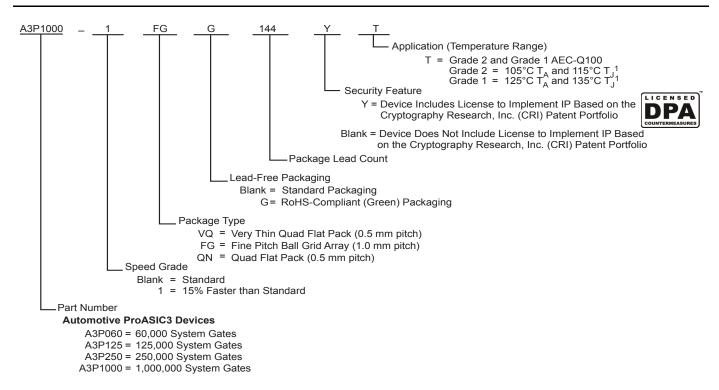


Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs


The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	97
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 125°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p125-fg144t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Automotive ProASIC3 Ordering Information

Notes:

- 1. T_A = Ambient temperature and T_J = Junction temperature.
- 2. Minimum order quantities apply. Contact your local Microsemi SoC Products Group sales office for details.

Revision 5

Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings ¹
Applicable to Standard Plus I/O Banks

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	_	16.72
2.5 V LVCMOS	2.5	_	5.14
1.8 V LVCMOS	1.8	_	2.13
1.5 V LVCMOS (JESD8-11)	1.5	_	1.48
3.3 V PCI	3.3	_	18.13
3.3 V PCI-X	3.3	_	18.13

Notes:

- 1. P_{DC2} is the static power (where applicable) measured on VMV.
- 2. $P_{\rm AC9}$ is the total dynamic power measured on $V_{\rm CC}$ and VMV.

Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹ Applicable to Advanced I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (μW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	468.67
2.5 V LVCMOS	35	2.5	-	267.48
1.8 V LVCMOS	35	1.8	_	149.46
1.5 V LVCMOS (JESD8-11)	35	1.5	-	103.12
3.3 V PCI	10	3.3	_	201.02
3.3 V PCI-X	10	3.3	_	201.02
Differential				•
LVDS	-	2.5	7.74	88.92
LVPECL	-	3.3	19.54	166.52

Notes:

- Dynamic power consumption is given for standard load and software default drive strength and output slew.
- 2. P_{DC3} is the static power (where applicable) measured on VMV.
- 3. P_{AC10} is the total dynamic power measured on V_{CCI} and VMV.

Revision 5 2-7

Table 2-10 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹
Applicable to Standard Plus I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (μW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	452.67
2.5 V LVCMOS	35	2.5	_	258.32
1.8 V LVCMOS	35	1.8	_	133.59
1.5 V LVCMOS (JESD8-11)	35	1.5	-	92.84
3.3 V PCI	10	3.3	_	184.92
3.3 V PCI-X	10	3.3	_	184.92

Notes:

- Dynamic power consumption is given for standard load and software default drive strength and output slew.
- 2. PDC3 is the static power (where applicable) measured on VMV.
- 3. PAC10 is the total dynamic power measured on VCCI and VMV.

2-8 Revision 5

1.8 V LVCMOS

Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

Table 2-54 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	I _{OL}	I _{OH}	I _{OSL}	I _{osh}	I _{IL}	I _{IH}
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mΑ	Max. mA ¹	Max. mA ¹	μA ²	μ Α 2
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * V _{CCI}	3.6	0.45	VCCI - 0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	8	8	51	45	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	12	12	74	91	10	10
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	16	16	74	91	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 125°C junction temperature.
- 3. Software default selection highlighted in gray.

Table 2-55 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	l _{OL}	I _{OH}	I _{OSL}	I _{osh}	Ι _{ΙL}	Ι _{ΙΗ}
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μ Α 2	μA ²
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	8	8	44	35	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 125°C junction temperature.
- 3. Software default selection highlighted in gray.

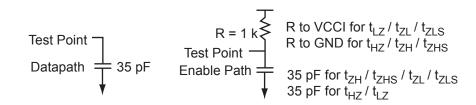


Figure 2-9 • AC Loading

Table 2-56 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.8	0.9	35

Note: *Measuring point = $V_{trip.}$ See Table 2-18 on page 2-17 for a complete table of trip points.

