

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	1484
Number of Logic Elements/Cells	5936
Total RAM Bits	184320
Number of I/O	37
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 125°C (TJ)
Package / Case	81-VFBGA
Supplier Device Package	81-CSFBGA (4.5x4.5)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lia-md6000-6mg81e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Acronym	ns in This Document	5
1. Ger	neral Description	6
1.1.	Features	6
2. App	plication Examples	7
2.1.	2:1 MIPI CSI-2 Image Sensor Aggregator Bridge	7
2.2.	1:2 MIPI DSI Display Interface Bridge	8
2.3.	FPD-Link/OpenLDI LVDS to MIPI DSI Display Interface Bridge	9
2.4.	MIPI DSI to FPD-Link/OpenLDI LVDS Display Interface Bridge	
2.5.	CMOS to MIPI DSI Display Interface Bridge	11
2.6.	CMOS to MIPI CSI-2 Image Sensor Interface Bridge	
2.7.	MIPI DSI to CMOS Display Interface Bridge	
2.8.	MIPI CSI-2 to CMOS Image Sensor Interface Bridge	
2.9.	SubLVDS to MIPI CSI-2 Image Sensor Interface Bridge	
	duct Feature Summary	
4. Arc	hitecture Overview	
4.1.	MIPI D-PHY Blocks	
4.2.	Programmable I/O Banks	
4.3.	Programmable FPGA Fabric	
4.3.		
4.3.	· · · · · · · · · · · · · · · · · · ·	
4.3.		
4.4.	System Resources	
4.4.		
4.4.		
4.4.		
4.4.		
	and Switching Characteristics	
5.1.	Absolute Maximum Ratings	
5.2.	Recommended Operating Conditions	
5.3.	Preliminary Power Supply Ramp Rates	
5.4.	Preliminary Power-On-Reset Voltage Levels	
5.5.	ESD Performance	
5.6.	Preliminary DC Electrical Characteristics	
5.7.	Preliminary CrossLink Supply Current	
5.8.	Preliminary Power Management Unit (PMU) Timing	
5.9.	sysI/O Recommended Operating Conditions	
5.10.	Preliminary sysI/O Single-Ended DC Electrical Characteristics Preliminary sysI/O Differential Electrical Characteristics	
5.11.		
5.1		
5.1: 5.12.	1.2. Preliminary Hardened MIPI D-PHY I/OsPreliminary CrossLink Maximum General Purpose I/O Buffer Speed	
5.12. 5.13.	Preliminary CrossLink Maximum General Purpose 1/O Burier Speed Preliminary CrossLink External Switching Characteristics	
5.14. 5.15.	Preliminary sysCLOCK PLL Timing Hardened MIPI D-PHY Performance	
5.15. 5.16.	Preliminary Internal Oscillators (HFOSC, LFOSC)	
5.16. 5.17.	Preliminary Internal Oscillators (HFOSC, LFOSC)	
5.17. 5.18.	CrossLink sysCONFIG Port Timing Specifications	
5.16. 5.19.	Preliminary SRAM Configuration Time from NVCM	
5.19. 5.20.	Switching Test Conditions	
5.20.	Switching rest conditions	39

2.4. MIPI DSI to FPD-Link/OpenLDI LVDS Display Interface Bridge

Figure 2.4 shows the block diagram for the MIPI DSI to FPD-Link/OpenLDI LVDS Display Interface Bridge. This solution bridges the MIPI DSI output from the application processor to a single or dual channel FPD-Link/OpenLDI LVDS display input.

Table 2.4 provides additional details on the application example, including input and output descriptions and device resource usage. The interface bridge is fully programmable, supporting both RGB666 and RGB888, variable number of LVDS data lanes, and data rates up to 1.2 Gb/s per lane input or 1.5 Gb/s per lane output. For details, refer to FPGA-IPUG-02003, MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge Soft IP User Guide.

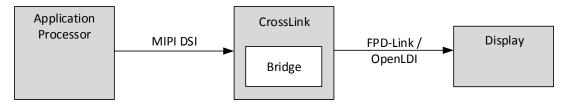


Figure 2.4. MIPI DSI to FPD-Link/OpenLDI LVDS Display Interface Bridge

Table 2.4. MIPI DSI to FPD-Link/OpenLDI LVDS Display Interface Bridge Overview

Application Example Details			
January Trans	1080p60, 24-bit RGB		
Input Type	4-Lane MIPI D-PHY @ ~900 Mb/s per lane		
Programmable Fabric Operation(s)	Bridge		
Outrout Tura	1080p60, 24-bit RGB		
Output Type	2 Channels (2 x 4 Data Lanes and 2 x 1 Clock Lane) @ 74.25MHz FPD-Link Clock		
	Display Configuration		
Additional System Functions	Power and Reset Sequencing of Display		
	Backlight PWM Control		
	Preliminary Example Device Resource Usage*		
Typical Power Consumption	TBD mW		
Device I/O Used	20 Programmable I/O; 1 x Hard D-PHY Quads		
Fabric Resources Used	~30% of LUT4; ~30% of EBR		

^{*}Note: For reference only – exact usage and power consumption depends on specific application parameters. Additional system functions are not included in resource usage. The typical power consumption estimate is based on nominal supply voltages at $T_1 = 25$ °C.

