

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-24-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1100q024f0008abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC1100

Microcontroller Series for Industrial Applications

XMC1000 Family

ARM[®] Cortex[™]-M0 32-bit processor core

Data Sheet V1.4 2014-05

Microcontrollers

XMC1100 Data Sheet

Revision History: V1.4 2014-05

Previous V	ersion: V1.3
Page	Subjects
Page 10	ADC channels of Table 2 is updated. Table 3 is added.
Page 10	Description for Chip Identification Number of Section 1.4 is updated.
Page 17	The pad type is corrected for P1.6 in Table 6.
Page 29	The t_{C12} , f_{C12} , t_{C10} , f_{C10} , t_{C8} and f_{C8} parameters are updated in Table 12.
Page 32	Figure 8 is added.
Page 33	The t_{SR} and t_{TSAL} parameters are updated in Table 13.
Page 36	Parameter name for $t_{\rm PSER}$ is updated. The $N_{\rm WSFLASH}$ parameter and test condition for $t_{\rm RET}$ are added to Table 16.
Page 39	The min value for $V_{\rm DDPBO}$ parameter is added to Table 18. Footnote 1 is updated.
Page 41	The Δf_{LTT} parameter is added to Table 19.
Page 47	Figure 13 is added.

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

ARM[®], ARM Powered[®] and AMBA[®] are registered trademarks of ARM, Limited.

Cortex[™], CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

Summary of Features

- <Z> the package variant
 - T: TSSOP
 - Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - X: -40°C to 105°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC1100 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC1100 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC1100 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1100-T016F0008	PG-TSSOP-16-8	8	16
XMC1100-T016F0016	PG-TSSOP-16-8	16	16
XMC1100-T016F0032	PG-TSSOP-16-8	32	16
XMC1100-T016F0064	PG-TSSOP-16-8	64	16
XMC1100-T016X0064	PG-TSSOP-16-8	64	16
XMC1100-T038F0016	PG-TSSOP-38-9	16	16
XMC1100-T038F0032	PG-TSSOP-38-9	32	16
XMC1100-T038F0064	PG-TSSOP-38-9	64	16
XMC1100-T038X0064	PG-TSSOP-38-9	64	16
XMC1100-Q024F0008	PG-VQFN-24-19	8	16
XMC1100-Q024F0016	PG-VQFN-24-19	16	16
XMC1100-Q024F0032	PG-VQFN-24-19	32	16
XMC1100-Q024F0064	PG-VQFN-24-19	64	16
XMC1100-Q040F0016	PG-VQFN-40-13	16	16

Table 1 Synopsis of XMC1100 Device Types

Summary of Features

Table 1Synopsis of XMC1100 Device Types (cont'd)

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1100-Q040F0032	PG-VQFN-40-13	32	16
XMC1100-Q040F0064	PG-VQFN-40-13	64	16

1.3 Device Type Features

The following table lists the available features per device type.

Table 2 Features of XMC1100 Device Types¹⁾

Derivative	ADC channel
XMC1100-T016	6
XMC1100-T038	12
XMC1100-Q024	8
XMC1100-Q040	12

1) Features that are not included in this table are available in all the derivatives

Package	VADC0 G0	VADC0 G1
PG-TSSOP-16	CH0CH5	_
PG-TSSOP-38	CH0CH7	CH1, CH5 CH7
PG-VQFN-24	CH0CH7	_
PG-VQFN-40	CH0CH7	CH1, CH5 CH7

1.4 Chip Identification Number

The Chip Identification Number allows software to identify the marking. It is a 8 words value with the most significant 7 words stored in Flash configuration sector 0 (CS0) at address location : 1000 0F00_H (MSB) - 1000 0F1B_H (LSB). The least significant word and most significant word of the Chip Identification Number are the value of registers DBGROMID and IDCHIP, respectively.

