

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detalls	
Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	11
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-16-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1100t016f0064aaxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC1100 Data Sheet

Revision History: V1.4 2014-05

Previous V	ersion: V1.3
Page	Subjects
Page 10	ADC channels of Table 2 is updated. Table 3 is added.
Page 10	Description for Chip Identification Number of Section 1.4 is updated.
Page 17	The pad type is corrected for P1.6 in Table 6.
Page 29	The t_{C12} , f_{C12} , t_{C10} , f_{C10} , t_{C8} and f_{C8} parameters are updated in Table 12.
Page 32	Figure 8 is added.
Page 33	The t_{SR} and t_{TSAL} parameters are updated in Table 13.
Page 36	Parameter name for $t_{\rm PSER}$ is updated. The $N_{\rm WSFLASH}$ parameter and test condition for $t_{\rm RET}$ are added to Table 16.
Page 39	The min value for $V_{\rm DDPBO}$ parameter is added to Table 18. Footnote 1 is updated.
Page 41	The Δf_{LTT} parameter is added to Table 19.
Page 47	Figure 13 is added.

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

ARM[®], ARM Powered[®] and AMBA[®] are registered trademarks of ARM, Limited.

Cortex[™], CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1100 series devices.

The document describes the characteristics of a superset of the XMC1100 series devices. For simplicity, the various device types are referred to by the collective term XMC1100 throughout this document.

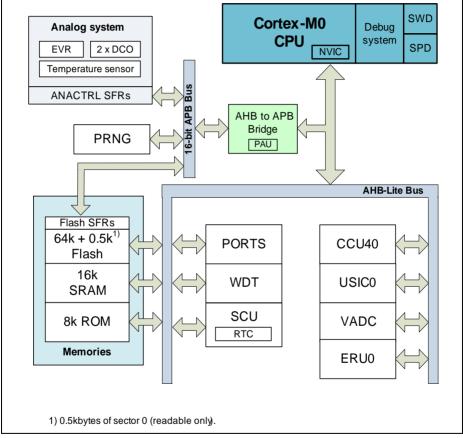
XMC1000 Family User Documentation

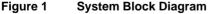
The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.


Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents.



Summary of Features

1 Summary of Features

The XMC1100 devices are members of the XMC1000 family of microcontrollers based on the ARM Cortex-M0 processor core. The XMC1100 series devices are designed for general purpose applications.

CPU Subsystem

- CPU Core
 - High Performance 32-bit ARM Cortex-M0 CPU
 - Most of 16-bit Thumb instruction set
 - Subset of 32-bit Thumb2 instruction set

Summary of Features

- High code density with 32-bit performance
- Single cycle 32-bit hardware multiplier
- System timer (SysTick) for Operating System support
- Ultra low power consumption
- Nested Vectored Interrupt Controller (NVIC)
- Event Request Unit (ERU) for programmable processing of external and internal service requests

On-Chip Memories

- 8 kbytes on-chip ROM
- 16 kbytes on-chip high-speed SRAM
- up to 64 kbytes on-chip Flash program and data memory

On-Chip Peripherals

- Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces
- A/D Converters, up to 12 channels, includes a 12-bit analog to digital converter
- Capture/Compare Units 4 (CCU4) for use as general purpose timers
- Window Watchdog Timer (WDT) for safety sensitive applications
- Real Time Clock module with alarm support (RTC)
- System Control Unit (SCU) for system configuration and control
- Pseudo random number generator (PRNG), provides random data with fast generation times
- Temperature Sensor (TSE)

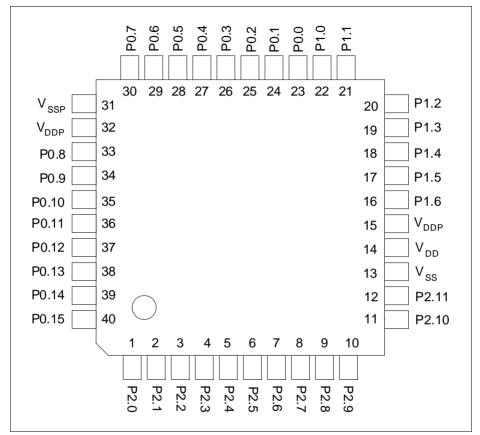
Input/Output Lines

- Programmable port driver control module (PORTS)
- Individual bit addressability
- Tri-stated in input mode
- Push/pull or open drain output mode
- Configurable pad hysteresis

