



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | R8C                                                                              |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 20MHz                                                                            |
| Connectivity               | I <sup>2</sup> C, LINbus, SIO, SSU, UART/USART                                   |
| Peripherals                | POR, PWM, Voltage Detect, WDT                                                    |
| Number of I/O              | 55                                                                               |
| Program Memory Size        | 48KB (48K x 8)                                                                   |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 2.5K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2.2V ~ 5.5V                                                                      |
| Data Converters            | A/D 12x10b; D/A 2x8b                                                             |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 64-LQFP                                                                          |
| Supplier Device Package    | 64-LFQFP (10x10)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212b7sdfp-v2 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
  - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

# RENESAS

R8C/2A Group, R8C/2B Group RENESAS MCU

## 1. Overview

#### 1.1 Features

The R8C/2A Group and R8C/2B Group of single-chip MCUs incorporates the R8C/Tiny Series CPU core, employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

Power consumption is low, and the supported operating modes allow additional power control. These MCUs also use an anti-noise configuration to reduce emissions of electromagnetic noise and are designed to withstand EMI. Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of system components.

Furthermore, the R8C/2B Group has on-chip data flash (1 KB  $\times$  2 blocks).

The difference between the R8C/2A Group and R8C/2B Group is only the presence or absence of data flash. Their peripheral functions are the same.

#### 1.1.1 Applications

Electronic household appliances, office equipment, audio equipment, consumer equipment, etc.



| Item                                | Function             | Specification                                                                                           |
|-------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------|
| Serial                              | UART0, UART1,        | Clock synchronous serial I/O/UART × 3                                                                   |
| Interface                           | UART2                |                                                                                                         |
| Clock Synchro                       | nous Serial I/O with | 1 (shared with I <sup>2</sup> C-bus)                                                                    |
| Chip Select (S                      | SU)                  |                                                                                                         |
| I <sup>2</sup> C bus <sup>(1)</sup> |                      | 1 (shared with SSU)                                                                                     |
| LIN Module                          |                      | Hardware LIN: 1 (timer RA, UART0)                                                                       |
| A/D Converter                       |                      | 10-bit resolution × 12 channels, includes sample and hold function                                      |
| D/A Converter                       |                      | 8-bit resolution × 2 circuits                                                                           |
| Flash Memory                        |                      | <ul> <li>Programming and erasure voltage: VCC = 2.7 to 5.5 V</li> </ul>                                 |
|                                     |                      | <ul> <li>Programming and erasure endurance: 100 times</li> </ul>                                        |
|                                     |                      | <ul> <li>Program security: ROM code protect, ID code check</li> </ul>                                   |
|                                     |                      | <ul> <li>Debug functions: On-chip debug, on-board flash rewrite function</li> </ul>                     |
| Operating Free                      | quency/Supply        | f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V)                                                                    |
| Voltage                             |                      | f(XIN) = 10  MHz (VCC = 2.7  to  5.5  V)                                                                |
| Current concur                      | notion               | I(XIN) = 5  MHZ (VCC = 2.2  to  5.5  V)                                                                 |
| Current consur                      | npuon                | 12  IIA (VCC = 3.0  V, I(XIN) = 20  IVIT2)<br>5.5 mA (VCC = 3.0 V, I(XIN) = 10 MHz)                     |
|                                     |                      | $2.1 \ \mu\text{A} (\text{VCC} = 3.0 \ \text{V}, \text{ wait mode} (f(\text{XCIN}) = 32 \ \text{kHz}))$ |
|                                     |                      | $0.65 \ \mu A \ (VCC = 3.0 \ V, \ stop \ mode)$                                                         |
| Operating Amb                       | pient Temperature    | -20 to 85°C (N version)                                                                                 |
|                                     |                      | -40 to 85°C (D version) <sup>(2)</sup>                                                                  |
|                                     |                      | -20 to 105°C (Y version) <sup>(3)</sup>                                                                 |
| Package                             |                      | 64-pin LQFP                                                                                             |
|                                     |                      | <ul> <li>Package code: PLQP0064KB-A (previous code: 64P6Q-A)</li> </ul>                                 |
|                                     |                      | <ul> <li>Package code: PLQP0064GA-A (previous code: 64P6U-A)</li> </ul>                                 |
|                                     |                      | 64-pin FLGA                                                                                             |
|                                     |                      | <ul> <li>Package code: PTLG0064JA-A (previous code: 64F0G)</li> </ul>                                   |

Table 1.2 Specifications for R8C/2A Group (2)

I<sup>2</sup>C bus is a trademark of Koninklijke Philips Electronics N. V.
 Specify the D version if D version functions are to be used.
 Please contact Renesas Technology sales offices for the Y version.