General Device Information

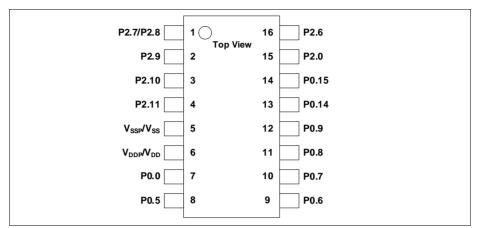


Figure 5 XMC1100 PG-TSSOP-16 Pin Configuration (top view)

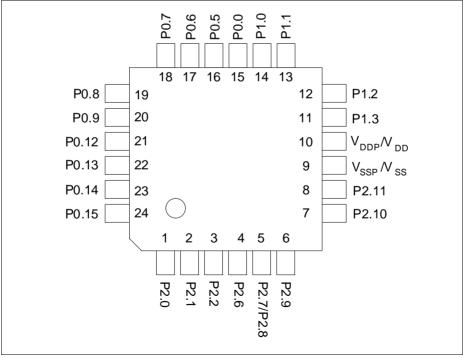


Figure 6 XMC1100 PG-VQFN-24 Pin Configuration (top view)

General Device Information

Function	VQFN 40	TSSOP 38	VQFN 24	TSSOP 16	Pad Type	Notes
P0.13	38	32	24	-	STD_INOUT	
P0.14	39	33	23	13	STD_INOUT	
P0.15	40	34	24	14	STD_INOUT	
P1.0	22	16	14	-	High Current	
P1.1	21	15	13	-	High Current	
P1.2	20	14	12	-	High Current	
P1.3	19	13	11	-	High Current	
P1.4	18	12	-	-	High Current	
P1.5	17	11	-	-	High Current	
P1.6	16	-	-	-	STD_INOUT	
P2.0	1	35	1	15	STD_INOUT/AN	
P2.1	2	36	2	-	STD_INOUT/AN	
P2.2	3	37	3	-	STD_IN/AN	
P2.3	4	38	-	-	STD_IN/AN	
P2.4	5	1	-	-	STD_IN/AN	
P2.5	6	2	-	-	STD_IN/AN	
P2.6	7	3	4	16	STD_IN/AN	
P2.7	8	4	5	1	STD_IN/AN	
P2.8	9	5	5	1	STD_IN/AN	
P2.9	10	6	6	2	STD_IN/AN	
P2.10	11	7	7	3	STD_INOUT/AN	
P2.11	12	8	8	4	STD_INOUT/AN	
VSS	13	9	9	5	Power	Supply GND, ADC reference GND
VDD	14	10	10	6	Power	Supply VDD, ADC reference voltage/ ORC reference voltage. VDD has to be supplied with the same voltage as VDDP

Table 8 Port I/O Functions

Outputs

HWO1

USIC0_CH0.

USICO CHO.

USIC0_CH0. DOUT2

USICO CHO.

DOUT3

DOUT0

DOUT1

HWIO

HWI1

Input

CCU40.IN0C

CCU40.IN1C CCU40.IN2C CCU40.IN3C

CCU40.IN0B

CCU40.IN1B

CCU40.IN2B

CCU40.IN3B

CCU40.IN0A

USIC0_CH0.

USICO CHO.

USIC0_CH0.

USICO CHO.

