

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	55
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	7.5K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212bcsnfa-x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outlines the Specifications for R8C/2A Group and Tables 1.3 and 1.4 outlines the Specifications for R8C/2B Group.

ltem	Function	Specification
CPU	Central processing	R8C/Tiny series core
	unit	 Number of fundamental instructions: 89
		Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz VCC = 3.0 to 5.5 V)
		100 ns (f(X N) = 10 MHz / CC = 2.7 to 5.5 V)
		200 ns (f(X N) = 5 MHz / CC = 2.2 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply accumulate instruction: 16 bits \times 16 bits \downarrow 22 bits
		• Multiply-accumulate instruction. To bits \times To bits \pm 52 bits \rightarrow 52 bits
Momony		• Operation mode. Single-chip mode (address space. Twibyte)
Nemor Supply	Voltage detection	A Dewer on react
Power Supply		Power-on reset
Voltage	circuit	voltage detection 2
Detection	D 11.1/0	
I/O Ports	Programmable I/O	• Input-only: 2 pins
	ports	CMOS I/O ports: 55, selectable pull-up resistor
		High current drive ports: 8
Clock	Clock generation	3 circuits: XIN clock oscillation circuit (with on-chip feedback resistor),
	circuits	On-chip oscillator (high-speed, low-speed)
		(high-speed on-chip oscillator has a frequency adjustment function),
		XCIN clock oscillation circuit (32 kHz)
		 Oscillation stop detection: XIN clock oscillation stop detection function
		 Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		 Low power consumption modes:
		Standard operating mode (high-speed clock, low-speed clock, high-speed
		on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode
		Real-time clock (timer RE)
Interrupts		External: 5 sources, Internal: 23 sources, Software: 4 sources
		Priority levels: 7 levels
Watchdog Time	er	15 bits × 1 (with prescaler), reset start selectable
Timer	Timer RA	8 bits x 1 (with 8-bit prescaler)
		Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
		measurement mode
	Timer RB	8 bits x 1 (with 8-bit prescaler)
		Timer mode (period timer), programmable waveform generation mode (PWM
		output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RC	16 bits x 1 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 3 pins), PWM2 mode (PWM output pin)
	Timer RD	16 bits x 2 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 6 pins), reset synchronous PWM mode (output three-phase
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3
		mode (PWM output 2 pins with fixed period)
	Timer RE	8 bits × 1
		Real-time clock mode (count seconds, minutes, hours, days of week), output
		compare mode
	Timer RF	To bits × T (with capture/compare register pin and compare register pin)

 Table 1.1
 Specifications for R8C/2A Group (1)

RENESAS

Item	Function	Specification
CPU	Central processing	R8C/Tiny series core
	unit	 Number of fundamental instructions: 89
		 Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
		100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz VCC = 22 to 55 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply-accumulate instruction: 16 bits \times 16 bits \pm 32 bits
		• Multiply-accumulate instruction. To bits \times To bits \pm 52 bits \rightarrow 52 bits
Manaan		Operation mode. Single-chip mode (address space. 1 Mbyte)
Nerriory Device Currely	KUIVI, KAIVI	Relef to Table 1.6 Product List for R6C/2B Group.
Power Suppry	voltage detection	• Power-on reset
voltage	circuit	Voltage detection 2
Detection		
I/O Ports	Programmable I/O	Input-only: 2 pins
	ports	 CMOS I/O ports: 55, selectable pull-up resistor
		 High current drive ports: 8
Clock	Clock generation	3 circuits: XIN clock oscillation circuit (with on-chip feedback resistor),
	circuits	On-chip oscillator (high-speed, low-speed)
		(high-speed on-chip oscillator has a frequency adjustment function),
		XCIN clock oscillation circuit (32 kHz)
		Oscillation stop detection: XIN clock oscillation stop detection function
		• Frequency divider circuit: Dividing selectable 1 2 4 8 and 16
		• Low power consumption modes:
		Standard operating mode (high-speed clock low-speed clock high-speed
		on chip oscillator low speed on chip oscillator), wait mode, stop mode
		Pool time clock (timer PE)
Intorrunto		External: 5 cources Internal: 22 cources Software: 4 cources
interrupts		External: 5 Sources, Internal: 25 Sources, Software: 4 Sources
Matabala a Tira		Filolity levels. / levels
		15 bits x 1 (with prescaler), reset start selectable
Timer	Timer KA	o bils X 1 (with o-bit prescaler) Timer mode (period timer), pulse output mode (output level inverted every
		paried) avent counter made, pulse width massurement made, pulse paried
		penou), event counter mode, puise width measurement mode, puise penou
	Times DD	measurement mode
	Timer RB	8 bits x 1 (with 8-bit prescaler)
		niner mode (period liner), programmable waveronn generation mode (P www
		ouput), programmable one-shot generation mode, programmable wait one-
	T DO	shot generation mode
	Timer RC	16 bits x 1 (With 4 capture/compare registers)
		(autout 2 mino) DMM2 mode (DMM autout min)
	T D D	(output 3 pins), PWW2 mode (PWW output pin)
	Timer RD	16 bits x 2 (with 4 capture/compare registers)
		(autout C mino), react aurochangua DMM made (autout three mhose
		(output 6 pins), reset synchronous PWW mode (output three-phase
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3
		mode (PWM output 2 pins with fixed period)
	Timer RE	8 bits x 1
		Real-time clock mode (count seconds, minutes, hours, days of week), output
		compare mode
	Limer RF	16 bits x 1 (with capture/compare register pin and compare register pin)
		Input capture mode, output compare mode