On-Chip Debug Support

- Support for debug features: 4 breakpoints, 2 watchpoints
- Various interfaces: ARM serial wire debug (SWD), single pin debug (SPD)

1.1 Ordering Information


The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC1<DDD>-<Z><PPP><T><FFFF>" identifies:

<DDD> the derivatives function set

XMC1100 XMC1000 Family

General Device Information

XMC1100 PG-VQFN-40 Pin Configuration (top view)

Table 8 Port I/O Functions (cont'd)

Function		Outputs					Inputs											
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	HWO0	HWO1	HWIO	HWI1	Input	Input	Input	Input	Input	Input	Input
P1.6	VADC0. EMUX12	USIC0_CH1.D OUT0		USIC0_CH0.S CLKOUT		USIC0_CH0.S ELO2	USIC0_CH1.S ELO3							USIC0_CH0.D X5F				
P2.0	ERU0. PDOUT3	CCU40.OUT0	ERU0. GOUT3			USIC0_CH0. DOUT0	USIC0_CH0. SCLKOUT						VADC0. G0CH5		ERU0.0B0	USIC0_CH0. DX0E	USIC0_CH0. DX1E	USIC0_CH1. DX2F
P2.1	ERU0. PDOUT2	CCU40.OUT1	ERU0. GOUT2			USIC0_CH0. DOUT0	USIC0_CH1. SCLKOUT						VADC0. G0CH6		ERU0.1B0	USIC0_CH0. DX0F	USIC0_CH1. DX3A	USIC0_CH1. DX4A
P2.2													VADC0. G0CH7		ERU0.0B1	USIC0_CH0. DX3A	USIC0_CH0. DX4A	USIC0_CH1. DX5A
P2.3													VADC0. G1CH5		ERU0.1B1	USIC0_CH0. DX5B	USIC0_CH1. DX3C	USIC0_CH1. DX4C
P2.4													VADC0. G1CH6		ERU0.0A1	USIC0_CH0. DX3B	USIC0_CH0. DX4B	USIC0_CH1. DX5B
P2.5													VADC0. G1CH7		ERU0.1A1	USIC0_CH0. DX5D	USIC0_CH1. DX3E	USIC0_CH1. DX4E
P2.6													VADC0. G0CH0		ERU0.2A1	USIC0_CH0. DX3E	USIC0_CH0. DX4E	USIC0_CH1. DX5D
P2.7													VADC0. G1CH1		ERU0.3A1	USIC0_CH0. DX5C	USIC0_CH1. DX3D	USIC0_CH1. DX4D
P2.8													VADC0. G0CH1	VADC0. G1CH0	ERU0.3B1	USIC0_CH0. DX3D	USIC0_CH0. DX4D	USIC0_CH1. DX5C
P2.9													VADC0. G0CH2	VADC0. G1CH4	ERU0.3B0	USIC0_CH0. DX5A	USIC0_CH1. DX3B	USIC0_CH1. DX4B
P2.10	ERU0. PDOUT1	CCU40.OUT2	ERU0. GOUT1				USIC0_CH1. DOUT0						VADC0. G0CH3	VADC0. G1CH2	ERU0.2B0	USIC0_CH0. DX3C	USIC0_CH0. DX4C	USIC0_CH1. DX0F
P2.11	ERU0. PDOUT0	CCU40.OUT3	ERU0. GOUT0			USIC0_CH1. SCLKOUT	USIC0_CH1. DOUT0						VADC0. G0CH4	VADC0. G1CH3	ERU0.2B1	USIC0_CH1. DX0E	USIC0_CH1. DX1E	

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Sym	loc		Va	lues	Unit	Note /
			Min.	Тур.	Max.		Test Cond ition
Junction temperature	T_{J}	SR	-40	-	115	°C	-
Storage temperature	Ts	SR	-40	-	125	°C	-
Voltage on power supply pin with respect to $V_{\rm SSP}$	V_{DDP}	SR	-0.3	-	6	V	-
Voltage on any pin with respect to $V_{\rm SSP}$	$V_{\sf IN}$	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	whichever is lower
Voltage on any analog input pin with respect to $V_{\rm SSP}$	V_{AIN} V_{AREF}	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	-
Input current on any pin during overload condition	I _{IN}	SR	-10	-	10	mA	-
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	SR	_	-	50	mA	-
Analog comparator input voltage	V_{CM}	SR	-0.3	-	V _{DDP} + 0.3	V	

Table 9 Absolute Maximum Rating Parameters

3.1.3 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC1100. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise.