| Item                                | Function          | Specification                                                                       |  |  |  |  |
|-------------------------------------|-------------------|-------------------------------------------------------------------------------------|--|--|--|--|
| Serial                              | UART0, UART1,     | Clock synchronous serial I/O/UART × 3                                               |  |  |  |  |
| Interface                           | UART2             |                                                                                     |  |  |  |  |
| Clock Synchronous Serial I/O with   |                   | 1 (shared with I <sup>2</sup> C-bus)                                                |  |  |  |  |
| Chip Select (S                      | SU)               |                                                                                     |  |  |  |  |
| I <sup>2</sup> C bus <sup>(1)</sup> |                   | 1 (shared with SSU)                                                                 |  |  |  |  |
| LIN Module                          |                   | Hardware LIN: 1 (timer RA, UART0)                                                   |  |  |  |  |
| A/D Converter                       |                   | 10-bit resolution × 12 channels, includes sample and hold function                  |  |  |  |  |
| D/A Converter                       |                   | 8-bit resolution × 2 circuits                                                       |  |  |  |  |
| Flash Memory                        |                   | <ul> <li>Programming and erasure voltage: VCC = 2.7 to 5.5 V</li> </ul>             |  |  |  |  |
|                                     |                   | <ul> <li>Programming and erasure endurance: 10,000 times (data flash)</li> </ul>    |  |  |  |  |
|                                     |                   | 1,000 times (program ROM)                                                           |  |  |  |  |
|                                     |                   | <ul> <li>Program security: ROM code protect, ID code check</li> </ul>               |  |  |  |  |
|                                     |                   | <ul> <li>Debug functions: On-chip debug, on-board flash rewrite function</li> </ul> |  |  |  |  |
| Operating Free                      | quency/Supply     | f(XIN) = 20  MHz (VCC = 3.0  to  5.5  V)                                            |  |  |  |  |
| Voltage                             |                   | f(XIN) = 10  MHz (VCC = 2.7  to  5.5  V)                                            |  |  |  |  |
| Current consu                       | motion            | $12 \text{ m} \Delta (VCC - 5.0 \text{ V} \text{ f}(XN)) = 20 \text{ MHz})$         |  |  |  |  |
| Current consu                       | mption            | 5.5  mA (VCC = 3.0  V, f(XIN) = 20  MHz)                                            |  |  |  |  |
|                                     |                   | 2.1 μA (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz))                                  |  |  |  |  |
|                                     |                   | 0.65 μA (VCC = 3.0 V, stop mode)                                                    |  |  |  |  |
| Operating Amb                       | pient Temperature | -20 to 85°C (N version)                                                             |  |  |  |  |
|                                     |                   | -40 to 85°C (D version) <sup>(2)</sup>                                              |  |  |  |  |
| Dealerer                            |                   | -20 to 105°C (Y version)(3)                                                         |  |  |  |  |
| Раскаде                             |                   | 64-pin LQFP                                                                         |  |  |  |  |
|                                     |                   | Package code: PLQP0064KB-A (previous code: 64P6Q-A)                                 |  |  |  |  |
|                                     |                   | • Package code: PLQP0064GA-A (previous code: 64P60-A)                               |  |  |  |  |
|                                     |                   | 64-pin FLGA                                                                         |  |  |  |  |
|                                     |                   | <ul> <li>Package code: PTLG0064JA-A (previous code: 64F0G)</li> </ul>               |  |  |  |  |

Table 1.4 Specifications for R8C/2B Group (2)

I<sup>2</sup>C bus is a trademark of Koninklijke Philips Electronics N. V.
 Specify the D version if D version functions are to be used.
 Please contact Renesas Technology sales offices for the Y version.