 Table 1.3
 Specifications for R8C/2B Group (1)

Item	Function	Specification			
Serial	UART0, UART1,	Clock synchronous serial I/O/UART × 3			
Interface	UART2				
Clock Synchro	nous Serial I/O with	1 (shared with I ² C-bus)			
Chip Select (S	SU)				
I ² C bus ⁽¹⁾		1 (shared with SSU)			
LIN Module		Hardware LIN: 1 (timer RA, UART0)			
A/D Converter		10-bit resolution × 12 channels, includes sample and hold function			
D/A Converter		8-bit resolution × 2 circuits			
Flash Memory		 Programming and erasure voltage: VCC = 2.7 to 5.5 V 			
		 Programming and erasure endurance: 10,000 times (data flash) 			
		1,000 times (program ROM)			
		 Program security: ROM code protect, ID code check 			
		 Debug functions: On-chip debug, on-board flash rewrite function 			
Operating Frequency/Supply		f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V)			
Voltage		f(XIN) = 10 MHz (VCC = 2.7 to 5.5 V) f(XIN) = 5 MHz (VCC = 2.2 to 5.5 V)			
Current consu	motion	$12 \text{ m} \Delta (VCC - 5.0 \text{ V} \text{ f}(XN)) = 20 \text{ MHz})$			
Current consu	mption	5.5 mA (VCC = 3.0 V, f(XIN) = 20 MHz)			
		2.1 μA (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz))			
		0.65 μA (VCC = 3.0 V, stop mode)			
Operating Amb	pient Temperature	-20 to 85°C (N version)			
		-40 to 85°C (D version) ⁽²⁾			
Dealerer		-20 to 105°C (Y version)(3)			
Раскаде		64-pin LQFP			
		Package code: PLQP0064KB-A (previous code: 64P6Q-A)			
		• Package code: PLQP0064GA-A (previous code: 64P60-A)			
		64-pin FLGA			
		 Package code: PTLG0064JA-A (previous code: 64F0G) 			

Table 1.4 Specifications for R8C/2B Group (2)

NOTES:

I²C bus is a trademark of Koninklijke Philips Electronics N. V.
 Specify the D version if D version functions are to be used.
 Please contact Renesas Technology sales offices for the Y version.