© 2015-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.8. MIPI CSI-2 to CMOS Image Sensor Interface Bridge

Figure 2.8 shows the block diagram for the MIPI DSI to CMOS display interface bridge. This solution bridges the MIPI DSI output from the application processor to CMOS parallel display input.

Table 2.8 provides additional details on the application example, including input and output descriptions and device resource usage. The interface bridge is fully programmable, supporting multiple pixel formats and data rates up to 1.5 Gb/s per lane input and up to 150 MHz CMOS parallel output. For details, refer to FPGA-IPUG-02004, MIPI D-PHY to CMOS Interface Bridge Soft IP User Guide.

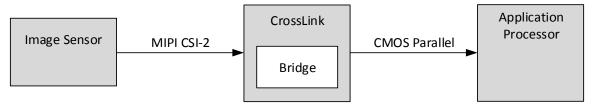


Figure 2.8. MIPI CSI-2 to CMOS Image Sensor Interface Bridge

Table 2.8. MIPI CSI-2 to CMOS Image Sensor Interface Bridge Overview

Table 2.6. Wiff C31-2 to Civios image sensor interface bridge overview				
Application Example Details				
Input Tuno	1080p60, RAW12			
Input Type	4-Lane MIPI D-PHY @ ~445 Mb/s per lane			
Programmable Fabric Operation(s)	Interface Bridge			
Output Tupo	1080p60, RAW12			
Output Type	CMOS Parallel @ 74.25 MHz			
Additional Custom Functions	I ² C for Camera Configuration			
Additional System Functions	GPIO for image sensor reset/power control			
	Preliminary Example Device Resource Usage*			
Typical Power Consumption	60 mW			
Device I/O Used	16 Programmable I/O; 1 x Hard D-PHY Quads			
Fabric Resources Used	15% of LUT4; ~15% of EBR			

^{*}Note: For reference only – exact usage and power consumption depends on specific application parameters. Additional system functions are not included in resource usage. The typical power consumption estimate is based on nominal supply voltages at $T_J = 25$ °C.

© 2015-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3. Product Feature Summary

Table 3.1 lists CrossLink device information and packages.

Table 3.1. CrossLink Feature Summary

Device	CrossLink
LUTs	5936
sysMEM Blocks (9 kb)	20
Embedded Memory (kb)	180
Distributed RAM Bits (kb)	47
General Purpose PLL	1
NVCM	Yes
Embedded I ² C	2
Oscillator (10 KHz)	1
Oscillator (48 MHz)	1
Hardened MIPI D-PHY	21, 2
Packages	1/0
36 WLCSP ² (2.535 × 2.583 mm ² , 0.6 mm)	17
64 ucfBGA (3.5 × 3.5 mm², 1 mm)	29
80 ctfBGA (6.5 x 6.5 mm ² , 1 mm)	36
81 csfBGA (4.5 × 4.5 mm², 1 mm)	37

Notes:

- 1. Additional D-PHY Rx interfaces are available using programmable I/O.
- 2. Only one Hardened D-PHY is available in 36 WLCSP package.

4. Architecture Overview

CrossLink is designed as a flexible, chip-to-chip bridging solution which supports a wide variety of applications, including those described in Application Examples section on page 7.

CrossLink provides three key building blocks for these bridging applications:

- Up to two embedded Hard D-PHY blocks
- Two banks of flexible programmable I/O supporting a variety of standards including D-PHY Rx, subLVDS, SLVS, LVDS, and CMOS
- A programmable logic core providing the LUTs, memory, and system resources to implement a wide range of bridging operations

In addition to these blocks, CrossLink also provides key system resources including a Power Management Unit, flexible configuration interface, additional CMOS GPIO, and user I²C blocks.

The block diagram for the device is shown in Figure 4.1.

