

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	55
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212b7snfp-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

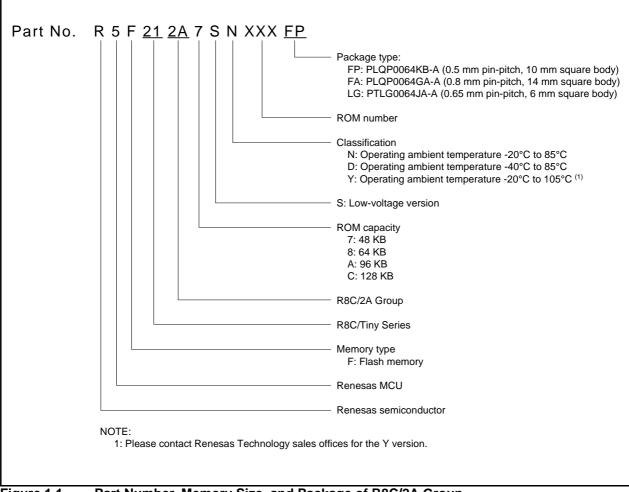


Figure 1.1 Part Number, Memory Size, and Package of R8C/2A Group

RENESAS



Figure 1.2 Part Number, Memory Size, and Package of R8C/2B Group

Pin				I/O Pin Func	tions for of P	eripheral N	lodules	
Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	I ² C bus	A/D Converter D/A Converter
1		P3_3				SSI		
2		P3_4				SCS	SDA	
3	MODE							
4	XCIN	P4_3						
5	XCOUT	P4_4						
6	RESET							
7	XOUT	P4_7						
8	VSS/AVSS							
9	XIN	P4_6						
10	VCC/AVCC							
11		P5_4		TRCIOD				
12		P5_3		TRCIOC				
13		P5_2		TRCIOB				
14		P5_1		TRCIOA/TRCTRG				
15		P5_0		TRCCLK				
16		P2_7		TRDIOD1				
17		P2_6		TRDIOC1				
18		P2_5		TRDIOB1				
19		P2_4		TRDIOA1				
20		P2_3		TRDIOD0				
21		P2_2		TRDIOC0				
22		P2_1		TRDIOB0				
23		P2_0		TRDIOA0/TRDCLK				
24		P1_7	INT1	TRAIO				
25		P1_6			CLK0			
26		P1_5	(INT1) ⁽¹⁾	(TRAIO) ⁽¹⁾	RXD0			
20					TXD0			
27		P1_4			TADU			
		P8_6						
29		P8_5		TRFO12				
30		P8_4		TRFO11 TRFO10/TRFI				
31 32		P8_3						
		P8_2		TRFO02				
33		P8_1		TRFO01				
34		P8_0		TRFO00 TREO				
35		P6_0						
36		P4_5	INTO	INT0				
37 38		P6_6	INT2		TXD1 RXD1			
38		P6_7	INT3					
39		P6_5			(CLK1) ^{(1)/} CLK2			
40		P6_4			RXD2			
41		P6_3			TXD2			
42		P3_1		TRBO				
43		P3_0		TRAO				
44		P3_6	(INT1) ⁽¹⁾					
45		P3_2	(INT2)(1)					

Table 1.7Pin Name Information by Pin Number (1)

NOTE:

1. Can be assigned to the pin in parentheses by a program.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

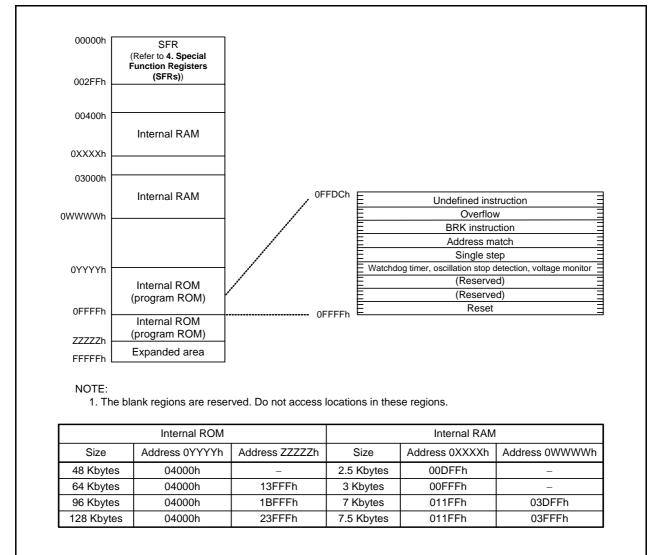
Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

3. Memory

3.1 R8C/2A Group


Figure 3.1 is a Memory Map of R8C/2A Group. The R8C/2A group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM area is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.12 list the special function registers.

Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h	Module Operation Enable Register	MSTCR	00h
0009h			
000Ah	Protect Register	PRCR	00h
000Bh	· · · · · · · · · · · · · · · · · · ·		
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h	4		00h
0012h	Address Match Interrupt Enable Register	AIER	00h
0013h	Address Match Interrupt Register 1	RMAD1	00h
0015h		NW/ B1	00h
0016h	4		00h
0010h			0011
0017h			
0019h			
001Ah			
001An			
001Dh	Count Source Protection Mode Register	CSPR	00h
001011		CON	1000000b ⁽⁶⁾
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h			
0027h			
0028h	Clock Prescaler Reset Flag	CPSRF	00h
0029h	-		
002Ah			
002Bh	High-Speed On-Chip Oscillator Control Register 6	FRA6	When Shipping
002Ch	High-Speed On-Chip Oscillator Control Register 7	FRA7	When Shipping
0030h	Voltarra Datastian Danistan (2)		00001000b

Table 4.1 SFR Information (1)⁽¹⁾

0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	00h ⁽³⁾
			0010000b ⁽⁴⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register ⁽⁵⁾	VW1C	00001000b
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	00h
0038h	Voltage Monitor 0 Circuit Control Register ⁽²⁾	VW0C	0000X000b ⁽³⁾
			0100X001b ⁽⁴⁾
0039h			
003Ah			

003Fh

X: Undefined

NOTES:

The blank regions are reserved. Do not access locations in these regions. 1.

2. Software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect this register. The LVD0ON bit in the OFS register is set to 1 and hardware reset.

3.

4. Power-on reset, voltage monitor 0 reset, or the LVD0ON bit in the OFS register is set to 0 and hardware reset.

Software reset, which dog time reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect b2 and b3. The CSPROINI bit in the OFS register is set to 0.

5. 6.

Address	Register	Symbol	After reset
0100h	Timer RA Control Register	TRACR	00h
0101h	Timer RA I/O Control Register	TRAIOC	00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h	LIN Control Register 2	LINCR2	00h
0106h	LIN Control Register	LINCR	00h
0107h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0109h	Timer RB One-Shot Control Register	TRBOCR	00h
010Ah	Timer RB I/O Control Register	TRBIOC	00h
010Bh	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary Register	TRBPR	FFh
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h 0115h			
0115h 0116h			
0116h			
0117h	Timer RE Second Data Register / Counter Data Register	TRESEC	00h
0119h	Timer RE Minute Data Register / Compare Data Register	TREMIN	00h
011Ah	Timer RE Hour Data Register	TREHR	00h
011Bh	Timer RE Day of Week Data Register	TREWK	00h
011Ch	Timer RE Control Register 1	TRECR1	00h
011Dh	Timer RE Control Register 2	TRECR2	00h
011Eh	Timer RE Clock Source Select Register	TRECSR	00001000b
011Fh			
0120h	Timer RC Mode Register	TRCMR	01001000b
0121h	Timer RC Control Register 1	TRCCR1	00h
0122h	Timer RC Interrupt Enable Register	TRCIER	01110000b
0123h	Timer RC Status Register	TRCSR	01110000b
0124h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
0125h	Timer RC I/O Control Register 1	TRCIOR1	10001000b
0126h	Timer RC Counter	TRC	00h
0127h			00h
0128h	Timer RC General Register A	TRCGRA	FFh
0129h			FFh
012Ah	Timer RC General Register B	TRCGRB	FFh
012Bh			FFh
012Ch	Timer RC General Register C	TRCGRC	FFh
012Dh		TROOPR	FFh
012Eh	Timer RC General Register D	TRCGRD	FFh
012Fh	Times DC Control Degister 2	TROOPS	FFh
0130h	Timer RC Control Register 2	TRCCR2	00011111b
0131h	Timer RC Digital Filter Function Select Register Timer RC Output Master Enable Register	TRCDF TRCOER	00h
0132h 0133h		INCOER	01111111b
0133h 0134h			
0134h 0135h			
0135h		<u> </u>	
0130h	Timer RD Start Register	TRDSTR	11111100b
0137h	Timer RD Mode Register	TRDMR	00001110b
0139h	Timer RD PWM Mode Register	TRDPMR	10001000b
013Ah	Timer RD Function Control Register	TRDFCR	1000000b
013Bh	Timer RD Output Master Enable Register 1	TRDOER1	FFh
013Ch	Timer RD Output Master Enable Register 2	TRDOER2	01111111b
013Dh	Timer RD Output Control Register	TRDOCR	00h
013Eh	Timer RD Digital Filter Function Select Register 0	TRDDF0	00h
013Fh	Timer RD Digital Filter Function Select Register 1	TRDDF1	00h
		ļ	Į