| Dort No         | ROM Capacity |             | RAM        |              | Bomarka   |                        |
|-----------------|--------------|-------------|------------|--------------|-----------|------------------------|
| Part No.        | Program ROM  | Data flash  | Capacity   | Раскаде туре | R         | emarks                 |
| R5F212B7SNFP    | 48 Kbytes    | 1 Kbyte x 2 | 2.5 Kbytes | PLQP0064KB-A | N version |                        |
| R5F212B7SNFA    | 48 Kbytes    | 1 Kbyte x 2 | 2.5 Kbytes | PLQP0064GA-A |           |                        |
| R5F212B7SNLG    | 48 Kbytes    | 1 Kbyte x 2 | 2.5 Kbytes | PTLG0064JA-A |           |                        |
| R5F212B8SNFP    | 64 Kbytes    | 1 Kbyte x 2 | 3 Kbytes   | PLQP0064KB-A |           |                        |
| R5F212B8SNFA    | 64 Kbytes    | 1 Kbyte x 2 | 3 Kbytes   | PLQP0064GA-A |           |                        |
| R5F212B8SNLG    | 64 Kbytes    | 1 Kbyte x 2 | 3 Kbytes   | PTLG0064JA-A |           |                        |
| R5F212BASNFP    | 96 Kbytes    | 1 Kbyte x 2 | 7 Kbytes   | PLQP0064KB-A |           |                        |
| R5F212BASNFA    | 96 Kbytes    | 1 Kbyte x 2 | 7 Kbytes   | PLQP0064GA-A |           |                        |
| R5F212BASNLG    | 96 Kbytes    | 1 Kbyte x 2 | 7 Kbytes   | PTLG0064JA-A |           |                        |
| R5F212BCSNFP    | 128 Kbytes   | 1 Kbyte x 2 | 7.5 Kbytes | PLQP0064KB-A |           |                        |
| R5F212BCSNFA    | 128 Kbytes   | 1 Kbyte x 2 | 7.5 Kbytes | PLQP0064GA-A |           |                        |
| R5F212BCSNLG    | 128 Kbytes   | 1 Kbyte x 2 | 7.5 Kbytes | PTLG0064JA-A |           |                        |
| R5F212B7SDFP    | 48 Kbytes    | 1 Kbyte x 2 | 2.5 Kbytes | PLQP0064KB-A | D version |                        |
| R5F212B7SDFA    | 48 Kbytes    | 1 Kbyte x 2 | 2.5 Kbytes | PLQP0064GA-A |           |                        |
| R5F212B8SDFP    | 64 Kbytes    | 1 Kbyte x 2 | 3 Kbytes   | PLQP0064KB-A |           |                        |
| R5F212B8SDFA    | 64 Kbytes    | 1 Kbyte x 2 | 3 Kbytes   | PLQP0064GA-A |           |                        |
| R5F212BASDFP    | 96 Kbytes    | 1 Kbyte x 2 | 7 Kbytes   | PLQP0064KB-A |           |                        |
| R5F212BASDFA    | 96 Kbytes    | 1 Kbyte x 2 | 7 Kbytes   | PLQP0064GA-A |           |                        |
| R5F212BCSDFP    | 128 Kbytes   | 1 Kbyte x 2 | 7.5 Kbytes | PLQP0064KB-A |           |                        |
| R5F212BCSDFA    | 128 Kbytes   | 1 Kbyte x 2 | 7.5 Kbytes | PLQP0064GA-A |           |                        |
| R5F212B7SNXXXFP | 48 Kbytes    | 1 Kbyte x 2 | 2.5 Kbytes | PLQP0064KB-A | N version | Factory                |
| R5F212B7SNXXXFA | 48 Kbytes    | 1 Kbyte x 2 | 2.5 Kbytes | PLQP0064GA-A |           | programming            |
| R5F212B7SNXXXLG | 48 Kbytes    | 1 Kbyte x 2 | 2.5 Kbytes | PTLG0064JA-A |           | product <sup>(1)</sup> |
| R5F212B8SNXXXFP | 64 Kbytes    | 1 Kbyte x 2 | 3 Kbytes   | PLQP0064KB-A |           |                        |
| R5F212B8SNXXXFA | 64 Kbytes    | 1 Kbyte x 2 | 3 Kbytes   | PLQP0064GA-A |           |                        |
| R5F212B8SNXXXLG | 64 Kbytes    | 1 Kbyte x 2 | 3 Kbytes   | PTLG0064JA-A |           |                        |
| R5F212BASNXXXFP | 96 Kbytes    | 1 Kbyte x 2 | 7 Kbytes   | PLQP0064KB-A |           |                        |
| R5F212BASNXXXFA | 96 Kbytes    | 1 Kbyte x 2 | 7 Kbytes   | PLQP0064GA-A |           |                        |
| R5F212BASNXXXLG | 96 Kbytes    | 1 Kbyte x 2 | 7 Kbytes   | PTLG0064JA-A |           |                        |
| R5F212BCSNXXXFP | 128 Kbytes   | 1 Kbyte x 2 | 7.5 Kbytes | PLQP0064KB-A |           |                        |
| R5F212BCSNXXXFA | 128 Kbytes   | 1 Kbyte x 2 | 7.5 Kbytes | PLQP0064GA-A |           |                        |
| R5F212BCSNXXXLG | 128 Kbytes   | 1 Kbyte x 2 | 7.5 Kbytes | PTLG0064JA-A |           |                        |
| R5F212B7SDXXXFP | 48 Kbytes    | 1 Kbyte x 2 | 2.5 Kbytes | PLQP0064KB-A | D version |                        |
| R5F212B7SDXXXFA | 48 Kbytes    | 1 Kbyte x 2 | 2.5 Kbytes | PLQP0064GA-A |           |                        |
| R5F212B8SDXXXFP | 64 Kbytes    | 1 Kbyte x 2 | 3 Kbytes   | PLQP0064KB-A | ]         |                        |
| R5F212B8SDXXXFA | 64 Kbytes    | 1 Kbyte x 2 | 3 Kbytes   | PLQP0064GA-A | 1         |                        |
| R5F212BASDXXXFP | 96 Kbytes    | 1 Kbyte x 2 | 7 Kbytes   | PLQP0064KB-A | 1         |                        |
| R5F212BASDXXXFA | 96 Kbytes    | 1 Kbyte x 2 | 7 Kbytes   | PLQP0064GA-A | 1         |                        |
| R5F212BCSDXXXFP | 128 Kbytes   | 1 Kbyte x 2 | 7.5 Kbytes | PLQP0064KB-A | 1         |                        |
| R5F212BCSDXXXFA | 128 Kbytes   | 1 Kbyte x 2 | 7.5 Kbytes | PLQP0064GA-A | 1         |                        |

| Table 1.6 | Product List for R8C/2B Group |
|-----------|-------------------------------|
|           |                               |

#### Current of Nov. 2007

NOTE:

1. The user ROM is programmed before shipment.

#### 1.3 **Block Diagram**

Figure 1.3 shows a Block Diagram.





| Din    |             |      |           | I/O Pin Funct | ions for of Pe      | eripheral Mo | dules                |                                 |
|--------|-------------|------|-----------|---------------|---------------------|--------------|----------------------|---------------------------------|
| Number | Control Pin | Port | Interrupt | Timer         | Serial<br>Interface | SSU          | I <sup>2</sup> C bus | A/D Converter,<br>D/A Converter |
| 46     |             | P1_3 | KI3       |               |                     | -            |                      | AN11                            |
| 47     |             | P1_2 | KI2       |               |                     |              |                      | AN10                            |
| 48     |             | P1_1 | KI1       |               |                     |              |                      | AN9                             |
| 49     |             | P1_0 | KI0       |               |                     |              |                      | AN8                             |
| 50     |             | P0_0 |           |               |                     |              |                      | AN7                             |
| 51     |             | P0_1 |           |               |                     |              |                      | AN6                             |
| 52     |             | P0_2 |           |               |                     |              |                      | AN5                             |
| 53     |             | P0_3 |           |               |                     |              |                      | AN4                             |
| 54     |             | P0_4 |           |               |                     |              |                      | AN3                             |
| 55     |             | P6_2 |           |               |                     |              |                      |                                 |
| 56     |             | P6_1 |           |               |                     |              |                      |                                 |
| 57     |             | P0_5 |           |               | CLK1                |              |                      | AN2                             |
| 58     |             | P0_6 |           |               |                     |              |                      | AN1/DA0                         |
| 59     | VSS/AVSS    |      |           |               |                     |              |                      |                                 |
| 60     |             | P0_7 |           |               |                     |              |                      | AN0/DA1                         |
| 61     | VREF        |      |           |               |                     |              |                      |                                 |
| 62     | VCC/AVCC    |      |           |               |                     |              |                      |                                 |
| 63     |             | P3_7 |           |               |                     | SSO          |                      |                                 |
| 64     |             | P3_5 |           |               |                     | SSCK         | SCL                  |                                 |