Figure 1.1 Part Number, Memory Size, and Package of R8C/2A Group

RENESAS

Dort No	ROM Ca	apacity	RAM		D	morke
Part No.	Program ROM	Data flash	Capacity	Раскаде туре	R	emarks
R5F212B7SNFP	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0064KB-A	N version	
R5F212B7SNFA	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0064GA-A		
R5F212B7SNLG	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PTLG0064JA-A		
R5F212B8SNFP	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0064KB-A		
R5F212B8SNFA	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0064GA-A		
R5F212B8SNLG	64 Kbytes	1 Kbyte x 2	3 Kbytes	PTLG0064JA-A		
R5F212BASNFP	96 Kbytes	1 Kbyte x 2	7 Kbytes	PLQP0064KB-A		
R5F212BASNFA	96 Kbytes	1 Kbyte x 2	7 Kbytes	PLQP0064GA-A		
R5F212BASNLG	96 Kbytes	1 Kbyte x 2	7 Kbytes	PTLG0064JA-A		
R5F212BCSNFP	128 Kbytes	1 Kbyte x 2	7.5 Kbytes	PLQP0064KB-A		
R5F212BCSNFA	128 Kbytes	1 Kbyte x 2	7.5 Kbytes	PLQP0064GA-A		
R5F212BCSNLG	128 Kbytes	1 Kbyte x 2	7.5 Kbytes	PTLG0064JA-A		
R5F212B7SDFP	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0064KB-A	D version	
R5F212B7SDFA	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0064GA-A		
R5F212B8SDFP	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0064KB-A		
R5F212B8SDFA	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0064GA-A		
R5F212BASDFP	96 Kbytes	1 Kbyte x 2	7 Kbytes	PLQP0064KB-A		
R5F212BASDFA	96 Kbytes	1 Kbyte x 2	7 Kbytes	PLQP0064GA-A		
R5F212BCSDFP	128 Kbytes	1 Kbyte x 2	7.5 Kbytes	PLQP0064KB-A		
R5F212BCSDFA	128 Kbytes	1 Kbyte x 2	7.5 Kbytes	PLQP0064GA-A		
R5F212B7SNXXXFP	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0064KB-A	N version	Factory
R5F212B7SNXXXFA	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0064GA-A		programming
R5F212B7SNXXXLG	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PTLG0064JA-A		product ⁽¹⁾
R5F212B8SNXXXFP	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0064KB-A		
R5F212B8SNXXXFA	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0064GA-A		
R5F212B8SNXXXLG	64 Kbytes	1 Kbyte x 2	3 Kbytes	PTLG0064JA-A		
R5F212BASNXXXFP	96 Kbytes	1 Kbyte x 2	7 Kbytes	PLQP0064KB-A		
R5F212BASNXXXFA	96 Kbytes	1 Kbyte x 2	7 Kbytes	PLQP0064GA-A		
R5F212BASNXXXLG	96 Kbytes	1 Kbyte x 2	7 Kbytes	PTLG0064JA-A		
R5F212BCSNXXXFP	128 Kbytes	1 Kbyte x 2	7.5 Kbytes	PLQP0064KB-A		
R5F212BCSNXXXFA	128 Kbytes	1 Kbyte x 2	7.5 Kbytes	PLQP0064GA-A		
R5F212BCSNXXXLG	128 Kbytes	1 Kbyte x 2	7.5 Kbytes	PTLG0064JA-A		
R5F212B7SDXXXFP	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0064KB-A	D version	
R5F212B7SDXXXFA	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0064GA-A		
R5F212B8SDXXXFP	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0064KB-A]	
R5F212B8SDXXXFA	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0064GA-A	1	
R5F212BASDXXXFP	96 Kbytes	1 Kbyte x 2	7 Kbytes	PLQP0064KB-A	1	
R5F212BASDXXXFA	96 Kbytes	1 Kbyte x 2	7 Kbytes	PLQP0064GA-A	1	
R5F212BCSDXXXFP	128 Kbytes	1 Kbyte x 2	7.5 Kbytes	PLQP0064KB-A	1	
R5F212BCSDXXXFA	128 Kbytes	1 Kbyte x 2	7.5 Kbytes	PLQP0064GA-A	1	

Table 1.6	Product List for R8C/2B Group

Current of Nov. 2007

NOTE:

1. The user ROM is programmed before shipment.

1.3 **Block Diagram**

Figure 1.3 shows a Block Diagram.

R8C/2A Group, R8C/2B Group

1.4 Pin Assignment

Figure 1.4 shows 64-pin LQFP Package Pin Assignment (Top View). Figure 1.5 shows 64-pin FLGA Package Pin Assignment (Top Perspective View). Tables 1.7 and 1.8 outlines the Pin Name Information by Pin Number.