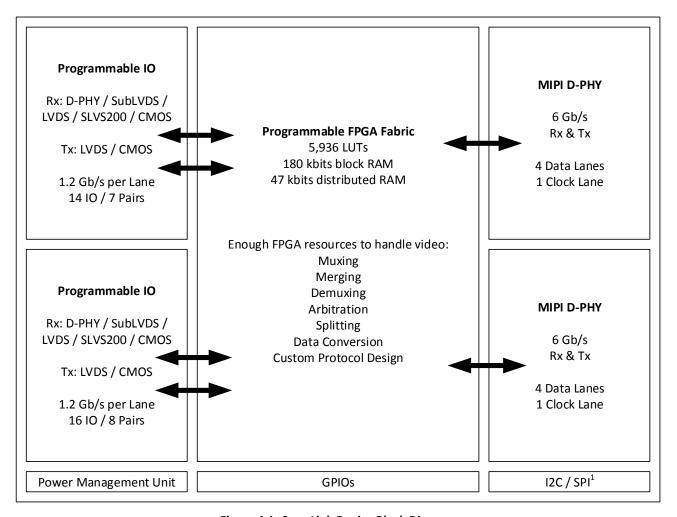


Figure 4.1. CrossLink Device Block Diagram

Note: I²C and SPI configuration modes are supported. User mode hardened I²C is also supported.

4.1. MIPI D-PHY Blocks

The top side of the device includes two hard MIPI D-PHY quads. The D-PHY can be configured to support both camera interface (CSI-2) and display interface (DSI) applications. Below is a summary of the features supported by the hard D-PHY quads. Refer to FPGA-TN-02012, CrossLink High-Speed I/O Interface for more information on the Hard D-PHY quads.

- Transmit and Receive compliant to D-PHY Revision 1.1
- High-Speed (HS) and Low-Power (LP) mode support (including built-in contention detect)
- Up to 6 Gb/s per quad (1500 Mb/s data rate per lane)
- Dedicated PLL for Transmit Frequency Synthesis
- Dedicated Serializer and De-Serializer blocks for fabric interfacing
- Supports continuous clock mode or low power clock mode

Lattice Semiconductor provides a set of pre-engineered IP modules which include the full implementation and control of the hard D-PHY blocks for the examples in Application Examples section on page 7, enabling designers to focus on unique aspects of their design.

4.2. Programmable I/O Banks

CrossLink devices provide programmable I/O which can be used to interface to a variety of external standards. The I/O features are summarized below, and described in detail in FPGA-TN-02012, CrossLink High-Speed I/O Interface and FPGA-TN-02016, CrossLink sysI/O Usage Guide. The programmable LVDS/CMOS I/O (Banks 1 and 2) are described below, while the CMOS GPIO (bank 0) and hard D-PHY quads are described separately. Programmable LVDS/CMOS I/O (Bank 1 and 2) features:

- Built-in support for the following differential standards
 - LVDS Tx and Rx
 - SLVS Rx
 - SubLVDS Rx
 - MIPI Rx (both LP and HS receive on a single differential pair)
- Support for the following single ended standards (ratioed to VCCIO)
 - LVCMOS33
 - LVCMOS25
 - LVCMOS18
 - LVCMOS12 (Outputs)
 - LVTTL33
- Independent voltage levels per bank based on VCCIO supply
- Input/output gearboxes per LVDS pair supporting several ratios for video interface applications
 - DDRX1, DDRX2, DDRX4, DDRX8 and DDRX71, DDRX141
 - Programmable delay cells to support edge-aligned and center-aligned interfaces
- Programmable differential termination ($\sim 100 \Omega$) with dynamic enable control
- Tri-state control for output
- Input/output register blocks
- Single-ended standards support open-drain and programmable input hysteresis
- Optional weak pull-up resistors

To ensure the MIPI Rx interface implemented in FPGA fabric using Programmable I/Os runs in an optimal environment, follow this guideline of assigning I/Os to the bank for the MIPI Rx inputs:

• When an SLVS/MIPI Rx interface is placed in Bank 1 or 2, do not place both Banks 1 and 2 with LVCMOS outputs in these 2 banks.

© 2015-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

- Four Edge Clocks for high-speed DDR interfaces
 - 2 per Programmable I/O bank
 - Source from PCLK pins, PLL or DLL blocks
 - Programmable Clock divider per Edge Clock
 - Delay primitives for 90 degree phase shifting of clock/data (DDRDLL, DLLDEL)
- Dynamic Clock Control
 - Fabric control to disable clock nets for power savings
- Dynamic Clock Select
 - Smart clock multiplexer with two independent inputs and glitchless output support
- Two On-Chip Oscillators
 - Always-on Low Frequency (LFCLKOUT) with nominal frequency of 10 kHz
 - High-Frequency (HFCLKOUT) with nominal frequency of 48 MHz, programmable output dividers, and dynamic enable control

4.3.3. Embedded Block RAM Overview

CrossLink devices also contain sysMEM Embedded Block RAM (EBR). The EBR consists of a 9 kB RAM with memory core, dedicated input registers and output registers with separate clock and clock enable. Supported modes and other general information on the EBR are listed below. For details, refer to FPGA-TN-02017, CrossLink Memory Usage Guide.