Table 1.8Pin Name Information by Pin Number (2)

## 2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.



RENESAS

### 2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

### 2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

### 2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

#### 2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

## 2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

## 2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

### 2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

#### 2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

## 2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

## 2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

## 2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

## 2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

## 2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

#### 2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.



| Address | Register                        | Symbol | After reset |
|---------|---------------------------------|--------|-------------|
| 0180h   |                                 |        |             |
| 0181h   |                                 |        |             |
| 0182h   |                                 |        |             |
| 0183h   |                                 |        |             |
| 0184h   |                                 |        |             |
| 0185h   |                                 |        |             |
| 0186h   |                                 |        |             |
| 0187h   |                                 |        |             |
| 01886   |                                 |        |             |
| 0180h   |                                 |        |             |
| 010911  |                                 |        |             |
| 010AII  |                                 |        |             |
| 01800   |                                 |        |             |
| 018Ch   |                                 |        |             |
| 018Dh   |                                 |        |             |
| 018Eh   |                                 |        |             |
| 018Fh   |                                 |        |             |
| 0190h   |                                 |        |             |
| 0191h   |                                 |        |             |
| 0192h   |                                 |        |             |
| 0193h   |                                 |        |             |
| 0194h   |                                 |        |             |
| 0195h   |                                 |        |             |
| 0196h   |                                 |        |             |
| 0197h   |                                 |        |             |
| 0198h   |                                 |        |             |
| 0199h   |                                 |        |             |
| 019Ah   |                                 |        |             |
| 019Bh   |                                 |        |             |
| 019Ch   |                                 |        |             |
| 019Dh   |                                 |        |             |
| 019Eh   |                                 |        |             |
| 019Fh   |                                 |        |             |
| 01A0h   |                                 |        |             |
| 01A1h   |                                 |        |             |
| 01A2h   |                                 |        |             |
| 01A3h   |                                 |        |             |
| 01A4h   |                                 |        |             |
| 01A5h   |                                 |        |             |
| 01A6h   |                                 |        |             |
| 01A7h   |                                 |        |             |
| 01A8h   |                                 |        |             |
| 01A9h   |                                 |        |             |
| 01AAh   |                                 |        |             |
| 01ABh   |                                 |        |             |
| 01ACh   |                                 |        |             |
| 01ADh   |                                 |        |             |
| 01AEh   |                                 |        |             |
| 01AFh   |                                 |        | [           |
| 01B0h   |                                 |        |             |
| 01B1h   |                                 |        | [           |
| 01B2h   |                                 |        |             |
| 01B3h   | Flash Memory Control Register 4 | FMR4   | 0100000b    |
| 01B4h   |                                 |        |             |
| 01B5h   | Flash Memory Control Register 1 | FMR1   | 1000000Xb   |
| 01B6h   |                                 |        |             |
| 01B7h   | Flash Memory Control Register 0 | FMR0   | 0000001b    |
| 01B8h   |                                 |        |             |
| 01B0h   |                                 |        |             |
| 01846   |                                 |        |             |
| 01BRh   |                                 |        |             |
| 01805   |                                 |        |             |
| 01806   |                                 |        |             |
| 01BDh   |                                 |        |             |
|         |                                 |        |             |
| VIDEII  |                                 |        |             |

#### SFR Information (7)<sup>(1)</sup> Table 4.7

X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.



| Address | Register | Symbol | After reset |
|---------|----------|--------|-------------|
| 0240h   |          |        |             |
| 0241h   |          |        |             |
| 0242h   |          |        |             |
| 0243h   |          |        |             |
| 0244h   |          |        |             |
| 0245h   |          |        |             |
| 0246h   |          |        |             |
| 0247h   |          |        |             |
| 0248h   |          |        |             |
| 0249h   |          |        |             |
| 024Ah   |          |        |             |
| 024Bh   |          |        |             |
| 024Ch   |          |        |             |
| 024Dh   |          |        |             |
| 024Eh   |          |        |             |
| 024Eh   |          |        |             |
| 0250h   |          |        |             |
| 0251h   |          |        |             |
| 0257h   |          |        |             |
| 0252h   |          |        |             |
| 0253h   |          |        |             |
| 02556   |          |        |             |
| 025511  |          |        |             |
| 025011  |          |        |             |
| 025711  |          |        |             |
| 02501   |          |        |             |
| 025911  |          |        |             |
| 025AN   |          |        |             |
| 025BN   |          |        |             |
| 02501   |          |        |             |
| 025Dh   |          |        |             |
| 025EN   |          |        |             |
| 025FN   |          |        |             |
| 0260h   |          |        |             |
| 0261h   |          |        |             |
| 0262h   |          |        |             |
| 0263h   |          |        |             |
| 0264h   |          |        |             |
| 0265h   |          |        |             |
| 0266h   |          |        |             |
| 0267h   |          |        |             |
| 0268h   |          |        |             |
| 0269h   |          |        |             |
| 026Ah   |          |        |             |
| 026Bh   |          |        |             |
| 026Ch   |          |        |             |
| 026Dh   |          |        |             |
| 026Eh   |          |        |             |
| 026Fh   |          |        |             |
| 0270h   |          |        |             |
| 0271h   |          |        |             |
| 0272h   |          |        |             |
| 0273h   |          |        |             |
| 0274h   |          |        |             |
| 0275h   |          |        |             |
| 0276h   |          |        |             |
| 0277h   |          |        |             |
| 0278h   |          |        |             |
| 0279h   |          |        |             |
| 027Ah   |          |        |             |
| 027Bh   |          |        |             |
| 027Ch   |          |        |             |
| 027Dh   |          |        |             |
| 027Eh   |          |        |             |
| 027Fh   |          |        |             |

#### SFR Information (10)<sup>(1)</sup> Table 4.10

NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

## 5. Electrical Characteristics

The electrical characteristics of N version (Topr =  $-20^{\circ}$ C to  $85^{\circ}$ C) and D version (Topr =  $-40^{\circ}$ C to  $85^{\circ}$ C) are listed below.