HWIN0

HWIN1

HWIN2

HWIN3

CCU40.IN1A

CCU40.IN2A

Input

neet		ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	HWO0
Ŧ	P0.0	ERU0. PDOUT0		ERU0. GOUT0	CCU40.OUT0		USIC0_CH0. SELO0	USIC0_CH1. SELO0	
	P0.1	ERU0. PDOUT1		ERU0. GOUT1	CCU40.OUT1			SCU. VDROP	
	P0.2	ERU0. PDOUT2		ERU0. GOUT2	CCU40.OUT2		VADC0. EMUX02		
	P0.3	ERU0. PDOUT3		ERU0. GOUT3	CCU40.OUT3		VADC0. EMUX01		
	P0.4				CCU40.OUT1		VADC0. EMUX00	WWDT. SERVICE_OU T	
	P0.5				CCU40.OUT0				
	P0.6				CCU40.OUT0		USIC0_CH1. MCLKOUT	USIC0_CH1. DOUT0	
	P0.7				CCU40.OUT1		USIC0_CH0. SCLKOUT	USIC0_CH1. DOUT0	
	P0.8				CCU40.OUT2		USIC0_CH0. SCLKOUT	USIC0_CH1. SCLKOUT	
Ŋ	P0.9				CCU40.OUT3		USIC0_CH0. SELO0	USIC0_CH1. SELO0	
_	P0.10						USIC0_CH0. SELO1	USIC0_CH1. SELO1	
:	P0.11				USIC0_CH0. MCLKOUT		USIC0_CH0. SELO2	USIC0_CH1. SELO2	
	P0.12						USIC0_CH0. SELO3		
V1.4, 2014-05	P0.13	WWDT. SERVICE_OU T					USIC0_CH0. SELO4		
	P0.14						USIC0_CH0. DOUT0	USIC0_CH0. SCLKOUT	
	P0.15						USIC0_CH0. DOUT0	USIC0_CH1. MCLKOUT	
	P1.0		CCU40.OUT0					USIC0_CH0. DOUT0	
	P1.1	VADC0. EMUX00	CCU40.OUT1				USIC0_CH0. DOUT0	USIC0_CH1. SELO0	
_	P1.2	VADC0. EMUX01	CCU40.OUT2					USIC0_CH1. DOUT0	
V1.4, 2014-05	P1.3	VADC0. EMUX02	CCU40.OUT3				USIC0_CH1. SCLKOUT	USIC0_CH1. DOUT0	
20	P1.4	VADC0. EMUX10	USIC0_CH1. SCLKOUT				USIC0_CH0. SELO0	USIC0_CH1. SELO1	
14-0	P1.5	VADC0. EMUX11	USIC0_CH0. DOUT0				USIC0_CH0. SELO1	USIC0_CH1. SELO2	

Inputs

Input

Input

USIC0_CH0. DX2A

USIC0_CH1. DX0C

USIC0_CH0. DX1C

USIC0_CH0.

USIC0_CH0.

USICO CHO.

USIC0_CH0. DX2E USIC0_CH0. DX2F USICO_CHO.

DX1B

DX2B

DX2C USICO CHO.

DX2D

DX0A

USIC0_CH0. DX0B

USIC0_CH0. DX0C

USIC0_CH0.

USIC0_CH1. DX0B

USIC0 CH1.

USIC0_CH1. DX5F

DX0D

DX0A USICO CHO.

DX5E

CCU40.IN3A

Input

USIC0_CH1 DX2A

USIC0_CH1. DX0D

USIC0 CH1

USIC0_CH1.

USIC0_CH1. DX2C

USIC0_CH1.

USIC0_CH0.

USIC0_CH0.

USIC0_CH1. DX1A

USIC0 CH1.

DX5E

DX1D

USIC0 CH1.

DX2E

DX1A

DX1B

DX2B

DX2D

Input

USIC0 CH1. DX1C

Input

Data She

Function

Table 8 Port I/O Functions (cont'd)