- Support for different memory configurations
 - Single Port
 - True Dual Port
 - Pseudo Dual Port
 - ROM
 - FIFO (logic wrapper added automatically by design tools)
- Flexible customization features
 - Initialization of RAM/ROM
 - Memory cascading (handled automatically by design tools)
 - Optional parity bit support
 - Byte-enable
 - Multiple block size options
 - RAM modes support optional Write Through or Read-Before-Write modes

4.4. System Resources

4.4.1. CMOS GPIO (Bank 0)

CrossLink provides dedicated CMOS GPIO on Bank 0 of the device. These GPIO do not include differential signaling support. A summary of the features associated with these GPIOs is listed below:

- Support for the following single ended standards (ratioed to VCCIO)
 - LVCMOS33
 - LVCMOS25
 - LVCMOS18
 - LVCMOS12 (Outputs)
 - LVTTL33
- Tri-state control for output
- Input/output register blocks
- Open-drain option and programmable input hysteresis
- Internal pull-up resistors with configurable values of 3.3 k Ω , 6.8 k Ω , 10 k Ω

© 2015-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

5. DC and Switching Characteristics

5.1. Absolute Maximum Ratings

Table 5.1. Absolute Maximum Ratings^{1, 2, 3}

Symbol	Parameter	Min	Max	Unit
V _{cc}	Core Supply Voltage	-0.5	1.32	V
V _{CCPLL}	PLL Supply Voltage	-0.5	1.32	V
V _{CCAUX}	Auxiliary Supply Voltage for Bank 1, 2 and NVCM	-0.5	2.75	V
V _{ccio}	I/O Driver Supply Voltage for Banks 0, 1, 2	-0.5	3.63	V
_	Input or I/O Transient Voltage Applied	-0.5	3.63	V
V _{CC_DPHY} V _{CCA_DPHY} V _{CCPLL_DPHY} VCCMU_DPHY	MIPI D-PHY Supply Voltages	-0.5	1.32	V
_	Voltage Applied on MIPI D-PHY Pins	-0.5	1.32	V
T _A	Storage Temperature (Ambient)	– 65	150	°C
T _J	Junction Temperature (TJ)	_	+125	°C

Notes:

- 1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
- 2. Compliance with the Lattice Thermal Management document is required.
- 3. All voltages referenced to GND.

5.2. Recommended Operating Conditions

Table 5.2. Recommended Operating Conditions 1, 2

Symbol	Parameter	Min	Max	Unit
V _{cc}	Core Supply Voltage	1.14	1.26	V
V _{CCPLL}	PLL Supply Voltage	1.14	1.26	V
V _{CCAUX}	Auxiliary Supply Voltage for Bank 1, 2 and NVCM	2.375	2.625	V
V _{ccio}	I/O Driver Supply Voltage for Bank 0, 1, 2	1.14	3.465	V
T _{JIND}	Junction Temperature, Industrial Operation	-40	100	°C
D-PHY External	Power Supply			
V _{CC_DPHYx}	Supply Voltage for D-PHY	1.14	1.26	V
V _{CCA_DPHYx}	Analog Supply Voltage for D-PHY	1.14	1.26	V
V _{CCPLL_DPHYx}	PLL Supply voltage for D-PHY	1.14	1.26	V
V _{CCMU_DPHY}	Supply for V _{CC_DPHY1} , V _{CCA_DPHY1} and V _{CCPLL_DPHY1} on the WLCSP36	1.14	1.26	V

Notes:

- 1. For Correct Operation, all supplies must be held in their valid operation range.
- 2. Like power supplies, must be tied together if they are at the same supply voltage. Follow the noise filtering recommendations in FPGA-TN-02013, CrossLink Hardware Checklist.

5.3. Preliminary Power Supply Ramp Rates

Table 5.3. Preliminary Power Supply Ramp Rates¹

Symbol	Parameter	Min	Max	Unit
t _{RAMP}	Power supply ramp rates for all power supplies except V _{CCAUX}	0.6	10	V/ms

Note:

5.4. Preliminary Power-On-Reset Voltage Levels

Table 5.4. Preliminary Power-On-Reset Voltage Levels^{1, 3, 4}

Symbol	Parameter		Min	Тур	Max	Unit
V _{PORUP} Power-On-Reset ramp up (Monitoring V _{CC} , V _{CC100} , a		V _{cc}	0.62	0.68	0.93	V
	Power-On-Reset ramp up trip point (Monitoring Ves. Vescos, and Vescos)	V _{CCIOO} ²	0.87	1.08	1.50	V
	V _{CCAUX}	V _{CCAUX}	0.90	_	1.53	V
	Power-On-Reset ramp down trip point (Monitoring V _{CC} , V _{CCIOO} , and V _{CCAUX})	V _{cc}	_	_	0.79	V
V _{PORDN}		V _{CCIOO} ²	_	_	1.50	V
		V _{CCAUX}	_	_	1.53	V