2-38 Revision 5

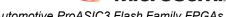


Table 2-91 • Parameter Definitions and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*		
t _{OCLKQ}	Clock-to-Q of the Output Data Register	HH, DOUT		
tosup	Data Setup Time for the Output Data Register	FF, HH		
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH		
tosuE	Enable Setup Time for the Output Data Register	GG, HH		
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH		
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT		
toremclr	Asynchronous Clear Removal Time for the Output Data Register	LL, HH		
torecclr	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH		
toeclkQ	Clock-to-Q of the Output Enable Register	HH, EOUT		
t _{OESUD}	Data Setup Time for the Output Enable Register	JJ, HH		
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH		
toesue	Enable Setup Time for the Output Enable Register	KK, HH		
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH		
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT		
toeremclr	Asynchronous Clear Removal Time for the Output Enable Register	II, HH		
toerecclr	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH		
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE		
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA		
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA		
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA		
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA		
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE		
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA		
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA		

Note: *See Figure 2-16 on page 2-55 for more information.

2-56 Revision 5

Automotive ProASIC3 Flash Family FPGAs

Table 2-100 • Input DDR Propagation Delays Automotive-Case Conditions: T_J = 115°C, Worst-Case VCC = 1.425 V

Parameter	Description	-1	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.33	0.38	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.46	0.54	ns
t _{DDRISUD}	Data Setup for Input DDR	0.34	0.40	ns
t _{DDRIHD}	Data Hold for Input DDR	0.00	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	0.55	0.65	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.68	0.80	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.27	0.31	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.25	0.30	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width High for Input DDR	0.41	0.48	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width Low for Input DDR	0.37	0.43	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	309	263	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.

Revision 5 2-65

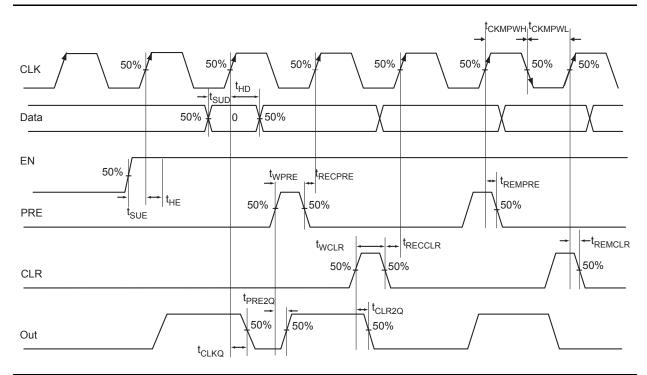


Figure 2-27 • Timing Model and Waveforms

Timing Characteristics

Table 2-106 • Register Delays Automotive-Case Conditions: T_J = 135°C, Worst-Case VCC = 1.425 V

Parameter	Description	-1	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.67	0.79	ns
t _{SUD}	Data Setup Time for the Core Register	0.52	0.61	ns
t _{HD}	Data Hold Time for the Core Register	0.00	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.55	0.65	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.49	0.57	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.49	0.57	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.27	0.32	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.27	0.32	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.25	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.25	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.41	0.48	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.

Revision 5 2-73

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-80. Table 2-114 on page 2-79 to Table 2-125 on page 2-97 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

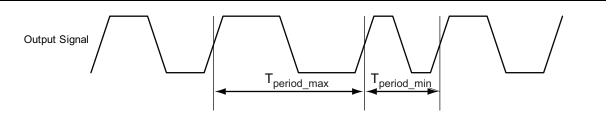
Timing Characteristics

Table 2-108 • A3P060 Global Resource
Commercial-Case Conditions: T_{.I} = 135°C, VCC = 1.425 V

		-	-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.16	1.02	1.37	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.20	1.01	1.42	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.80		0.94		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.98		1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.35		0.41	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.


Table 2-109 • A3P060 Global Resource
Commercial-Case Conditions: T_J = 115°C, VCC = 1.425 V

		-1		Std.			
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units	
t _{RCKL}	Input Low Delay for Global Clock	0.85	1.13	1.00	1.33	ns	
t _{RCKH}	Input High Delay for Global Clock	0.84	1.18	0.99	1.38	ns	
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.80		0.94		ns	
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.98		1.15		ns	
t _{RCKSW}	Maximum Skew for Global Clock		0.34		0.40	ns	

Notes:

- Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.

2-76 Revision 5

Note: Peak-to-peak jitter measurements are defined by $T_{peak-to-peak} = T_{period_max} - T_{period_min}$ Figure 2-29 • Peak-to-Peak Jitter Definition