Parameter	Symbol		Values	3	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Ambient Temperature	$T_{\rm A}{ m SR}$	-40	-	85	°C	Temp. Range F	
		-40	-	105	°C	Temp. Range X	
Digital supply voltage ¹⁾	$V_{\rm DDP}{ m SR}$	1.8	-	5.5	V		
MCLK Frequency	$f_{\rm MCLK}{ m CC}$	_	-	33.2	MHz	CPU clock	
PCLK Frequency	$f_{PCLK}CC$	-	-	66.4	MHz	Peripherals clock	

Table 10 Operating Conditions Parameters

1) See also the Supply Monitoring thresholds, Chapter 3.3.3.

3.2 DC Parameters

3.2.1 Input/Output Characteristics

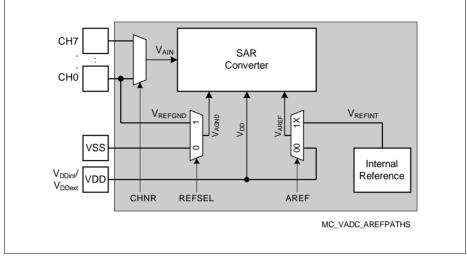
Table 11 provides the characteristics of the input/output pins of the XMC1100.

Parameter	Symbol		Limit	Values	Unit	Test Conditions	
			Min.	Max.			
Output low voltage on port pins	V_{OLP}	СС	-	1.0	V	I _{OL} = 11 mA (5 V) I _{OL} = 7 mA (3.3 V)	
(with standard pads)			-	0.4	V	$I_{OL} = 5 \text{ mA} (5 \text{ V})$ $I_{OL} = 3.5 \text{ mA} (3.3 \text{ V})$	
Output low voltage on high current pads	V_{OLP1}	CC	-	1.0	V	$I_{\rm OL}$ = 50 mA (5 V) $I_{\rm OL}$ = 25 mA (3.3 V)	
			-	0.32	V	I _{OL} = 10 mA (5 V)	
			-	0.4	V	I _{OL} = 5 mA (3.3 V)	
Output high voltage on port pins (with standard pads)	V_{OHP}	СС	V _{DDP} - 1.0	-	V	I _{OH} = -10 mA (5 V) I _{OH} = -7 mA (3.3 V)	
			V _{DDP} - 0.4	-	V	$I_{\rm OH}$ = -4.5 mA (5 V) $I_{\rm OH}$ = -2.5 mA (3.3 V)	
Output high voltage on high current pads	V _{OHP1}	CC	V _{DDP} - 0.32	-	V	I _{OH} = -6 mA (5 V)	
			V _{DDP} - 1.0	-	V	I _{OH} = -8 mA (3.3 V)	
			V _{DDP} - 0.4	-	V	I _{OH} = -4 mA (3.3 V)	
Input low voltage on port pins (Standard Hysteresis)	V _{ILPS}	SR	-	$0.19 \times V_{ m DDP}$	V	CMOS Mode (5 V, 3.3 V & 2.2 V)	
Input high voltage on port pins (Standard Hysteresis)	V _{IHPS}	SR	$0.7 \times V_{ m DDP}$	-	V	CMOS Mode (5 V, 3.3 V & 2.2 V)	
Input low voltage on port pins (Large Hysteresis)	V _{ILPL}	SR	-	$0.08 \times V_{ m DDP}$	V	CMOS Mode (5 V, 3.3 V & 2.2 V) ³⁾	

Table 11	Input/Output Characteristics (Operating Condition	ons apply)
	input output on a dotten of (operating of and	,

Table 11 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbo		Limit	Values	Unit	Test Conditions	
			Min.	Max.			
Maximum current into V_{DDP} (TSSOP28/16, VQFN24)	I _{MVDD1}	SR	-	130	mA	3)	
Maximum current into V _{DDP} (TSSOP38, VQFN40)	I _{MVDD2}	SR	-	260	mA	3)	
Maximum current out of V _{SS} (TSSOP28/16, VQFN24)	I _{MVSS1}	SR	-	130	mA	3)	
Maximum current out of V _{SS} (TSSOP38, VQFN40)	I _{MVSS2}	SR	-	260	mA	3)	


 Not subject to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

2) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin.