Notes:

- 1. These POR ramp up trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.
- 2. Only V_{CCIOO} (Config Bank) has a Power-On-Reset ramp up trip point. All other VCCIOs do not have Power-On-Reset ramp up detection.
- 3. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.
- 4. Configuration starts after V_{CC}, V_{CCI00} and V_{CCAUX} reach V_{PORUP}. For details, see t_{REFRESH} time in Table 5.21 on page 38.

5.5. ESD Performance

Refer to the LIFMD Product Family Qualification Summary for complete qualification data, including ESD performance.

Assume monotonic ramp rates.

5.7. Preliminary CrossLink Supply Current

Over recommended operating conditions.

Table 5.6. Preliminary CrossLink Supply Current

Symbol	Parameter	Тур	Unit
Normal Operat	ion ¹		
I _{cc}	Core Power Supply Current	7.17	mA
I _{CCPLL}	PLL Power Supply Current	0.05	mA
I _{CCAUX25VPP}	Auxiliary Power Supply Current for Bank 1, 2 and NVCM Programming Supply Current	2.65	mA
I _{CCIOx}	Bank x Power Supply Current (per Bank)	0.06	mA
I _{CCA_DPHYx}	V _{CCA_DPHYx} Power Supply Current	8.33	mA
I _{CCPLL_DPHYx}	V _{CCPLL_DPHYx} Power Supply Current	1.31	mA
Standby Currer	tt ²		
I _{CCSTDBY}	Core Power Supply Standby Current	2.73	mA
I _{CCPLLSTDBY}	PLL Power Supply Standby Current		mA
I _{CCAUX25VPPSTDBY}	Auxiliary Power Supply Current for Bank 1, 2 and NVCM Programming Supply Standby Current	0.46	mA
I _{CCIOSTDBY}	Bank Power Supply Standby Current (per Bank)	0	mA
I _{CCA_DPHYxSTDBY}	V _{CCA_DPHYx} Power Supply Standby Current	0.01	mA
I _{CCPLL_DPHYxSTDBY}	V _{CCPLL_DPHYx} Power Supply Standby Current	0.01	mA
Sleep/Power D	own Mode Current ³		
I _{CC_SLEEP}	Core Power Supply Sleep Current	0.48	mA
I _{CCGPLL_SLEEP}	PLL Power Supply Current	0.05	mA
I _{CCAUX_SLEEP}	Auxiliary Power Supply Current for Bank 1, 2 and NVCM Programming Supply Current	0.03	mA
I _{CCIOx_SLEEP}	Bank Power Supply Current (per Bank)	0.06	mA
I _{CCPLL_DPHY_SLEEP}	V _{CCPLL_DPHY} Power Supply Sleep Current	0.01	mA
I _{CCA_DPHY_SLEEP}	V _{CCA_DPHY} Power Supply Sleep Current	0.05	mA

Notes:

1. Normal Operation

Typical design as defined in 2:1 MIPI CSI-2 Image Sensor Aggregator Bridge section, under the following conditions:

- a. $T_J = 25$ °C, all power supplies at nominal voltages.
- b. Typical processed device in csfBGA81 package.
- c. To determine power for all other applications and operating conditions, use Power Calculator in Lattice Diamond design software

2. Standby Operation

A typically processed device in csfBGA81 package with blank pattern programmed, under the following conditions:

- a. All outputs are tri-stated, all inputs are held at either V_{CCIO}, or GND.
- b. All clock inputs are at 0 MHz.
- c. $T_J = 25$ °C, all power supplies at nominal voltages.
- d. No pull-ups on I/O.

Sleep/Power Down Mode

Typical design as defined in 2:1 MIPI CSI-2 Image Sensor Aggregator Bridge section, under following conditions:

- a. Design is put into Sleep/Power Down Mode with user logic powers down D-PHY, and enters into Sleep Mode in PMU.
- b. $T_J = 25$ °C, all power supplies at nominal voltages.
- Typical processed device in csfBGA81 package.

4. For ucfBGA64 package

- a. $V_{CCA\ DPHY0}$ and $V_{CCA\ DPHY1}$ are tied together as $V_{CC\ DPHYX}$.
- b. V_{CCPLL_DPHY0} and V_{CCPLL_DPHY1} are tied together as V_{CC_DPHYX} .