Function	Outputs						Inputs											
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	HWO0	HWO1	HWIO	HWI1	Input	Input	Input	Input	Input	Input	Input
P1.6	VADC0. EMUX12	USIC0_CH1.D OUT0		USIC0_CH0.S CLKOUT		USIC0_CH0.S ELO2	USIC0_CH1.S ELO3							USIC0_CH0.D X5F				
P2.0	ERU0. PDOUT3	CCU40.OUT0	ERU0. GOUT3			USIC0_CH0. DOUT0	USIC0_CH0. SCLKOUT						VADC0. G0CH5		ERU0.0B0	USIC0_CH0. DX0E	USIC0_CH0. DX1E	USIC0_CH1. DX2F
P2.1	ERU0. PDOUT2	CCU40.OUT1	ERU0. GOUT2			USIC0_CH0. DOUT0	USIC0_CH1. SCLKOUT						VADC0. G0CH6		ERU0.1B0	USIC0_CH0. DX0F	USIC0_CH1. DX3A	USIC0_CH1. DX4A
P2.2													VADC0. G0CH7		ERU0.0B1	USIC0_CH0. DX3A	USIC0_CH0. DX4A	USIC0_CH1. DX5A
P2.3													VADC0. G1CH5		ERU0.1B1	USIC0_CH0. DX5B	USIC0_CH1. DX3C	USIC0_CH1. DX4C
P2.4													VADC0. G1CH6		ERU0.0A1	USIC0_CH0. DX3B	USIC0_CH0. DX4B	USIC0_CH1. DX5B
P2.5													VADC0. G1CH7		ERU0.1A1	USIC0_CH0. DX5D	USIC0_CH1. DX3E	USIC0_CH1. DX4E
P2.6													VADC0. G0CH0		ERU0.2A1	USIC0_CH0. DX3E	USIC0_CH0. DX4E	USIC0_CH1. DX5D
P2.7													VADC0. G1CH1		ERU0.3A1	USIC0_CH0. DX5C	USIC0_CH1. DX3D	USIC0_CH1. DX4D
P2.8													VADC0. G0CH1	VADC0. G1CH0	ERU0.3B1	USIC0_CH0. DX3D	USIC0_CH0. DX4D	USIC0_CH1. DX5C
P2.9													VADC0. G0CH2	VADC0. G1CH4	ERU0.3B0	USIC0_CH0. DX5A	USIC0_CH1. DX3B	USIC0_CH1. DX4B
P2.10	ERU0. PDOUT1	CCU40.OUT2	ERU0. GOUT1				USIC0_CH1. DOUT0						VADC0. G0CH3	VADC0. G1CH2	ERU0.2B0	USIC0_CH0. DX3C	USIC0_CH0. DX4C	USIC0_CH1. DX0F
P2.11	ERU0. PDOUT0	CCU40.OUT3	ERU0. GOUT0			USIC0_CH1. SCLKOUT	USIC0_CH1. DOUT0						VADC0. G0CH4	VADC0. G1CH3	ERU0.2B1	USIC0_CH1. DX0E	USIC0_CH1. DX1E	

3 Electrical Parameter

This section provides the electrical parameter which are implementation-specific for the XMC1100.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMC1100 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the XMC1100 and must be regarded for a system design.

SR

Such parameters indicate **S**ystem **R**equirements, which must be provided by the application system in which the XMC1100 is designed in.

23

3.1.3 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC1100. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise.

Parameter	Symbol		Values	3	Unit	Note /		
		Min. Typ. M		Max.		Test Condition		
Ambient Temperature	$T_{\rm A}{ m SR}$	-40	-	85	°C	Temp. Range F		
		-40	-	105	°C	Temp. Range X		
Digital supply voltage ¹⁾	$V_{\rm DDP}{ m SR}$	1.8	-	5.5	V			
MCLK Frequency	$f_{\rm MCLK}{ m CC}$	_	-	33.2	MHz	CPU clock		
PCLK Frequency	$f_{PCLK}CC$	-	-	66.4	MHz	Peripherals clock		

Table 10 Operating Conditions Parameters

1) See also the Supply Monitoring thresholds, Chapter 3.3.3.