Figure 1.4 64-pin LQFP Package Pin Assignment (Top View)

3.2 R8C/2B Group

Figure 3.2 is a Memory Map of R8C/2B Group. The R8C/2B group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM area is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Address	Register	Symbol	After reset
0080h			
0081h			
0082h			
0083h			
0084h			
0085h			
0086h			
0087h			
0088h			
0089h			
008Ah			
008Bh			
0080h			
008Eh			
008Eh			
0090h			
0091h			
0092h			
0093h			
0094h			
0095h			
0096h			
0097h			
0098h			
0099h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009111 0040b	LIARTO Transmit/Receive Mode Register	LIOMP	00b
00A0h	UARTO Bit Rate Register	LIOBRG	XXh
00A2h	UARTO Transmit Buffer Register	UOTB	XXh
00A3h			XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UART0 Receive Buffer Register	UORB	XXh
00A7h			XXh
00A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
00A9h	UART1 Bit Rate Register	U1BRG	XXh
00AAh	UART1 Transmit Buffer Register	U1TB	XXh
00ABh			XXh
00ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
00ADh	UART1 Transmit/Receive Control Register 1	U1C1	00000010b
00AEh	UARI1 Receive Butter Register	UIRB	XXN
			AA(1
00B00			
00B7h			
00B3h			
00B4h			
00B5h			
00B6h			
00B7h			
00B8h	SS Control Register H / IIC bus Control Register 1 ⁽²⁾	SSCRH / ICCR1	00h
00B9h	SS Control Register L / IIC bus Control Register 2 ⁽²⁾	SSCRL / ICCR2	01111101b
00BAh	SS Mode Register / IIC bus Mode Register ⁽²⁾	SSMR / ICMR	00011000b
00BBh	SS Enable Register / IIC bus Interrupt Enable Register ⁽²⁾	SSER / ICIER	00h
00BCh	SS Status Register / IIC bus Status Register ⁽²⁾	SSSR / ICSR	00h / 0000X000b
00BDh	SS Mode Register 2 / Slave Address Register ⁽²⁾	SSMR2 / SAR	00h
00BEh	SS Transmit Data Register / IIC bus Transmit Data Register ⁽²⁾	SSTDR / ICDRT	FFh
00BFh	SS Receive Data Register / IIC bus Receive Data Register ⁽²⁾	SSRDR / ICDRR	FFh
			I

SFR Information (3)⁽¹⁾ Table 4.3

X: Undefined
NOTES:

The blank regions are reserved. Do not access locations in these regions.
Selected by the IICSEL bit in the PMR register.

Address	Register	Symbol	After reset
0200h			
0201h			
0202h			
0203h			
0204h			
0205h			
0206h			
0207h			
0208h			
0209h			
020Ah			
020Bh			
020Ch			
020Dh			
020Eh			
020Fh			
0210h			
0211h			
0212h			
0213h			
0214h			
02150			
02100			
021711			
02101			
021911			
021An			
021Dh			
021Dh			
021Eh			
021Fh			
0220h			
0221h			
0222h			
0223h			
0224h			
0225h			
0226h			
0227h			
0228h			
0229h			
022Ah			
022Bh			
022Ch			
022Dh			
022Eh			
022FN			
0230N			
02310			
023211			
02331			
023411		L	
0236h			
0237h			
0238h			
0239h			
023Ah			
023Bh			
023Ch			
023Dh			
023Eh			
023Fh			

SFR Information (9)⁽¹⁾ Table 4.9

NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Address	Register	Symbol	After reset
0240h			
0241h			
0242h			
0243h			
0244h			
0245h			
0246h			
0247h			
0248h			
0249h			
024Ah			
024Bh			
024Ch			
024Dh			
024Eh			
024Eh			
0250h			
0251h			
0257h			
0252h			
0253h			
02556			
025511			
025011			
025711			
02501			
025911			
025AN			
025BN			
02501			
025Dh			
025EN			
025FN			
0260h			
0261h			
0262h			
0263h			
0264h			
0265h			
0266h			
0267h			
0268h			
0269h			
026Ah			
026Bh			
026Ch			
026Dh			
026Eh			
026Fh			
0270h			
0271h			
0272h			
0273h			
0274h			
0275h			
0276h			
0277h			
0278h			
0279h			
027Ah			
027Bh			
027Ch			
027Dh			
027Eh			
027Fh			