5. For WLCS36 package

- a. V_{CCGPLL} and V_{CCIO1} (Bank 1) are tied together to V_{CC}.
- b. V_{CCPLL_DPHY} and V_{CCA_DPHY} are tied together as V_{CCMU_DPHY} .
- 5. To determine the CrossLink start-up peak current, use the Power Calculator tool in the Lattice Diamond design software.

5.8. Preliminary Power Management Unit (PMU) Timing

Table 5.7. Preliminary PMU Timing¹

Symbol	Parameter	Device	Max	Unit
t _{PMUWAKE}	Time for PMU to wake from Sleep mode	All Devices	1	ms

Note:

5.9. sysI/O Recommended Operating Conditions

Table 5.8. sysI/O Recommended Operating Conditions¹

Chandand	V _{CCIO}			
Standard	Min	Тур	Max	
LVCMOS33/LVTTL33	3.135	3.30	3.465	
LVCMOS25	2.375	2.50	2.625	
LVCMOS18	1.710	1.80	1.890	
LVCMOS12 (Output only)	1.140	1.20	1.260	
subLDVS (Input only)	2.375	2.50	2.625	
SLVS (Input only) ²	2.375	2.50	2.625	
LVDS	2.375	2.50	2.625	
MIPI (Input only)	1.140	1.20	1.260	

Note:

- 1. For input voltage compatibility, refer to FPGA-TN-02016, CrossLink sysI/O Usage Guide.
- 2. For SLVS/MIPI interface I/O placement, see the Programmable I/O Banks section.

5.10. Preliminary sysI/O Single-Ended DC Electrical Characteristics

Table 5.9. Preliminary syst/O Single-Ended DC Electrical Characteristics

Input/Output	V _{IL}		V _{IH}		V _{OL} Max	V _{он Min} (V)	I _{OL} (mA)	I _{OH} (mA)
Standard	Min (V)	Max (V)	Min (V)	Max (V)	(V)	VOH IVIIN (V)	IOL (IIIA)	IOH (IIIA)
LVCMOS33/	-0.3	0.8	2.0	V 10.2	0.40	V _{CCIO} - 0.4	8	-8
LVTTL33	33 -0.3 0.8 2.0 V _{CCIO} +0.2 0.20	0.20	V _{CCIO} – 0.2	0.1	-0.1			
LVCMOS2E	-0.3 0.7	0.7	0.7		0.40	V _{CCIO} – 0.4	6	- 6
LVCMOS25		1.7	V _{CCIO} +0.2	0.20	V _{CCIO} – 0.2	0.1	-0.1	
11/61/106/10	0.2	0.35.1/	0.65.17		0.40	V _{CCIO} – 0.4	4	-4
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	V _{CCIO} +0.2	0.20	V _{CCIO} – 0.2	0.1	-0.1
LVCMOS12					0.40	V _{CCIO} - 0.4	2	-2
(Output only)	1	_	_	_	0.20	V _{CCIO} – 0.2	0.1	-0.1

^{1.} For details on PMU usage, refer to FPGA-TN-02018, Power Management and Calculation for CrossLink Devices.

5.11.2. Preliminary Hardened MIPI D-PHY I/Os

Table 5.11. Preliminary MIPI D-PHY

	Description	Min	Тур	Max	Unit
	Receiver				
High Speed					
V _{CMRX}	Common-Mode Voltage HS Receive Mode	70	_	330	mV
V _{IDTH}	Differential Input High Threshold	_	_	70	mV
V _{IDTL}	Differential Input Low Threshold	-70	_	_	mV
V _{IHHS}	Single-ended Input High Voltage	_	_	460	mV
V _{ILHS}	Single-ended Input Low Voltage	-40	_	_	mV
V _{TERM-EN}	Single-ended Threshold for HS Termination Enable	_	_	450	mV
Z _{ID}	Differential Input Impedance	80	100	125	Ω
Low Power	•				
V _{IH}	Logic 1 Input Voltage	880	_	_	mV
V _{IL}	Logic 0 Input Voltage, not in ULP State	_	_	550	mV
V _{IL-ULPS}	Logic 0 Input Voltage, in ULP State	_	_	300	mV
V _{HYST}	Input Hysteresis	25	_	_	mV
	Transmitter				
High Speed					
V _{CMTX}	HS Transmit Static Common Mode Voltage	150	200	250	mV
V _{OD}	HS Transmit Differential Voltage	140	200	270	mV
V _{OHHS}	HS Output High Voltage	_	_	360	mV
Zos	Single-ended Output Impedance	40	50	62.5	Ω
ΔZ_{OS}	Single-ended Output Impedance Mismatch	_	_	10	%
Low Power					
V _{OH}	Output High Level	1.1	1.2	1.3	V
V _{OL}	Output Low Level	-50	_	50	mV
Z _{OLP}	Output Impedance of LP Transmitter	110	_	_	Ω

5.12. Preliminary CrossLink Maximum General Purpose I/O Buffer Speed

Over recommended operating conditions.