SFR Information (5)⁽¹⁾ Table 4.5

NOTE: 1. The blank regions are reserved. Do not access locations in these regions

Address	Register	Symbol	After reset
01C0h		e jinise.	7
01C1h			
01C2h			
01C3h			
01C4h			
01C5h			
01C6h			
01C6h			
01C7h			
01C8h			
01C9h			
01CAn			
01CBh			
01CCh			
01CDh			
01CEh			
01CFh			
01D0h			
01D1h			
01D2h			
01D3h			
01D4h			
01D5h			
01D6h			
01D7h			
01D8h			
01D9h			
01DAh			
01DBh			
01DCh			
01DDh			
01DEh			
01DFh			
01E0h			
01E1h			
01E2h			
01E3h			
01E4h			
01E5h			
01E6h			
01E7h			
01E8h			
01E9h			
01EAh			
01EBh			
01ECh			
01EDh			
01EEh			
01EFh			
01F0h			
01F1h			
01F2h			
01F3h			
01F4h			
01F411 01F5h			
01F5h			
01F6h			
01F7h 01F8h			
01F9h			
01FAh 01FBh			
01FCh			
01FDh 01FEh			
01FFh			

SFR Information (8)⁽¹⁾ Table 4.8

NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Address	Register	Symbol	After reset
0240h		eyniser	7
0241h			
0242h			
0243h			
0244h			
0245h			
0246h			
0247h			
0248h			
0249h			
024Ah			
024Bh			
024Ch			
024Dh			
024Eh			
024Fh			
0250h			
0251h			
0252h 0253h			
0253h 0254h			
0254h 0255h			
0255h			
0257h			
0258h			
0259h			
025Ah			
025Bh			
025Ch			
025Dh			
025Eh			
025Fh			
0260h			
0261h			
0262h			
0263h			
0264h			
0265h			
0266h			
0267h 0268h			
0268h			
0269h			
026An			
026Ch			
026Dh			
026Eh			
026Fh			
0270h			
0271h			
0272h			
0273h			
0274h			
0275h			
0276h			
0277h			
0278h			
0279h			
027Ah			
027Bh			
027Ch			
027Dh			
027Eh			
027Fh			

SFR Information (10)⁽¹⁾ Table 4.10

NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

5. Electrical Characteristics

The electrical characteristics of N version (Topr = -20° C to 85° C) and D version (Topr = -40° C to 85° C) are listed below.

Please contact Renesas Technology sales offices for the electrical characteristics in the Y version (Topr = -20° C to 105° C).

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
VI	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	Topr = 25°C	700	mW
Topr	Operating ambient temperature		-20 to 85 (N version) / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

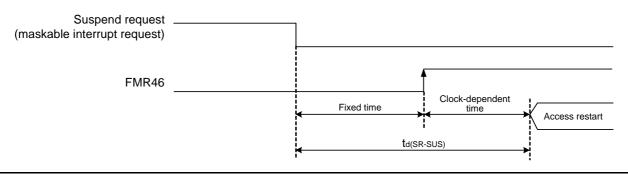


Figure 5.2 Time delay until Suspend

Table 5.7 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanelei	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level		2.2	2.3	2.4	V
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	0.9	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	-	300	μS
Vccmin	MCU operating voltage minimum value		2.2	-	-	V

NOTES:

1. The measurement condition is Vcc = 2.2 V to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 5.8 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	d Max. 3.00 - - 100	Unit
Vdet1	Voltage detection level		2.70	2.85	3.00	V
-	Voltage monitor 1 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