Parameter	Symbo	ol	Limit	Values	Unit	Test Conditions	
			Min. Max.				
Input high voltage on port pins (Large Hysteresis)	V_{IHPL}	SR	$0.85 \times V_{ m DDP}$	-	V	CMOS Mode (5 V, 3.3 V & 2.2 V) ³⁾	
Input Hysteresis ¹⁾	HYS	CC	$0.08 imes V_{ m DDP}$	-	V	CMOS Mode (5 V), Standard Hysteresis	
			$0.03 imes V_{ m DDP}$	-	V	CMOS Mode (3.3 V), Standard Hysteresis	
			$0.02 \times V_{ m DDP}$	-	V	CMOS Mode (2.2 V), Standard Hysteresis	
			$0.5 imes V_{ m DDP}$	$0.75 imes V_{ m DDP}$	V	CMOS Mode(5 V), Large Hysteresis	
			$0.4 imes V_{ m DDP}$	$0.75 imes V_{ m DDP}$	V	CMOS Mode(3.3 V), Large Hysteresis	
			$0.2 imes V_{ m DDP}$	$0.65 \times V_{ m DDP}$	V	CMOS Mode(2.2 V), Large Hysteresis	
Pull-up resistor on port pins	R _{PUP}	CC	20	50	kohm	$V_{\rm IN}$ = $V_{\rm SSP}$	
Pull-down resistor on port pins	R _{PDP}	CC	20	50	kohm	$V_{\rm IN} = V_{\rm DDP}$	
Input leakage current ²⁾	I _{OZP}	CC	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 105 \text{ °C}$	
Overload current on any pin	I _{OVP}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{OV} $	SR	-	25	mA	3)	
Voltage on any pin during $V_{\rm DDP}$ power off	V_{PO}	SR	-	0.3	V	4)	
Maximum current per pin (excluding P1, V_{DDP} and V_{SS})	I _{MP}	SR	-10	11	mA	-	
Maximum current per high currrent pins	I _{MP1A}	SR	-10	50	mA	-	

Table 11 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Value	s	Unit	Note /
		Min.	Тур.	Max.	_	Test Condition
Gain settings	$G_{\sf IN} \sf CC$		1			$GNCTRxz.GAINy = 00_B$ (unity gain)
			3		-	GNCTRxz.GAINy = 01 _B (gain g1)
			6		-	GNCTRxz.GAINy = 10 _B (gain g2)
			12		-	GNCTRxz.GAINy = 11 _B (gain g3)
Sample Time	t _{sample} CC	3	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DDP}$ = 5.0 V
		3	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DDP}$ = 3.3 V
		30	_	-	1 / <i>f</i> _{ADC}	$V_{\rm DDP}$ = 1.8 V
Sigma delta loop hold time	t _{SD_hold} CC	20	_	-	μS	Residual charge stored in an active sigma delta loop remains available
Conversion time in fast compare mode	t _{CF} CC		9		1 / f _{ADC}	2)
Conversion time in 12-bit mode	<i>t</i> _{C12} CC		20		1 / f _{ADC}	2)
Maximum sample rate in 12-bit mode ³⁾	$f_{\rm C12}{ m CC}$	-	—	f _{ADC} / 42.5	-	1 sample pending
		-	_	f _{ADC} / 62.5	-	2 samples pending
Conversion time in 10-bit mode	<i>t</i> _{C10} CC	18		1 / <i>f</i> _{ADC}	2)	
Maximum sample rate in 10-bit mode ³⁾	<i>f</i> _{C10} CC	-	-	f _{ADC} / 40.5		1 sample pending
		-		f _{ADC} / 58.5	-	2 samples pending
Conversion time in 8-bit mode	t _{C8} CC		16		1 / f _{ADC}	2)

Table 12 ADC Characteristics (Operating Conditions apply) (cont'd)