Revision 5 2-81

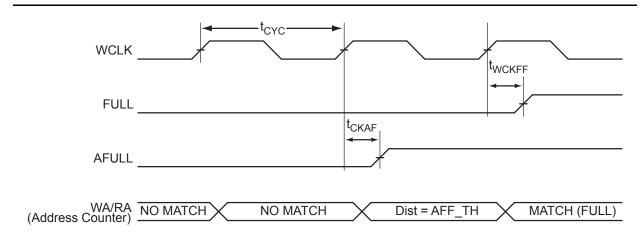


Figure 2-41 • FIFO FULL Flag and AFULL Flag Assertion

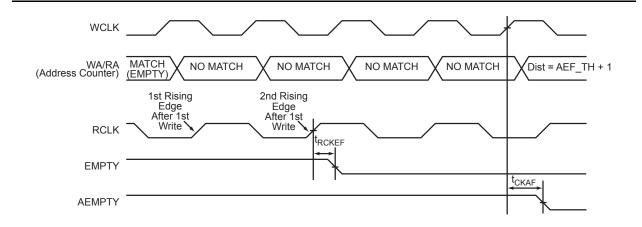
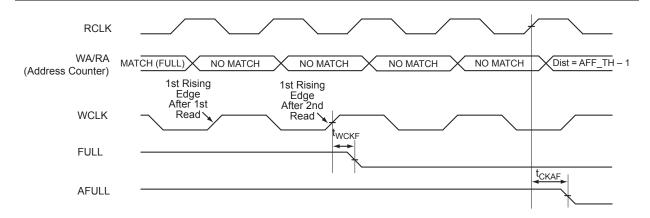
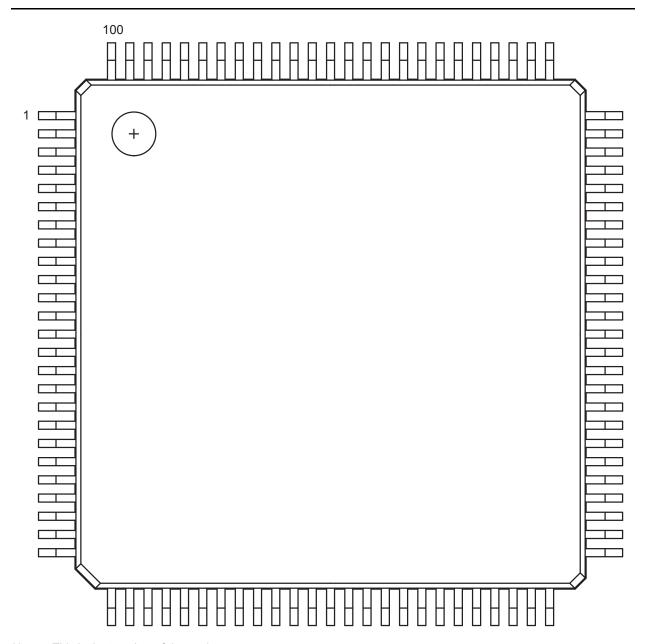


Figure 2-42 • FIFO EMPTY Flag and AEMPTY Flag Deassertion




Figure 2-43 • FIFO FULL Flag and AFULL Flag Deassertion

Revision 5 2-93

4 – Package Pin Assignments

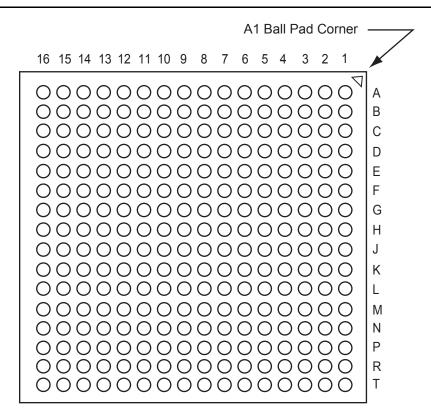
VQ100

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.

Revision 5 4-1



Package Pin Assignments

FG144					
Pin Number	A3P125 Function				
K1	GEB0/IO109RSB1				
K2	GEA1/IO108RSB1				
K3	GEA0/IO107RSB1				
K4	GEA2/IO106RSB1				
K5	IO100RSB1				
K6	IO98RSB1				
K7	GND				
K8	IO73RSB1				
K9	GDC2/IO72RSB1				
K10	GND				
K11	GDA0/IO66RSB0				
K12	GDB0/IO64RSB0				
L1	GND				
L2	VMV1				
L3	GEB2/IO105RSB1				
L4	IO102RSB1				
L5	VCCIB1				
L6	IO95RSB1				
L7	IO85RSB1				
L8	IO74RSB1				
L9	TMS				
L10	VJTAG				
L11	VMV1				
L12	TRST				
M1	GNDQ				
M2	GEC2/IO104RSB1				
M3	IO103RSB1				
M4	IO101RSB1				
M5	IO97RSB1				
M6	IO94RSB1				
M7 IO86RSB1					
M8	IO75RSB1				
M9	TDI				
M10	VCCIB1				
M11	VPUMP				
M12	GNDQ				

4-14 Revision 5

FG256

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.

Revision 5 4-19

FG484

A1 Ball Pad Corner

AB

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Α В С D Ε F G Η J Κ L M Ν Ρ R Τ U ٧ W Υ AA

This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.

4-26 Revision 5