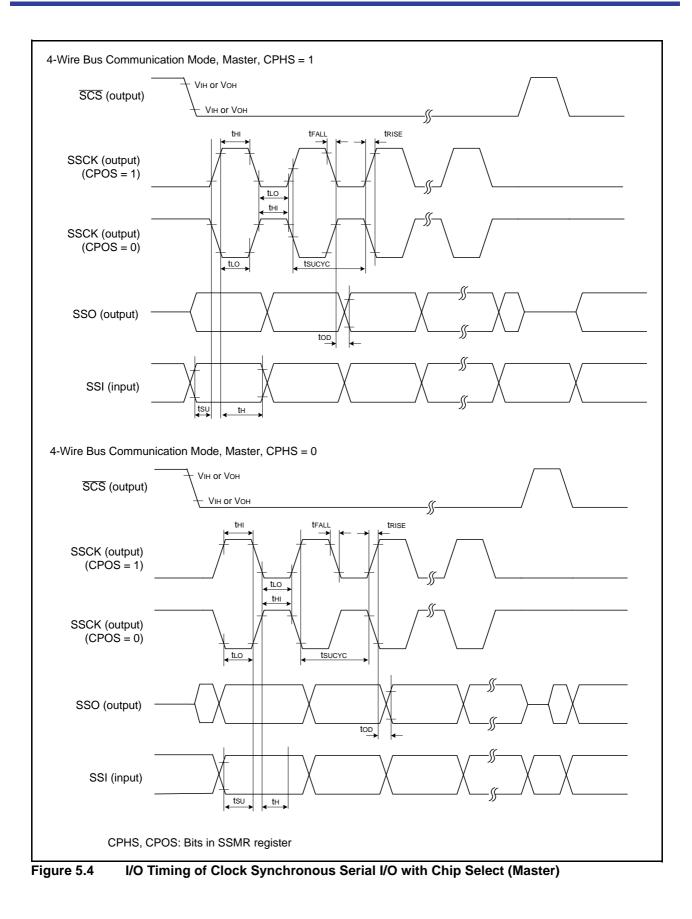
NOTES:

1. The measurement condition is Vcc = 2.2 V to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Table 5.9 Voltage Detection 2 Circuit Electrical Characteristics


Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	d Max. 3.9 - - 100	Unit
Vdet2	Voltage detection level		3.3	3.6	3.9	V
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	0.6	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.2 V to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Symbol	Parameter		Condition		Standard			Unit
Symbol					Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P2_0 to P2_7,	Iон = -5 mA		Vcc - 2.0	-	Vcc	V
		XOUT	Іон = -200 μА		Vcc - 0.5	-	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Іон = -20 mA	Vcc - 2.0	-	Vcc	V
			Drive capacity LOW	Іон = -5 mA	Vcc - 2.0	-	Vcc	V
		XOUT	Drive capacity HIGH	Іон = -1 mA	Vcc - 2.0	-	Vcc	V
			Drive capacity LOW	Іон = -500 μА	Vcc - 2.0	-	Vcc	V
Vol	Output "L" voltage	Except P2_0 to P2_7,	Iol = 5 mA	•	-	-	2.0	V
		XOUT	IoL = 200 μA		-	-	0.45	V
		P2_0 to P2_7	Drive capacity HIGH	IoL = 20 mA	-	-	2.0	V
			Drive capacity LOW	IoL = 5 mA	-	-	2.0	V
		XOUT	Drive capacity HIGH	IoL = 1 mA	-	-	2.0	V
			Drive capacity LOW	IoL = 500 μA	-	-	2.0	V
Vt+-Vt-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRFI, RXD0, RXD1, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO			0.1	0.5	-	V
		RESET			0.1	1.0	-	V
Ін	Input "H" current		VI = 5 V		-	_	5.0	μA
lı∟	Input "L" current		VI = 0 V		_	_	-5.0	μA
Rpullup	Pull-up resistance		VI = 0 V		30	50	167	kΩ
RfXIN	Feedback resistance	XIN			-	1.0	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	18	-	MΩ
VRAM	RAM hold voltage	•	During stop mode		1.8	-	-	V

Table 5.16 Electrical Characteristics (1) [Vcc = 5 V]

NOTE:

1. Vcc = 4.2 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 20 MHz, unless otherwise specified.

Symbol	Parameter		Condition		Standard			Unit
Symbol	Fala	ameter	Cond		Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P2_0 to P2_7, XOUT	Iон = -1 mA		Vcc - 0.5	-	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Іон = -5 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT	Drive capacity HIGH	Іон = -0.1 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -50 μА	Vcc - 0.5	_	Vcc	V
VoL Output "L" voltage	Output "L" voltage	Except P2_0 to P2_7, XOUT	IoL = 1 mA		-	_	0.5	V
		P2_0 to P2_7	Drive capacity HIGH	lo∟ = 5 mA	-	-	0.5	V
			Drive capacity LOW	IoL = 1 mA	-	-	0.5	V
		XOUT	Drive capacity HIGH	IoL = 0.1 mA	-	_	0.5	V
			Drive capacity LOW	Io∟ = 50 μA	-	_	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRFI, RXD0, RXD1, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO			0.1	0.3	_	V
		RESET			0.1	0.4	-	V
Ін	Input "H" current		VI = 3 V		-	-	4.0	μA
lı∟	Input "L" current		VI = 0 V		-	_	-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V		66	160	500	kΩ
Rfxin	Feedback resistance	XIN			-	3.0	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	18	-	MΩ
Vram	RAM hold voltage		During stop mode	е	1.8	-	-	V

Table 5.23	Electrical Characteristics (3) [Vcc = 3 V]

NOTE:

1. Vcc =2.7 to 3.3 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

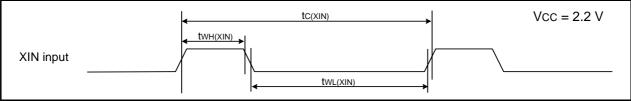
Table 5.24Electrical Characteristics (4) [Vcc = 3 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition		Standard			Unit
Symbol	i alametei		Condition	Min.	Тур.	Max.	Offic
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	5.5	_	mA
	other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	_	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	5.5	11	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.2	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	145	400	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz FMR47 = 1	_	145	400	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz Program operation on RAM Flash memory off, FMSTP = 1	-	30	-	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	28	85	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	17	50	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	3.3	-	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	2.1	-	μA
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	0.65	3.0	μA
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.65	_	μA

RENESAS

Symbol	Parameter		Condition		Standard			Unit
Symbol	Pala	imeter	Condition		Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P2_0 to P2_7, XOUT	Iон = -1 mA		Vcc - 0.5	-	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Іон = -2 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT	Drive capacity HIGH	Іон = -0.1 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -50 μА	Vcc - 0.5	_	Vcc	V
VoL Output "L" vo	Output "L" voltage	Except P2_0 to P2_7, XOUT	Iol = 1 mA	·	-	_	0.5	V
		P2_0 to P2_7	Drive capacity HIGH	IOL = 2 mA	-	-	0.5	V
			Drive capacity LOW	IoL = 1 mA	-	-	0.5	V
		XOUT	Drive capacity HIGH	IoL = 0.1 mA	-	-	0.5	V
			Drive capacity LOW	IoL = 50 μA	-	_	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRFI, RXD0, RXD1, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO			0.05	0.3	_	V
		RESET			0.05	0.15	-	V
Ін	Input "H" current		VI = 2.2 V		-	-	4.0	μA
lı∟	Input "L" current		VI = 0 V		_	_	-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V		100	200	600	kΩ
RfXIN	Feedback resistance	XIN				5	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	35	-	MΩ
Vram	RAM hold voltage		During stop mod	e	1.8	-	-	V

 Table 5.30
 Electrical Characteristics (5) [Vcc = 2.2 V]


NOTE:

1. Vcc = 2.2 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified.

Timing requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C) [Vcc = 2.2 V]

Table 5.32 XIN Input, XCIN Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XIN)	XIN input cycle time	200	-	ns	
twh(xin)	XIN input "H" width		-	ns	
twl(XIN)	XIN input "L" width	90	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μs	
tWH(XCIN)	XCIN input "H" width		-	μs	
tWL(XCIN)	XCIN input "L" width	7	-	μs	

Figure 5.18 XIN Input and XCIN Input Timing Diagram when Vcc = 2.2 V

Table 5.33 TRAIO Input, INT1 Input

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	TBD	-	ns	
twh(traio)	TRAIO input "H" width	TBD	-	ns	
twl(traio)	TRAIO input "L" width	TBD	-	ns	

Figure 5.19 TRAIO Input and INT1 Input Timing Diagram when Vcc = 2.2 V

Table 5.34 TRFI Input

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(TRFI)	TRFI input cycle time	2000(1)	-	ns	
twh(trfi)	TRFI input "H" width	1000 ⁽²⁾	-	ns	
twl(trfi)	TRFI input "L" width	1000(2)	1	ns	

NOTES:

1. When using timer RF input capture mode, adjust the cycle time to (1/timer RF count source frequency × 3) or above.

2. When using timer RF input capture mode, adjust the pulse width to (1/timer RF count source frequency \times 1.5) or above.