3.2.4 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

Parameter	Symbol	Values			Unit	Note /	
		Min. Typ. ²⁾ Max.			Test Condition		
Active mode current ³⁾	I _{DDPA} CC	-	8.4	11.0	mA	$f_{\text{MCLK}} = 32 \text{ MHz}$ $f_{\text{PCLK}} = 64 \text{ MHz}$	
		-	3.7	-	mA	$f_{MCLK} = 1 \text{ MHz}$ $f_{PCLK} = 1 \text{ MHz}$	
Sleep mode current Peripherals clock enabled ⁴⁾	I _{DDPSE} CC	-	5.9	-	mA	$f_{\text{MCLK}} = 32 \text{ MHz}$ $f_{\text{PCLK}} = 64 \text{ MHz}$	
Sleep mode current Peripherals clock disabled ⁵⁾	I _{DDPSD} CC	-	1.2	-	mA	$f_{MCLK} = 1 \text{ MHz}$ $f_{PCLK} = 1 \text{ MHz}$	
Deep Sleep mode current ⁶⁾	I _{DDPDS} CC	-	0.24	-	mA		
Wake-up time from Sleep to Active mode ⁷⁾	t _{SSA} CC	-	6	-	cycles		
Wake-up time from Deep Sleep to Active mode ⁸⁾	t _{DSA} CC	-	280	-	μsec		

Table 14 Power Supply Parameters¹⁾

1) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation.

2) The typical values are measured at T_A = + 25 °C and V_{DDP} = 5 V.

3) CPU and all peripherals clock enabled, Flash is in active mode.

4) CPU is sleep, all peripherals clock enabled and Flash is in active mode.

5) CPU is sleep, Flash is powered down and code executed from RAM after wake-up.

6) CPU is sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up.

7) CPU is sleep, Flash is in active mode during sleep mode.

8) CPU is sleep, Flash is in power down mode during deep sleep mode.

Table 15 provides the active current consumption of some modules operating at 5 V power supply at 25 °C. The typical values shown are used as a reference guide on the current consumption when these modules are enabled.

Active Current Consumption	Symbol	Limit Values	Unit	Test Condition
		Тур.		
Baseload current	I _{CPUDDC}	5.04	mA	Modules including Core, SCU, PORT, memories, ANATOP ²⁾
VADC and SHS	I _{ADCDDC}	3.4	mA	Set CGATCLR0.VADC to 1 ³⁾
USIC0	I _{USICODDC}	0.87	mA	Set CGATCLR0.USIC0 to 14)
CCU40	I _{CCU40DDC}	0.94	mA	Set CGATCLR0.CCU40 to 1 ⁵⁾
WDT	I _{WDTDDC}	0.03	mA	Set CGATCLR0.WDT to 1 ⁶⁾
RTC	I _{RTCDDC}	0.01	mA	Set CGATCLR0.RTC to 1 ⁷⁾

 Table 15
 Typical Active Current Consumption¹⁾

1) Not subject to production test, verified by design/characterisation.

2) Baseload current is measured with device running in user mode, MCLK=PCLK=32 MHz, with an endless loop in the flash memory. The clock to the modules stated in CGATSTAT0 are gated.

3) Active current is measured with: module enabled, MCLK=32 MHz, running in auto-scan conversion mode

4) Active current is measured with: module enabled, alternating messages sent to PC at 57.6kbaud every 200ms

5) Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU4 slice for PWM switching from 1500Hz and 1000Hz at regular intervals, 1 CCU4 slice in capture mode for reading period and duty cycle

 Active current is measured with: module enabled, MCLK=32 MHz, time-out mode; WLB = 0, WUB = 0x00008000; WDT serviced every 1s

7) Active current is measured with: module enabled, MCLK=32 MHz, Periodic interrupt enabled

3.3.2 Output Rise/Fall Times

 Table 17 provides the characteristics of the output rise/fall times in the XMC1100.

 Figure 9 describes the rise time and fall time parameters.

Table 17 Output Rise/Fall Times Parameters (Operating Conditions apply)

Parameter	Symbol	Limit Values		Unit	Test Conditions	
		Min.	Max.			
Rise/fall times on High Current Pad ¹⁾²⁾	t _{HCPR} , t _{HCPF}	-	9	ns	50 pF @ 5 V ³⁾	
		-	12	ns	50 pF @ 3.3 V ⁴⁾	
		-	25	ns	50 pF @ 1.8 V ⁵⁾	
Rise/fall times on Standard Pad ¹⁾²⁾	t _R , t _F	-	12	ns	50 pF @ 5 V ⁶⁾	
		-	15	ns	50 pF @ 3.3 V ⁷⁾ .	
		-	31	ns	50 pF @ 1.8 V ⁸⁾ .	