Table 5.12. Preliminary CrossLink Maximum I/O Buffer Speed

Buffer	Description	Max	Unit
Maximum Input Frequency			•
LVDS25	LVDS, V _{CCIO} = 2.5 V, csfBGA81, ctfBGA80, ucfBGA64 packages	600	MHz
	LVDS, V _{CCIO} = 2.5 V, WLCSP36 package	500	MHz
subLVDS	subLVDS, V _{CCIO} = 2.5 V, csfBGA81, ctfBGA80, ucfBGA64 packages	TBD	MHz
	subLVDS, V _{CCIO} = 2.5 V, WLCSP36 package	TBD	MHz
MAIDLD DILLY (LIC MA - 4-16	MIPI D-PHY, csfBGA81, ctfBGA80, ucfBGA64 packages	600	MHz
MIPI D-PHY (HS Mode) ⁶	MIPI D-PHY, WLCSP36 package	500	MHz
SLVS	SLVS, VCCIO=2.5 V, csfBGA81, ctfBGA80, ucfBGA64 packages	TBD	MHz
	SLVS, VCCIO=2.5 V, WLCSP36 package	TBD	MHz
LVTTL33	LVTTL, V _{CCIO} = 3.3 V	300	MHz
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	300	MHz
LVCMOS25D	Differential LVCMOS, V _{CCIO} = 2.5 V	300	MHz
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	300	MHz
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	155	MHz
Maximum Output Frequency			
LVDS25	LVDS, V _{CCIO} = 2.5 V, csfBGA81, ctfBGA80, ucfBGA64 packages	600	MHz
	LVDS, V _{CCIO} = 2.5 V, WLCSP36 package	500	MHz
LVTTL33	LVTTL, V _{CCIO} = 3.3 V	300	MHz
LVTTL33D	Differential LVTTL, V _{CCIO} = 3.3 V	300	MHz
LVCMOS33	LVCMOS, 3.3 V	300	MHz
LVCMOS33D	Differential LVCMOS, 3.3 V	300	MHz
LVCMOS25	LVCMOS, 2.5 V	300	MHz
LVCMOS25D	Differential LVCMOS, 2.5 V	300	MHz
LVCMOS18	LVCMOS, 1.8 V	155	MHz
LVCMOS12	LVCMOS, V _{CCIO} = 1.2 V	70	MHz

Notes:

- 1. These maximum speeds are characterized but not tested on every device.
- 2. Maximum I/O speed for differential output standards emulated with resistors depends on the layout.
- 3. LVCMOS timing is measured with the load specified in Table 5.22.
- 4. Actual system operation may vary depending on user logic implementation.
- 5. Maximum data rate equals two times the clock rate when utilizing DDR.
- 6. This is the maximum MIPI D-PHY input rate on the programmable I/O banks 1 and 2. The hardened MIPI D-PHY input and output rates are described in Hardened MIPI D-PHY Performance section. For SLVS/MIPI interface I/O placement, see the Programmable I/O Banks section.

© 2015-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

5.13. Preliminary CrossLink External Switching Characteristics

Over recommended commercial operating conditions.