SFR Information (10)⁽¹⁾ Table 4.10

NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Symbol	Paramotor	Condition	Standard			Llnit
	Falanielei	Condition	Min.	Тур.	Max.	Offic
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 0 reset valid voltage		0	1	Vdet0	V
trth	External power Vcc rise gradient ⁽²⁾		20	-	-	mV/msec

Table 5.10 Pov	wer-on Reset Circuit,	Voltage Monitor 0	Reset Electrical	Characteristics ⁽³⁾
----------------	-----------------------	-------------------	------------------	--------------------------------

NOTES:

- 1. The measurement condition is T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This condition (external power VCC rise gradient) does not apply if $Vcc \ge 1.0 V$.
- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4. tw(por1) indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain tw(por1) for 30 s or more if $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$, maintain tw(por1) for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

The sampling clock can be selected. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.
 Vdet0 indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.

Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Llpit
Symbol	Falameter		Min.	Тур.	Max.	Unit
fOCO40M	High-speed on-chip oscillator frequency	Vcc = 2.7 V to 5.5 V	39.2	40	40.8	MHz
	temperature • supply voltage dependence	$-20^{\circ}C \leq T_{opr} \leq 85^{\circ}C^{(2)}$				
		Vcc = 2.7 V to 5.5 V	39.0	40	41.0	MHz
		$-40^\circ C \leq T_{opr} \leq 85^\circ C^{(2)}$				
		Vcc = 2.2 V to 5.5 V	35.2	40	44.8	MHz
		$-20^\circ C \leq T_{opr} \leq 85^\circ C^{(3)}$				
		Vcc = 2.2 V to 5.5 V	34.0	40	46.0	MHz
		$-40^\circ C \leq T_{opr} \leq 85^\circ C^{(3)}$				
	High-speed on-chip oscillator frequency when	VCC = 5.0 V, Topr = 25°C	-	36.864	-	MHz
	correction value in FRA7 register is written to FRA1 register	Vcc = 2.7 V to 5.5 V	-3%	-	3%	%
		$-20^\circ C \leq T_{opr} \leq 85^\circ C$				
_	Value in FRA1 register after reset		08h	-	F7h	-
-	Oscillation frequency adjustment unit of high-	Adjust FRA1 register	-	+0.3	-	MHz
	speed on-chip oscillator	(value after reset) to -1				
_	Oscillation stability time	VCC = 5.0 V, Topr = $25^{\circ}C$	-	10	100	μS
-	Self power consumption at oscillation	VCC = 5.0 V, Topr = 25°C	-	550	-	μĀ

Table 5.11 High-speed On-Chip Oscillator Circuit Electrical Characteristics

NOTES:

1. Vcc = 2.2 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. These standard values show when the FRA1 register value after reset is assumed.

3. These standard values show when the correction value in the FRA6 register is written to the FRA1 register.

Table 5.12 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Paramotor	Condition	Standard		Lloit	
Symbol	Falanelei	Condition	Min.	Тур.	Max.	Offic
fOCO-S	Low-speed on-chip oscillator frequency		30	125	250	kHz
-	Oscillation stability time	VCC = 5.0 V , Topr = 25°C	-	10	100	μS
-	Self power consumption at oscillation	VCC = 5.0 V, Topr = $25^{\circ}C$	-	15	-	μA

NOTE:

1. Vcc = 2.2 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

Table 5.13 Power Supply Circuit Timing Characteristics

Symbol	Parameter		Standard			Linit
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Onit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	-	2000	μS
td(R-S)	STOP exit time ⁽³⁾		-	-	150	μS

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and $T_{opr} = 25^{\circ}C$.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

RENESAS

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.18 XIN Input, XCIN Input

Symbol	Parameter		Standard		
Symbol			Max.	Offic	
tc(XIN)	XIN input cycle time	50	-	ns	
twh(xin)	XIN input "H" width	25	-	ns	
twl(XIN)	XIN input "L" width	25	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twl(xcin)	XCIN input "L" width	7	-	μS	