3) Not subject to production test, verified by design/characterization.

4) Not subject to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

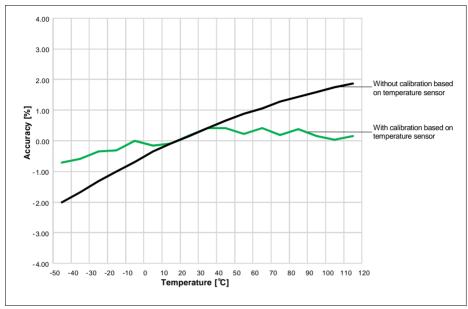


Figure 13 shows the typical curves for the accuracy of DCO1, with and without calibration based on temperature sensor, respectively.

Figure 13 Typical DCO1 accuracy over temperature

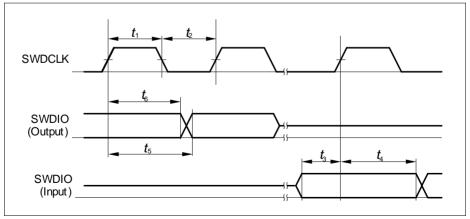
Table 20 provides the characteristics of the 32 kHz clock output from digital controlled oscillators, DCO2 in XMC1100.

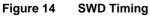
Parameter	Sym	Symbol		nit Valu	ies	Unit	Test Conditions
			Min.	Тур.	Max.		
Nominal frequency	$f_{\rm NOM}$	СС	32.5	32.75	33	kHz	under nominal conditions ¹⁾ after trimming
Accuracy	Δf_{LT}	CC	-1.7	-	3.4	%	with respect to f_{NOM} (typ), over temperature (0 °C to 85 °C) ²⁾
			-3.9	-	4.0	%	with respect to $f_{\rm NOM}$ (typ), over temperature (-40 °C to 105 °C) ²⁾

Table 20 32 kHz DCO2 Characteristics (Operating Conditions apply)

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

2) Not subject to production test, verified by design/characterisation.


3.3.5 Serial Wire Debug Port (SW-DP) Timing


The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	;	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
SWDCLK high time	t ₁ SR	50	-	500000	ns	-	
SWDCLK low time	t ₂ SR	50	_	500000	ns	-	
SWDIO input setup to SWDCLK rising edge	t ₃ SR	10	-	-	ns	-	
SWDIO input hold after SWDCLK rising edge	t ₄ SR	10	-	-	ns	-	
SWDIO output valid time	t ₅ CC	-	-	68	ns	C _L = 50 pF	
after SWDCLK rising edge		_	-	62	ns	C _L = 30 pF	
SWDIO output hold time from SWDCLK rising edge	t ₆ CC	4	-	-	ns		

Table 21	SWD Interface Timing	Parameters(Operating	Conditions apply)

3.3.6 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

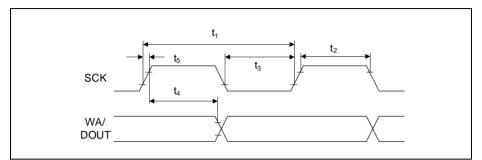
Sample Freq.	Sampling Factor		Sample Clocks 1 _B	Effective Decision Time ¹⁾	Remark
8 MHz	4	1 to 5	6 to 12	0.69 µs	The other closest option $(0.81 \ \mu s)$ for the effective decision time is less robust.

