

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	18
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-24-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1100q024f0032abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

1 Summary of Features

The XMC1100 devices are members of the XMC1000 family of microcontrollers based on the ARM Cortex-M0 processor core. The XMC1100 series devices are designed for general purpose applications.

CPU Subsystem

- CPU Core
 - High Performance 32-bit ARM Cortex-M0 CPU
 - Most of 16-bit Thumb instruction set
 - Subset of 32-bit Thumb2 instruction set

Summary of Features

- <Z> the package variant
 - T: TSSOP
 - Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - X: -40°C to 105°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC1100 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC1100 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC1100 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1100-T016F0008	PG-TSSOP-16-8	8	16
XMC1100-T016F0016	PG-TSSOP-16-8	16	16
XMC1100-T016F0032	PG-TSSOP-16-8	32	16
XMC1100-T016F0064	PG-TSSOP-16-8	64	16
XMC1100-T016X0064	PG-TSSOP-16-8	64	16
XMC1100-T038F0016	PG-TSSOP-38-9	16	16
XMC1100-T038F0032	PG-TSSOP-38-9	32	16
XMC1100-T038F0064	PG-TSSOP-38-9	64	16
XMC1100-T038X0064	PG-TSSOP-38-9	64	16
XMC1100-Q024F0008	PG-VQFN-24-19	8	16
XMC1100-Q024F0016	PG-VQFN-24-19	16	16
XMC1100-Q024F0032	PG-VQFN-24-19	32	16
XMC1100-Q024F0064	PG-VQFN-24-19	64	16
XMC1100-Q040F0016	PG-VQFN-40-13	16	16

Table 1 Synopsis of XMC1100 Device Types

General Device Information

Figure 3 XMC1100 Logic Symbol for VQFN-24 and VQFN-40

General Device Information

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.

Figure 4 XMC1100 PG-TSSOP-38 Pin Configuration (top view)

XMC1100 XMC1000 Family

General Device Information

XMC1100 PG-VQFN-40 Pin Configuration (top view)

General Device Information

2.2.1 Package Pin Summary

The following general building block is used to describe each pin:

Table 5 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type
Px.y	Ν	Ν	Pad Class

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type:

- STD_INOUT (standard bi-directional pads)
- STD_INOUT/AN (standard bi-directional pads with analog input)
- High Current (high current bi-directional pads)
- STD_IN/AN (standard input pads with analog input)
- Power (power supply)

Details about the pad properties are defined in the Electrical Parameters.

		-				
Function	VQFN 40	TSSOP 38	VQFN 24	TSSOP 16	Pad Type	Notes
P0.0	23	17	15	7	STD_INOUT	
P0.1	24	18	-	-	STD_INOUT	
P0.2	25	19	-	-	STD_INOUT	
P0.3	26	20	-	-	STD_INOUT	
P0.4	27	21	-	-	STD_INOUT	
P0.5	28	22	16	8	STD_INOUT	
P0.6	29	23	17	9	STD_INOUT	
P0.7	30	24	18	10	STD_INOUT	
P0.8	33	27	19	11	STD_INOUT	
P0.9	34	28	20	12	STD_INOUT	
P0.10	35	29	-	-	STD_INOUT	
P0.11	36	30	-	-	STD_INOUT	
P0.12	37	31	21	-	STD_INOUT	

Table 6 Package Pin Mapping

General Device Information

Table 6	Pack	age Pin I	Mapping			
Function	VQFN 40	TSSOP 38	VQFN 24	TSSOP 16	Pad Type	Notes
VDDP	15	10	10	6	Power	I/O port supply
VSSP	31	25	-	-	Power	I/O port ground
VDDP	32	26	-	-	Power	I/O port supply
VSSP	Exp. Pad	-	Exp. Pad	-	Power	Exposed Die Pad The exposed die pad is connected internally to VSSP. For proper operation, it is mandatory to connect the exposed pad to the board ground. For thermal aspects, please refer to the Package and Reliability chapter.

3.1.3 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC1100. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise.

Parameter	Symbol		Values	8	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Ambient Temperature	$T_{A} \operatorname{SR}$	-40	-	85	°C	Temp. Range F
		-40	-	105	°C	Temp. Range X
Digital supply voltage ¹⁾	$V_{\rm DDP}{ m SR}$	1.8	-	5.5	V	
MCLK Frequency	$f_{\rm MCLK}{\rm CC}$	-	-	33.2	MHz	CPU clock
PCLK Frequency	$f_{PCLK}CC$	-	-	66.4	MHz	Peripherals clock

Table 10 Operating Conditions Parameters

1) See also the Supply Monitoring thresholds, Chapter 3.3.3.