Please contact Renesas Technology sales offices for the electrical characteristics in the Y version (Topr =  $-20^{\circ}$ C to  $105^{\circ}$ C).

#### Table 5.1 Absolute Maximum Ratings

| Symbol   | Parameter                     | Condition   | Rated Value                                      | Unit |
|----------|-------------------------------|-------------|--------------------------------------------------|------|
| Vcc/AVcc | Supply voltage                |             | -0.3 to 6.5                                      | V    |
| Vi       | Input voltage                 |             | -0.3 to Vcc + 0.3                                | V    |
| Vo       | Output voltage                |             | -0.3 to Vcc + 0.3                                | V    |
| Pd       | Power dissipation             | Topr = 25°C | 700                                              | mW   |
| Topr     | Operating ambient temperature |             | -20 to 85 (N version) /<br>-40 to 85 (D version) | °C   |
| Tstg     | Storage temperature           |             | -65 to 150                                       | °C   |

| Symbol    |                                       | Doromotor                                        | Conditions                                                                                                                                                  |         | Standard | Max.           5.5           -           Vcc           0.2 Vcc           -240           -120           -10           -40           -5           -20           240           120           10           40           5           20           20           10           5           70           10           5           20           20           10           5           10           10           5           10           10           10 | Unit |  |
|-----------|---------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| Symbol    | ſ                                     | arameter                                         | Conditions                                                                                                                                                  | Min.    | Тур.     | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit |  |
| Vcc/AVcc  | Supply voltage                        |                                                  |                                                                                                                                                             | 2.2     | -        | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                            | V    |  |
| Vss/AVss  | Supply voltage                        |                                                  |                                                                                                                                                             | -       | 0        | -                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |  |
| Vih       | Input "H" voltage                     |                                                  |                                                                                                                                                             | 0.8 Vcc | -        | Vcc                                                                                                                                                                                                                                                                                                                                                                                                                                            | V    |  |
| VIL       | Input "L" voltage                     |                                                  |                                                                                                                                                             | 0       | -        | 0.2 Vcc                                                                                                                                                                                                                                                                                                                                                                                                                                        | V    |  |
| IOH(sum)  | Peak sum output<br>"H" current        | Sum of all pins IOH(peak)                        |                                                                                                                                                             | -       | _        | -240                                                                                                                                                                                                                                                                                                                                                                                                                                           | mA   |  |
| IOH(sum)  | Average sum<br>output "H" current     | Sum of all pins IOH(avg)                         |                                                                                                                                                             | -       | ľ        | -120                                                                                                                                                                                                                                                                                                                                                                                                                                           | mA   |  |
| IOH(peak) | Peak output "H"                       | Except P2_0 to P2_7                              |                                                                                                                                                             | -       | -        | -10                                                                                                                                                                                                                                                                                                                                                                                                                                            | mA   |  |
|           | current                               | P2_0 to P2_7                                     |                                                                                                                                                             | -       | -        | -40                                                                                                                                                                                                                                                                                                                                                                                                                                            | mA   |  |
| IOH(avg)  | Average output                        | Except P2_0 to P2_7                              |                                                                                                                                                             | -       | -        | -5                                                                                                                                                                                                                                                                                                                                                                                                                                             | mA   |  |
|           | "H" current                           | P2_0 to P2_7                                     |                                                                                                                                                             | -       | -        | -20                                                                                                                                                                                                                                                                                                                                                                                                                                            | mA   |  |
| IOL(sum)  | Peak sum output<br>"L" current        | Sum of all pins IOL(peak)                        |                                                                                                                                                             | -       | -        | 240                                                                                                                                                                                                                                                                                                                                                                                                                                            | mA   |  |
| IOL(sum)  | Average sum<br>output "L" current     | Sum of all pins IOL(avg)                         |                                                                                                                                                             | -       | -        | 120                                                                                                                                                                                                                                                                                                                                                                                                                                            | mA   |  |
| IOL(peak) | Peak output "L"                       | Except P2_0 to P2_7                              |                                                                                                                                                             | -       | _        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                             | mA   |  |
|           | current                               | P2_0 to P2_7                                     |                                                                                                                                                             | -       | -        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                             | mA   |  |
| IOL(avg)  | Average output                        | Except P2_0 to P2_7                              |                                                                                                                                                             | -       | _        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | mA   |  |
|           | "L" current                           | P2_0 to P2_7                                     |                                                                                                                                                             | -       | _        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             | mA   |  |
| f(XIN)    | XIN clock input oscillation frequency |                                                  | $3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$                                                                                                          | 0       | -        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             | MHz  |  |
|           |                                       |                                                  | $2.7~\text{V} \leq \text{Vcc} < 3.0~\text{V}$                                                                                                               | 0       | -        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                             | MHz  |  |
|           |                                       |                                                  | $2.2~\text{V} \leq \text{Vcc} < 2.7~\text{V}$                                                                                                               | 0       | -        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | MHz  |  |
| f(XCIN)   | XCIN clock input or                   | scillation frequency                             | $2.2~\text{V} \leq \text{Vcc} \leq 5.5~\text{V}$                                                                                                            | 0       | -        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                             | kHz  |  |
| -         | XCIN clock input of<br>System clock   | OCD2 = 0                                         | $3.0~\text{V} \leq \text{Vcc} \leq 5.5~\text{V}$                                                                                                            | 0       | -        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             | MHz  |  |
|           |                                       | XIN clock selected                               | $2.7~\text{V} \leq \text{Vcc} < 3.0~\text{V}$                                                                                                               | 0       | -        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                             | MHz  |  |
|           |                                       |                                                  | $2.2~\text{V} \leq \text{Vcc} < 2.7~\text{V}$                                                                                                               | 0       | -        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | MHz  |  |
|           |                                       | OCD2 = 1<br>On-chip oscillator clock<br>selected | FRA01 = 0<br>Low-speed on-chip<br>oscillator clock selected                                                                                                 | -       | 125      | -                                                                                                                                                                                                                                                                                                                                                                                                                                              | kHz  |  |
|           |                                       |                                                  | $\label{eq:response} \begin{array}{l} FRA01 = 1 \\ High\text{-speed on-chip} \\ oscillator \ clock \ selected \\ 3.0 \ V \leq Vcc \leq 5.5 \ V \end{array}$ | -       | _        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             | MHz  |  |
|           |                                       |                                                  | $\begin{array}{l} \mbox{FRA01 = 1} \\ \mbox{High-speed on-chip} \\ \mbox{oscillator clock selected} \\ \mbox{2.7 V} \le Vcc \le 5.5 \ V \end{array}$        | -       | -        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                             | MHz  |  |
|           |                                       |                                                  | FRA01 = 1<br>High-speed on-chip<br>oscillator clock selected<br>$2.2 V \le Vcc \le 5.5 V$                                                                   | -       | _        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | MHz  |  |