	▲ tc(TRFI) →	Vcc = 2.2 V
TRFI input		

Figure 5.20 TRFI Input Timing Diagram when Vcc = 2.2 V

REVISION HISTORY

R8C/2A Group, R8C/2B Group Datasheet

D.	Data		Description
Rev.	Date	Page	Summary
0.01	Apr 03, 2006	-	First Edition issued
0.10	Jun 26, 2006	All pages	Pin name revised $CMP0_0 \rightarrow TRFO00, CMP0_1 \rightarrow TRFO01, CMP0_2 \rightarrow TRFO02,$ $CMP1_0 \rightarrow TRFO10, CMP1_1 \rightarrow TRFO11, CMP1_2 \rightarrow TRFO12,$ $TRFIN \rightarrow TRFI$
		2, 4	Table 1.1 Specifications for R8C/2A Group (1) and Table 1.3 Specifications for R8C/2B Group (1); I/O Ports: • Input-only: 3 pins \rightarrow 2 pins revised Interrupts: • Internal: 17 sources \rightarrow 23 sources revised
		3, 5	Table 1.2 Specifications for R8C/2A Group (2) and Table 1.4 Specifications for R8C/2B Group (2); ROM Correction Function deleted
		8	Figure 1.3 Block Diagram revised
		9	Figure 1.4 Pin Assignment (Top View) revised
		10, 11	Table 1.7 Pin Name Information by Pin Number (1) and Table 1.8 Pin Name Information by Pin Number (2) revised
		12, 13	Table 1.9 Pin Functions (1) and Table 1.10 Pin Functions (2) revised
		19	Table 4.1 SFR Information (1); • 0008h: Module Standby Control Register, MSTCR, 00h added • 001Ch: "00h" → "00h, 10000000b" revised • NOTE6 added
		20	Table 4.2 SFR Information (2); • 005Fh: Capture Interrupt Control Register, CAPIC, XXXXX000b added
		22	Table 4.4 SFR Information (4); • 00DCh: "00DDh" → "00DCh" revised • 00F5h: "XXXX00XXb" → "00h" revised
		23	Table 4.5 SFR Information (5); • 0105h: LIN Special Function Register, LINCR2, 00h added
		30	Table 4.12 SFR Information (12); • 02C2h, 02C3h: A/D Register 1, AD1, XXh deleted • 02C4h, 02C5h: A/D Register 2, AD2, XXh deleted • 02C6h, 02C7h: A/D Register 3, AD3, XXh deleted
		31	Package Dimensions; "Diagrams showing the latest package dimensions in the "Packages" section of the Renesas Technology website." added
0.20	Sep 15, 2006	31 to 54	5. Electrical Characteristics added
0.30	Dec 22, 2006	6	Table 1.5 and Figure 1.1 revised
		7	Table 1.6 and Figure 1.2 revised
		17	Figure 3.1 revised
		18	Figure 3.2 revised

REVISION HISTORY

R8C/2A Group, R8C/2B Group Datasheet

Rev.	Date		Description
Nev.	Rev. Dale		Summary
2.00	Oct 17, 2007	33	Table 5.1; Pd: Rated Value "TBD" → "700" revised, "NOTE1" added
		59	Package Dimensions "PTLG0064JA-A (64F0G) package" added
2.10	Nov 26, 2007	2, 4	Table 1.1, Table 1.3 Clock: "Real-time clock (timer RE)" added
		6, 7	Table 1.5 and Figure 1.1 revised
		8, 9	Table 1.6 and Figure 1.2 revised
		20, 21	Figure 3.1 and Figure 3.2 revised
		22	Table 4.1 002Ch: High-Speed On-Chip Oscillator Control Register 7 added
		35	Table 5.2 NOTE2 revised
		41	Table 5.11 revised

All trademarks and registered trademarks are the property of their respective owners.