Table 11 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit Values		Unit	Test Conditions
			Min.	Max.		
Maximum current into V_{DDP} (TSSOP28/16, VQFN24)	I _{MVDD1}	SR	-	130	mA	3)
Maximum current into V_{DDP} (TSSOP38, VQFN40)	I _{MVDD2}	SR	-	260	mA	3)
Maximum current out of $V_{\rm SS}$ (TSSOP28/16, VQFN24)	I _{MVSS1}	SR	-	130	mA	3)
Maximum current out of V _{SS} (TSSOP38, VQFN40)	I _{MVSS2}	SR	-	260	mA	3)

 Not subject to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

2) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin.

3) Not subject to production test, verified by design/characterization.

4) Not subject to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

		· ·	•			
Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Maximum sample rate in 8-bit mode ³⁾	<i>f</i> _{C8} CC	-	-	f _{ADC} / 38.5	-	1 sample pending
		-	-	f _{ADC} / 54.5	-	2 samples pending
DNL error	EA _{DNL} CC	-	±2.0	-	LSB 12	
INL error	EA _{INL} CC	-	±4.0	-	LSB 12	
Gain error with external reference	EA _{GAIN} CC	-	±0.5	-	%	SHSCFG.AREF = 00_{B} (calibrated)
Gain error with internal reference	EA _{GAIN} CC	-	±3.6	-	%	SHSCFG.AREF = 1X _B (calibrated), -40°C - 105°C
		-	±2.0	-	%	SHSCFG.AREF = 1X _B (calibrated), 0°C - 85°C
Offset error	EA _{OFF} CC	-	±6.0	-	LSB 12	Calibrated

Table 12 ADC Characteristics (Operating Conditions apply) (cont'd)

1) Not subject to production test, verified by design/characterization.

2) No pending samples assumed, excluding sampling time and calibration.

3) Includes synchronization and calibration (average of gain and offset calibration).

3.2.3 Temperature Sensor Characteristics

Parameter	Symbol	Symbol Values			Unit	Note /											
		Min.	Тур.	Max.		Test Condition											
Measurement time	t _M CC	-	-	10	ms												
Temperature sensor range	$T_{\rm SR}{ m SR}$	-40	-	115	°C												
Sensor Accuracy ²⁾	$T_{TSAL}CC$	-	+/-20	-	°C	$T_{\rm J}$ = -40 °C (calibrated)											
		-	+/-12	-	°C	$T_{\rm J}$ = -25 °C (calibrated)											
		-5	-	5	°C	$T_{\rm J} = 0 \ ^{\circ}{\rm C}$											
												-	-2	-	2	°C	$T_{\rm J}$ = 25 °C (calibrated)
		-4	-	4	°C	<i>T</i> _J = 70 °C											
		-2	-	2	°C	$T_{\rm J}$ = 115 °C (calibrated)											

Table 13 Temperature Sensor Characteristics¹⁾

1) Not subject to production test, verified by design/characterization.

2) The temperature sensor accuracy is independent of the supply voltage.

3.2.5 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values			Note /
		Min.	Тур.	Max.		Test Condition
Erase Time per page	t _{ERASE} CC	6.8	7.1	7.6	ms	
Program time per block	t _{PSER} CC	102	152	204	μs	
Wake-Up time	t _{WU} CC	-	32.2	-	μs	
Read time per word	t _a CC	-	50	-	ns	
Data Retention Time	t _{RET} CC	10	-	-	years	Max. 100 erase / program cycles
Flash Wait States 1)	N _{WSFLASH} CC	0	0.5	-		$f_{\rm MCLK} = 8 \rm MHz$
		0	1.4	-		$f_{\rm MCLK} = 16 \rm MHz$
		1	1.9	-		$f_{\rm MCLK} = 32 \rm MHz$
Erase Cycles per page	N _{ECYC} CC	-	-	5*10 ⁴	cycles	
Total Erase Cycles	$N_{\rm TECYC}$ CC	-	-	2*10 ⁶	cycles	

Table 16 Flash Memory Parameters

1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical values are calculated from the execution of the Dhrystone benchmark program.

3.3.3 Power-Up and Supply Threshold Charcteristics

Table 18 provides the characteristics of the supply threshold in XMC1100.