| Table 5.2 | Recommended | Operating | Conditions |
|-----------|-------------|-----------|------------|
|-----------|-------------|-----------|------------|

1. Vcc = 2.2 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.



Figure 5.1 Ports P0 to P6, P8 Timing Measurement Circuit



| Symbol  | Deremeter                                       | Condition                                          | Standard |        |      | Linit |
|---------|-------------------------------------------------|----------------------------------------------------|----------|--------|------|-------|
| Symbol  | Falameter                                       | Condition                                          | Min.     | Тур.   | Max. | Offic |
| fOCO40M | High-speed on-chip oscillator frequency         | Vcc = 2.7 V to 5.5 V                               | 39.2     | 40     | 40.8 | MHz   |
|         | temperature • supply voltage dependence         | $-20^{\circ}C \leq T_{opr} \leq 85^{\circ}C^{(2)}$ |          |        |      |       |
|         |                                                 | Vcc = 2.7 V to 5.5 V                               | 39.0     | 40     | 41.0 | MHz   |
|         |                                                 | $-40^\circ C \leq T_{opr} \leq 85^\circ C^{(2)}$   |          |        |      |       |
|         |                                                 | Vcc = 2.2 V to 5.5 V                               | 35.2     | 40     | 44.8 | MHz   |
|         |                                                 | $-20^\circ C \leq T_{opr} \leq 85^\circ C^{(3)}$   |          |        |      |       |
|         |                                                 | Vcc = 2.2 V to 5.5 V                               | 34.0     | 40     | 46.0 | MHz   |
| -       |                                                 | $-40^\circ C \leq T_{opr} \leq 85^\circ C^{(3)}$   |          |        |      |       |
|         | High-speed on-chip oscillator frequency when    | VCC = 5.0 V, Topr = 25°C                           | -        | 36.864 | -    | MHz   |
|         | correction value in FRA7 register is written to | Vcc = 2.7 V to 5.5 V                               | -3%      | -      | 3%   | %     |
|         | FRA1 register                                   | $-20^\circ C \leq T_{opr} \leq 85^\circ C$         |          |        |      |       |
| _       | Value in FRA1 register after reset              |                                                    | 08h      | -      | F7h  | -     |
| -       | Oscillation frequency adjustment unit of high-  | Adjust FRA1 register                               | -        | +0.3   | -    | MHz   |
|         | speed on-chip oscillator                        | (value after reset) to -1                          |          |        |      |       |
| _       | Oscillation stability time                      | VCC = 5.0 V, Topr = $25^{\circ}C$                  | -        | 10     | 100  | μS    |
| -       | Self power consumption at oscillation           | VCC = 5.0 V, Topr = 25°C                           | -        | 550    | -    | μĀ    |

Table 5.11 High-speed On-Chip Oscillator Circuit Electrical Characteristics

1. Vcc = 2.2 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. These standard values show when the FRA1 register value after reset is assumed.

3. These standard values show when the correction value in the FRA6 register is written to the FRA1 register.

#### Table 5.12 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

| Symbol | Paramotor                              | Condition                                           |      | Linit |      |      |
|--------|----------------------------------------|-----------------------------------------------------|------|-------|------|------|
| Symbol | Falanelei                              | Condition                                           | Min. | Тур.  | Max. | Unit |
| fOCO-S | Low-speed on-chip oscillator frequency |                                                     | 30   | 125   | 250  | kHz  |
| -      | Oscillation stability time             | VCC = $5.0 \text{ V}$ , Topr = $25^{\circ}\text{C}$ | -    | 10    | 100  | μS   |
| -      | Self power consumption at oscillation  | VCC = 5.0 V, Topr = $25^{\circ}C$                   | -    | 15    | -    | μA   |

NOTE:

1. Vcc = 2.2 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

#### Table 5.13 Power Supply Circuit Timing Characteristics

| Symbol  | Parameter                                                                   | Condition | υ,   | Linit |      |      |
|---------|-----------------------------------------------------------------------------|-----------|------|-------|------|------|
| Symbol  | Falanielei                                                                  | Condition | Min. | Тур.  | Max. | Unit |
| td(P-R) | Time for internal power supply stabilization during power-on <sup>(2)</sup> |           | 1    | -     | 2000 | μS   |
| td(R-S) | STOP exit time <sup>(3)</sup>                                               |           | -    | -     | 150  | μS   |

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and  $T_{opr} = 25^{\circ}C$ .