1) Rise/Fall time parameters are taken with 10% - 90% of supply.

2) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation.

3) Additional rise/fall time valid for $C_L = 50 \text{ pF} - C_L = 100 \text{ pF} @ 0.150 \text{ ns/pF}$ at 5 V supply voltage.

4) Additional rise/fall time valid for $C_L = 50 \text{ pF} - C_L = 100 \text{ pF} @ 0.205 \text{ ns/pF} at 3.3 V supply voltage.$

5) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage.

6) Additional rise/fall time valid for $C_L = 50 \text{ pF} - C_L = 100 \text{ pF} @ 0.225 \text{ ns/pF}$ at 5 V supply voltage.

7) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.288 ns/pF at 3.3 V supply voltage.

8) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.588 ns/pF at 1.8 V supply voltage.

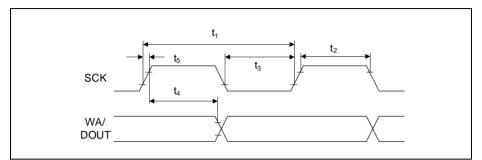
3.3.7.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 25	USIC IIC	Standard	Mode	Timing ¹⁾
----------	----------	----------	------	----------------------

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.


Table 26 USIC IIC Fast Mode Timing ¹⁾

Parameter	Symbol	Symbol Values				Note /
		Min.	Тур.	Max.		Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	20 + 0.1*C _b	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	20 + 0.1*C _b	-	300	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	100	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	1.3	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	0.6	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	0.6	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	0.6	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	0.6	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	1.3	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

2) C_b refers to the total capacitance of one bus line in pF.

Figure 17	USIC IIS Master	Transmitter	Timing
-----------	-----------------	-------------	--------

Parameter	Symbol		Values			Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₆ SR	4/f _{MCLK}	-	-	ns	
Clock HIGH	t ₇ SR	0.35 x t _{6min}	-	-	ns	
Clock Low	t ₈ SR	0.35 x t _{6min}	-	-	ns	
Set-up time	t ₉ SR	0.2 x t _{6min}	-	-	ns	
Hold time	t ₁₀ SR	10	-	-	ns	

Table 28	USIC IIS	Slave	Receiver	Timing
----------	-----------------	-------	----------	--------

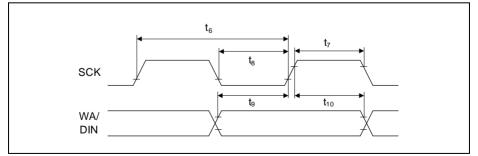


Figure 18 USIC IIS Slave Receiver Timing

Package and Reliability

4 Package and Reliability

The XMC1100 is a member of the XMC1000 Derivatives of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the exposed die pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 29 provides the thermal characteristics of the packages used in XMC1100.

Parameter	Symbol	Lim	it Values	Unit	Package Types	
		Min.	Max.			
Exposed Die Pad	$Ex \times Ey$	-	2.7 imes 2.7	mm	PG-VQFN-24-19	
Dimensions CC	CC	-	3.7 imes 3.7	mm	PG-VQFN-40-13	
Thermal resistance Junction-Ambient	$R_{\Theta JA}$ CC	-	104.6	K/W	PG-TSSOP-16-81)	
		-	70.3	K/W	PG-TSSOP-38-9 ¹⁾	
		-	46.0	K/W	PG-VQFN-24-19 ¹⁾	
		-	38.4	K/W	PG-VQFN-40-131)	

 Table 29
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SSP} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC1100 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

www.infineon.com

Published by Infineon Technologies AG