Table 22 Optimum Number of Sample Clocks for SPD

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_B sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)



Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Receive data input DX0/DX[5:3] setup time to shift clock receive edge ¹⁾	t ₁₂	SR	10	-	_	ns	
Data input DX0/DX[5:3] hold time from clock input DX1 receive edge ¹⁾	t ₁₃	SR	10	-	_	ns	
Data output DOUT[3:0] valid time	t ₁₄	CC	-	-	80	ns	

Table 24 USIC SSC Slave Mode Timing (cont'd)

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Figure 17	USIC IIS Master	Transmitter	Timing
-----------	-----------------	-------------	--------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₆ SR	4/f _{MCLK}	-	-	ns	
Clock HIGH	t ₇ SR	0.35 x t _{6min}	-	-	ns	
Clock Low	t ₈ SR	0.35 x t _{6min}	-	-	ns	
Set-up time	t ₉ SR	0.2 x t _{6min}	-	-	ns	
Hold time	t ₁₀ SR	10	-	-	ns	

Table 28	USIC IIS	Slave	Receiver	Timing
----------	-----------------	-------	----------	--------

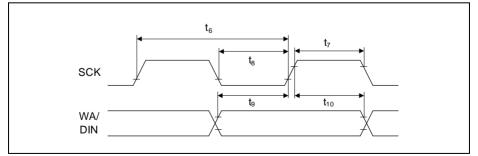
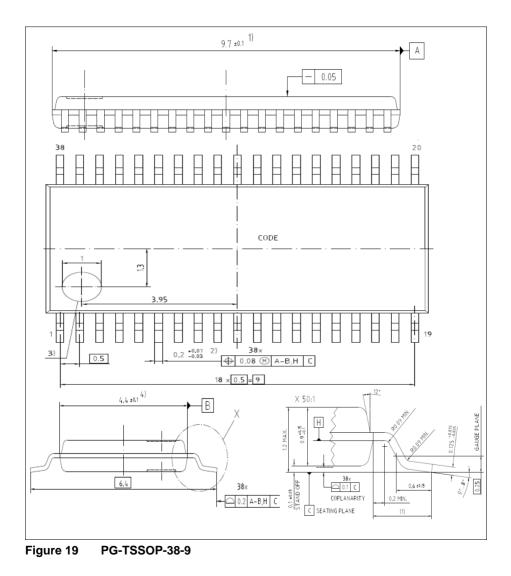



Figure 18 USIC IIS Slave Receiver Timing

Package and Reliability

4.2 Package Outlines

XMC1100 XMC1000 Family

Package and Reliability

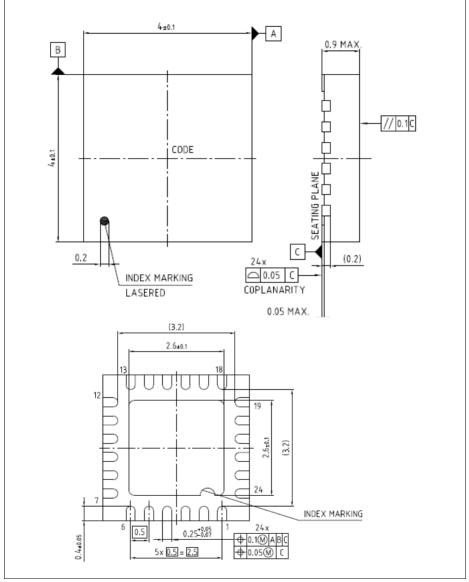
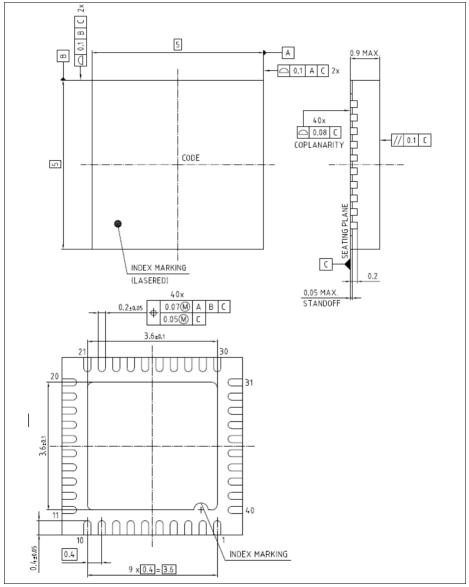



Figure 21 PG-VQFN-24-19

Package and Reliability

Figure 22 PG-VQFN-40-13

All dimensions in mm.

www.infineon.com

Published by Infineon Technologies AG