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

| Table 5.17 | Electrical Characteristics (2) [Vcc = 5 V]                                                                  |
|------------|-------------------------------------------------------------------------------------------------------------|
|            | (Topr = -20 to $85^{\circ}$ C (N version) / -40 to $85^{\circ}$ C (D version), unless otherwise specified.) |

| Symbol | Parameter                                                |                                          | Condition                                                                                                                                                                                                                  |      | Standard | 1    | Unit |
|--------|----------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------|------|
|        | Bower eupply                                             | High apood                               | $I_{\rm MN} = 20  \text{MHz} \left( \text{square waya} \right)$                                                                                                                                                            | Min. | 1yp.     | Max. | m /  |
| icc    | current<br>(Vcc = $3.3$ to $5.5$ V)                      | clock mode                               | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                                              | _    | 12       | 20   | mA   |
|        | Single-chip mode,<br>output pins are<br>open, other pins |                                          | XIN = 16 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                | -    | 10       | 16   | mA   |
|        | are Vss                                                  |                                          | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                | _    | 7        | -    | mA   |
|        |                                                          |                                          | XIN = 20 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                | _    | 5.5      | -    | mA   |
|        |                                                          |                                          | XIN = 16 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                | _    | 4.5      | -    | mA   |
|        |                                                          |                                          | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                | -    | 3        | -    | mA   |
|        |                                                          | High-speed<br>on-chip<br>oscillator mode | XIN clock off<br>High-speed on-chip oscillator on fOCO = 10 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                | -    | 6        | 12   | mA   |
|        |                                                          |                                          | XIN clock off<br>High-speed on-chip oscillator on fOCO = 10 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                | -    | 2.5      | -    | mA   |
|        |                                                          | Low-speed<br>on-chip<br>oscillator mode  | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR47 = 1                                                                                                  | _    | 150      | 400  | μA   |
|        |                                                          | Low-speed<br>clock mode                  | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz<br>FMR47 = 1                                                                                   | _    | 150      | 400  | μA   |
|        |                                                          |                                          | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz<br>Program operation on RAM<br>Flash memory off, FMSTP = 1                                     | _    | 35       | -    | μA   |
|        |                                                          | Wait mode                                | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1            | -    | 30       | 90   | μΑ   |
|        |                                                          |                                          | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                  | -    | 18       | 55   | μΑ   |
|        |                                                          |                                          | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (high drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1 | _    | 3.5      | _    | μΑ   |
|        |                                                          |                                          | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1  | _    | 2.3      | _    | μΑ   |
|        |                                                          | Stop mode                                | XIN clock off, Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                                       | -    | 0.7      | 3.0  | μA   |
|        |                                                          |                                          | XIN clock off, Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                                       | _    | 1.7      | -    | μΑ   |



| Symbol  | ol Parameter        |                                                                                                                          | Condition              |               | Standard  |      |      | LInit |
|---------|---------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|-----------|------|------|-------|
| Symbol  | i aia               |                                                                                                                          | Condition              |               | Min.      | Тур. | Max. | Onit  |
| Vон     | Output "H" voltage  | Output "H" voltage         Except P2_0 to P2_7,<br>XOUT         IoH = -1 mA                                              |                        |               | Vcc – 0.5 | -    | Vcc  | V     |
|         |                     | P2_0 to P2_7                                                                                                             | Drive capacity<br>HIGH | Іон = -5 mA   | Vcc - 0.5 | -    | Vcc  | V     |
|         |                     |                                                                                                                          | Drive capacity<br>LOW  | Iон = -1 mA   | Vcc – 0.5 |      | Vcc  | V     |
|         |                     | XOUT                                                                                                                     | Drive capacity<br>HIGH | Іон = -0.1 mA | Vcc – 0.5 | -    | Vcc  | V     |
|         |                     |                                                                                                                          | Drive capacity<br>LOW  | Іон = -50 μА  | Vcc - 0.5 | _    | Vcc  | V     |
| Vol     | Output "L" voltage  | Except P2_0 to P2_7, XOUT                                                                                                | IOL = 1 mA             |               | -         | -    | 0.5  | V     |
|         |                     | P2_0 to P2_7                                                                                                             | Drive capacity<br>HIGH | IOL = 5 mA    | -         | -    | 0.5  | V     |
|         |                     |                                                                                                                          | Drive capacity<br>LOW  | IOL = 1 mA    | _         | -    | 0.5  | V     |
|         |                     | XOUT                                                                                                                     | Drive capacity<br>HIGH | IOL = 0.1 mA  | -         |      | 0.5  | V     |
|         |                     |                                                                                                                          | Drive capacity<br>LOW  | IoL = 50 μA   | -         | -    | 0.5  | V     |
| VT+-VT- | Hysteresis          | INT0, INT1, INT2,<br>INT3, KI0, KI1, KI2,<br>KI3, TRAIO, TRFI,<br>RXD0, RXD1, CLK0,<br>CLK1, CLK2, SSI,<br>SCL, SDA, SSO |                        |               | 0.1       | 0.3  | _    | V     |
|         |                     | RESET                                                                                                                    |                        |               | 0.1       | 0.4  | -    | V     |
| Ін      | Input "H" current   | ·                                                                                                                        | VI = 3 V               |               | -         | -    | 4.0  | μA    |
| lı∟     | Input "L" current   |                                                                                                                          | VI = 0 V               |               | -         | -    | -4.0 | μA    |
| RPULLUP | Pull-up resistance  |                                                                                                                          | VI = 0 V               |               | 66        | 160  | 500  | kΩ    |
| RfXIN   | Feedback resistance | XIN                                                                                                                      |                        |               | -         | 3.0  | -    | MΩ    |
| Rfxcin  | Feedback resistance | XCIN                                                                                                                     |                        |               | -         | 18   | -    | MΩ    |
| Vram    | RAM hold voltage    |                                                                                                                          | During stop mode       | )             | 1.8       | —    | -    | V     |