Figure 5.8 XIN Input and XCIN Input Timing Diagram when Vcc = 5 V

Table 5.19TRAIO Input, INT1 Input

Symbol	Symbol Parameter		Standard	
Symbol			Max.	Unit
tc(TRAIO)	TRAIO input cycle time	100	-	ns
twh(traio)	TRAIO input "H" width	40	-	ns
twl(traio)	TRAIO input "L" width	40	-	ns

Figure 5.9 TRAIO Input and INT1 Input Timing Diagram when Vcc = 5 V

Table 5.20 TRFI Input

Symbol	Parameter		Standard	
Symbol	Falameter	Min.	Max.	Unit
tc(TRFI)	TRFI input cycle time	400(1)	-	ns
twh(trfi)	TRFI input "H" width	200 ⁽²⁾	-	ns
twl(trfi)	TRFI input "L" width	200(2)	-	ns

NOTES:

1. When using timer RF input capture mode, adjust the cycle time to (1/timer RF count source frequency × 3) or above.

2. When using timer RF input capture mode, adjust the pulse width to (1/timer RF count source frequency × 1.5) or above.

	tc(TRFI)	Vcc = 5 V
TRFI input		<
Elevera E 40	TDFL Innut Timing Disgram when Voc. 5 V	

Figure 5.10 TRFI Input Timing Diagram when Vcc = 5 V

Symbol	Para	motor	Condi	Condition		Standard		
Symbol	i aia		Condi	Min.	Тур.	Max.	Onit	
Vон	Output "H" voltage	Except P2_0 to P2_7, XOUT	Іон = -1 mA		Vcc – 0.5	-	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Іон = -5 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -1 mA	Vcc – 0.5		Vcc	V
		XOUT	Drive capacity HIGH	Іон = -0.1 mA	Vcc – 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -50 μА	Vcc - 0.5	_	Vcc	V
Vol	Output "L" voltage	Except P2_0 to P2_7, XOUT	IOL = 1 mA		-	-	0.5	V
		P2_0 to P2_7	Drive capacity HIGH	IOL = 5 mA	l	-	0.5	V
			Drive capacity LOW	IOL = 1 mA	_	-	0.5	V
		XOUT	Drive capacity HIGH	IoL = 0.1 mA	-		0.5	V
			Drive capacity LOW	IOL = 50 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRFI, RXD0, RXD1, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO			0.1	0.3	_	V
		RESET			0.1	0.4	-	V
Ін	Input "H" current		VI = 3 V		-	-	4.0	μA
lı∟	Input "L" current		VI = 0 V		-	-	-4.0	μA
RPULLUP	Pull-up resistance		VI = 0 V		66	160	500	kΩ
RfXIN	Feedback resistance	XIN			-	3.0	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	18	-	MΩ
Vram	RAM hold voltage		During stop mode)	1.8	—	-	V

Table 5.25 Electrical Characteristics (5) [VCC = 5 V]

NOTE:

1. Vcc =2.7 to 3.3 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

Symbol	Deromotor		Standard		
Symbol		Min.	Max.	Offic	
tc(CK)	CLKi input cycle time	800	-	ns	
tw(ckh)	CLKi input "H" width	400	-	ns	
tW(CKL)	CLKi input "L" width	400	-	ns	
td(C-Q)	TXDi output delay time	-	200	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	150	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 to 2

Figure 5.21 Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.36 External Interrupt INTi (i = 0, 2, 3) Input

Symbol	Symbol Parameter		Standard	
Symbol	Falameter	Min.	Max.	Offic
tw(INH)	INTO input "H" width	1000(1)	-	ns
tw(INL)	INTO input "L" width	1000 ⁽²⁾	-	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.22 External Interrupt INTi Input Timing Diagram when VCC = 2.2 V

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the intersect on the information in this document.
 The document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the tendology described in this document.
 The order data. diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document with a pay with use. When exporting the products or the tendology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 All information included in this document, but has product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document, when the set of the date their document, and the date their document, and the date their document in the date their document.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a disclosed through pay provide applications. Renesas products are not designed applications, and receives are information in this document.
 When using or otherwise relevance the date their document.
 When using or otherwise relevance and explaint compiling the information. In this document, but Renesas as subtle for automotion control are sort application control.
 When using or otherwise relevanc

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com