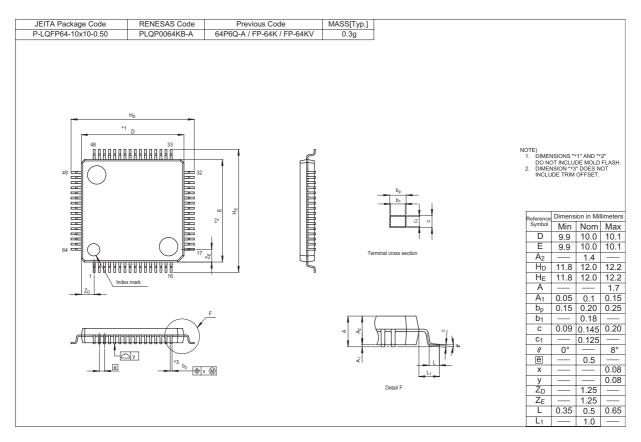

Table 5.29 External Interrupt INTi (i = 0, 2, 3) Input

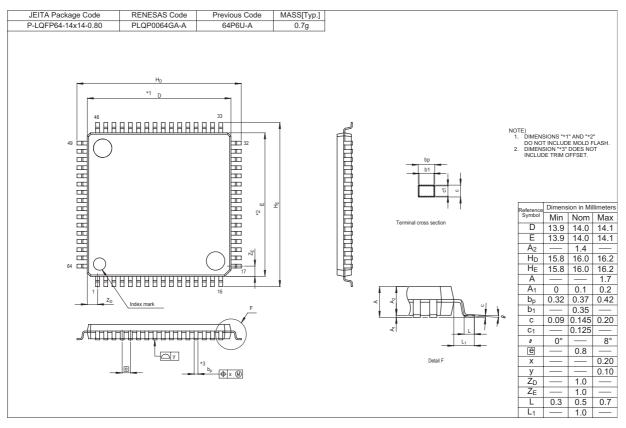

Symbol	Parameter	Stan	Unit	
Symbol	Falanielei	Min.	Max.	Unit
tw(INH)	INTO input "H" width	380(1)	-	ns
tw(INL)	INTO input "L" width	380 ⁽²⁾	_	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.


Table 5.31Electrical Characteristics (6) [Vcc = 2.2 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)


Symbol	Parameter		Condition	Standard		Unit	
Symbol				Min.	Тур.	Max.	Unit
	Power supply current (Vcc = 2.2 to 2.7 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	2.5	-	mA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1	_	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	4	-	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.7	-	mA
	Low-speed on- chip oscillator mode Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	110	300	μA	
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz FMR47 = 1	-	125	350	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz Program operation on RAM Flash memory off, FMSTP = 1	_	27	-	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	20	60	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	12	40	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	2.8	_	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	1.9	-	μA
	Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	0.6	3.0	μA	
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.60	-	μA

RENESAS

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

RENESAS

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the data the discovered in this document, but Renesas as an evel and inferent information in the data current for the purpose of any data programs. Algorithms, and application is a the development of a different information in the data diagrams, charts, programs, algorithms, and application is additional and different information in the data different information in the data the information in the data different information included in the document.
 Renes

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com