| Table 5.25 Electrical Characteristics (5) [VCC = 5 V] |
|-------------------------------------------------------|
|-------------------------------------------------------|

1. Vcc =2.7 to 3.3 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

# Table 5.24Electrical Characteristics (4) [Vcc = 3 V]<br/>(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

| Symbol | Parameter                                                                                                        |                                            | Condition                                                                                                                                                                                                                                   |      | Standard | t k  | Unit     |
|--------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------|----------|
| Cymbol | rarameter                                                                                                        |                                            | Condition                                                                                                                                                                                                                                   | Min. | Тур.     | Max. | Onit     |
| Icc    | Power supply current<br>(Vcc = 2.7 to 3.3 V)<br>Single-chip mode,<br>output pins are open,<br>other pins are Vss | High-speed<br>clock mode                   | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division<br>XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz | _    | 5.5<br>2 | -    | mA<br>mA |
|        |                                                                                                                  | High speed                                 | Divide-by-8                                                                                                                                                                                                                                 |      | 5.5      | 11   | m۸       |
|        |                                                                                                                  | on-chip<br>oscillator                      | High-speed on-chip oscillator on fOCO = 10 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                                                  | _    | 5.5      |      | IIIA     |
|        |                                                                                                                  |                                            | XIN clock off<br>High-speed on-chip oscillator on fOCO = 10 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                                 | -    | 2.2      | -    | mA       |
|        |                                                                                                                  | Low-speed<br>on-chip<br>oscillator<br>mode | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR47 = 1                                                                                                                   | -    | 145      | 400  | μA       |
|        |                                                                                                                  | Low-speed<br>clock mode                    | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz<br>FMR47 = 1                                                                                                    | _    | 145      | 400  | μΑ       |
|        |                                                                                                                  |                                            | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz<br>Program operation on RAM<br>Flash memory off, FMSTP = 1                                                      | -    | 30       | -    | μΑ       |
|        |                                                                                                                  | Wait mode                                  | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                             | _    | 28       | 85   | μΑ       |
|        |                                                                                                                  |                                            | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                                   | _    | 17       | 50   | μA       |
|        |                                                                                                                  |                                            | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (high drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                  | -    | 3.3      | -    | μΑ       |
|        |                                                                                                                  |                                            | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                   | _    | 2.1      | -    | μΑ       |
|        |                                                                                                                  | Stop mode                                  | XIN clock off, $T_{opr} = 25^{\circ}C$<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                                            | _    | 0.65     | 3.0  | μA       |
|        |                                                                                                                  |                                            | XIN clock off, $T_{opr} = 85 \circ C$<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                                             | -    | 1.65     | -    | μA       |

RENESAS

| Symbol   | Parameter              |     | Standard |       |  |
|----------|------------------------|-----|----------|-------|--|
| Symbol   |                        |     | Max.     | Offic |  |
| tc(CK)   | CLKi input cycle time  | 300 | -        | ns    |  |
| tw(ckh)  | CLKi input "H" width   | 150 | -        | ns    |  |
| tW(CKL)  | CLKi Input "L" width   | 150 | -        | ns    |  |
| td(C-Q)  | TXDi output delay time | -   | 80       | ns    |  |
| th(C-Q)  | TXDi hold time         | 0   | -        | ns    |  |
| tsu(D-C) | RXDi input setup time  | 70  | -        | ns    |  |
| th(C-D)  | RXDi input hold time   | 90  | -        | ns    |  |

i = 0 to 2



Figure 5.16 Serial Interface Timing Diagram when Vcc = 3 V

#### Table 5.29 External Interrupt INTi (i = 0, 2, 3) Input

| Symbol  | Parameter            |                    | Standard |      |  |
|---------|----------------------|--------------------|----------|------|--|
| Symbol  | Falallielei          | Min.               | Max.     | Unit |  |
| tw(INH) | INTO input "H" width | 380(1)             | -        | ns   |  |
| tw(INL) | INTO input "L" width | 380 <sup>(2)</sup> | -        | ns   |  |

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.





## **Package Dimensions**

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.





RENESAS

#### RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
  Pines
  This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
  This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the intersect on the information in this document.
  The document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the tendology described in this document.
  The order data. diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document with a pay with use. When exporting the products or the tendology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
  All information included in this document, but has product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document, when the set of the date their document, and the date their document, and the date their document in the date their document.
  Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a disclosed through pay provide applications. Renesas products are not designed applications, and receives are information in this document.
  When using or otherwise relevance the date their document.
  When using or otherwise relevance and explaint compiling the information. In this document, but Renesas as subtle for automotion control are sort application control.
  When using or otherwise relevanc



#### **RENESAS SALES OFFICES**

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

#### Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

#### Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com