Table 18Power-Up and Supply Threshold Parameters (Operating Conditions apply) 1)

Parameter	Symbol	\ \	/alues		Unit	Note / Test Condition	
		Min.	Тур.	Max.	_		
$V_{\rm DDP}$ ramp-up time	t _{RAMPUP} SR	$\begin{array}{c} V_{\rm DDP} / \\ S_{\rm VDDPrise} \end{array}$	-	10 ⁷	μS		
$V_{\rm DDP}$ slew rate	$S_{\rm VDDPOP} {\rm SR}$	0	_	0.1	V/µs	Slope during normal operation	
	S _{VDDP10} SR	0	-	10	V/µs	Slope during fast transient within +/- 10% of V_{DDP}	
	S _{VDDPrise} SR	0	_	10	V/µs	Slope during power-on or restart after brownout event	
	$S_{\rm VDDPfall}^{2)}{ m SR}$	0	_	0.25	V/µs	Slope during supply falling out of the +/-10% limits ³⁾	
V_{DDP} prewarning voltage	V _{DDPPW} CC	2.1	2.25	2.4	V	ANAVDEL.VDEL_ SELECT = 00 _B	
		2.85	3	3.15	V	ANAVDEL.VDEL_ SELECT = 01 _B	
		4.2	4.4	4.6	V	ANAVDEL.VDEL_ SELECT = 10 _B	
$V_{\rm DDP}$ brownout reset voltage	V _{DDPBO} CC	1.55	1.62	1.75	V	calibrated, before user code starts running	
Start-up time from power-on reset	t _{SSW} SR	-	320	_	μS	Time to the first user code instruction ⁴⁾	

1) Not all parameters are 100% tested, but are verified by design/characterisation.

 A capacitor of at least 100 nF has to be added between V_{DDP} and V_{SSP} to fulfill the requirement as stated for this parameter.

3.3.4 On-Chip Oscillator Characteristics

 Table 19 provides the characteristics of the 64 MHz clock output from the digital controlled oscillator, DCO1 in XMC1100.

Table 19	64 MHz DCO1	Characteristics ((Operating	Conditions a	apply)
		onaracteristics	operating		appiy)

Parameter	Symbol		Limit Values			Unit	Test Conditions
			Min.	Тур.	Max.		
Nominal frequency	f _{nom}	CC	63.5	64	64.5	MHz	under nominal conditions ¹⁾ after trimming
Accuracy	Δf_{LT}	CC	-1.7	-	3.4	%	with respect to $f_{NOM}(typ)$, over temperature (0 °C to 85 °C) ²⁾
			-3.9	-	4.0	%	with respect to f_{NOM} (typ), over temperature (-40 °C to 105 °C) ²⁾
Accuracy with calibration based on temperature sensor	Δf _{LTT} (CC	-1.3	-	1.25	%	with respect to $f_{NOM}(typ)$, over temperature $(T_A = 0 \degree C to 105 \degree C)^{2)}$
			-2.6	-	1.25	%	with respect to $f_{NOM}(typ)$, over temperature $(T_A = -40 \text{ °C to } 105 \text{ °C})^{2)}$

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

2) Not subject to production test, verified by design/characterisation.

Figure 15 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

3.3.7.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 25	USIC IIC	Standard	Mode	Timing ¹⁾
----------	-----------------	----------	------	----------------------

Parameter	Symbol		Values		Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns		
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns		
Data hold time	t ₃ CC/SR	0	-	-	μs		
Data set-up time	t ₄ CC/SR	250	-	-	ns		
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs		
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs		
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs		
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs		
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs		
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs		
Capacitive load for each bus line	C_{b} SR	-	-	400	pF		

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Figure 16 USIC IIC Stand and Fast Mode Timing

3.3.7.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Clock period	t ₁ CC	$2/f_{MCLK}$	-	-	ns	$V_{\text{DDP}} \ge 3 \text{ V}$
		4/f _{MCLK}	-	-	ns	$V_{ m DDP}$ < 3 V
Clock HIGH	$t_2 CC$	0.35 x	-	-	ns	
		t _{1min}				
Clock Low	t ₃ CC	0.35 x	-	-	ns	
		t _{1min}				
Hold time	$t_4 CC$	0	-	-	ns	
Clock rise time	t ₅ CC	-	-	0.15 x	ns	
				t _{1min}		

50

Table 27 USIC IIS Master Transmitter Timing

Figure 17	USIC IIS Master	Transmitter	Timing
-----------	-----------------	-------------	--------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₆ SR	4/f _{MCLK}	-	-	ns	
Clock HIGH	t ₇ SR	0.35 x	-	-	ns	
		t _{6min}				
Clock Low	t ₈ SR	0.35 x	-	-	ns	
		t _{6min}				
Set-up time	t ₉ SR	0.2 x	-	-	ns	
		t _{6min}				
Hold time	t ₁₀ SR	10	-	-	ns	

Table 28	USIC IIS Slave Receiver	Timing
----------	-------------------------	--------

Figure 18 USIC IIS Slave Receiver Timing

XMC1100 XMC1000 Family

Package and Reliability

Figure 20 PG-TSSOP-16-8