Table 5.13. Preliminary CrossLink External Switching Characteristics^{4, 5}

Damanat - ::	Description	Canalistana	-6		l lm:4
Parameter	Description	Conditions	Min	Max	Unit
Clocks					
Primary Clock					
f _{MAX_PRI}	Frequency for Primary Clock Tree	_	1	150	MHz
tw_PRI	Clock Pulse Width for Primary Clock	_	0.8	_	ns
t _{ISKEW_PRI}	Primary Clock Skew Within a Clock	_	_	450	ps
Edge Clock					
f _{MAX_EDGE}	Frequency for Edge Clock Tree	_	_	600	MHz
t _{W_EDGE}	Clock Pulse Width for Edge Clock	_	0.783	_	ns
t _{ISKEW_EDGE}	Edge Clock Skew Within a Bank	_	_	120	ps
Generic SDR Inte	erface ¹				
General Purpose	I/O Pin Parameters Using Clock Tree Without	t PLL			
t _{co}	Clock to Output – PIO Input Register	_	_	6.0	ns
t _{su}	Clock to Data Setup – PIO Input Register	_	-0.90	_	ns
t _{HD}	Clock to Data Hold – PIO Input Register	_	1.82	_	ns
t _{su_delay}	Clock to Data Setup – PIO Input Register with Input Delay for zero t _{HD}	_	1.02	_	ns
t _{HD_DELAY}	Clock to Data Hold – PIO Input Register with Input Delay for zero t _{HD}	_	0	_	ns
General Purpose	I/O Pin Parameters Using Clock Tree With PL	L			
t _{co}	Clock to Output – PIO Input Register	_	_	5.2	ns
t _{SU}	Clock to Data Setup – PIO Input Register	_	0.17	1	ns
t _{HD}	Clock to Data Hold – PIO Input Register	_	1.01	_	ns
t _{su_delay}	Clock to Data Setup – PIO Input Register with Input Delay for zero t _{HD}	_	1.70	_	ns
t _{HD_DELAY}	Clock to Data Hold – PIO Input Register with Input Delay for zero t _{HD}	_	0	_	ns
Generic DDR Inte	erfaces ²	•			
Generic DDRX8 o	or DDRX4 I/O with Clock and Data Centered at ECLK.Centered)	General Purpose Pins (GDDRX8_R	X/TX.ECLK.C	Centered or
t _{SU_GDDRX4_8}	Input Data Set-Up Before CLK Rising and Falling edges	_	0.167	_	ns
t _{HO_GDDRX4_8}	Input Data Hold After CLK Rising and Falling edges	_	0.167	_	ns
	Output Data Valid Before CLK Output	Data Rate = 1.2 Gb/s	0.297	1	ns
t _{DVB_GDDRX4_8}	Rising and Falling edges	Other Data Rates	-0.120	_	ns+1/2UI
+	Output Data Valid After CLK Output	Data Rate = 1.2 Gb/s	0.297	_	ns
t _{DVA_GDDRX4_8}	Rising and Falling edges	Other Data Rates	-0.120	_	ns+1/2UI
f _{MAX GDDRX4 8}	Frequency for ECLK ³	csfBGA81, ctfBGA80, ucfBGA64	_	600	MHz
-IWAX_GDDRX4_6	, , -	WLCSP36	_	500	MHz

45 - 27

46 - 28

of Bits 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Data In 3 \ 4 \ 5 \ 6 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 0 \ 0 \ 756 Mbps 2 Clock In 108 MHz Bit# Bit # Bit # Bit # 40 - 22 For each Channel: 10 - 1 20 - 8 30 - 15 0x 41 - 23 42 - 24 0x 0x 11 - 2 12 - 3 21 **-** 9 22 **-** 10 31 - 16 7-bit Output Words 32 - 17 to FPGA Fabric 0x 23 - 11 43 - 25 13 - 4 33 - 18 0x 24 - 12 34 - 19 44 - 26

25 - 13

26 - 14

35 - 20

36 - 21

15 - 6

16 - 7

Transmitter - Shown for one LVDS Channel

0x

0x

Receiver - Shown for one LVDS Channel

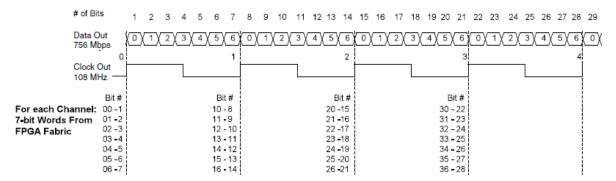


Figure 5.5. DDRX71, DDRX141 Video Timing Waveforms

6.2. ucfBGA64 Pinout

Pin Number	Pin Function	Bank	Dual Function	Differential
A1	DPHY1_CKP	DPHY1	_	True_OF_DPHY1_CKN
A2	DPHY1_CKN	DPHY1	_	Comp_OF_DPHY1_CKP
A3	DPHY1_DP3	DPHY1	-	True_OF_DPHY1_DN3
A4	DPHY1_DN3	DPHY1	_	Comp_OF_DPHY1_DP3
A5	DPHY0_DN2	DPHY0		Comp_OF_DPHY0_DP2
A6	DPHY0_DP0	DPHY0	_	True_OF_DPHY0_DN0
A7	DPHY0_CKP	DPHY0	-	True_OF_DPHY0_CKN
A8	DPHY0_CKN	DPHY0	-	Comp_OF_DPHY0_CKP
B1	DPHY1_DP2	DPHY1	-	True_OF_DPHY1_DN2
B2	DPHY1_DN2	DPHY1		Comp_OF_DPHY1_DP2
В3	DPHY1_DP1	DPHY1	-	True_OF_DPHY1_DN1
B4	DPHY1_DN1	DPHY1	-	Comp_OF_DPHY1_DP1
B5	DPHY0_DP2	DPHY0	-	True_OF_DPHY0_DN2
В6	DPHY0_DN0	DPHY0	-	Comp_OF_DPHY0_DP0
В7	DPHY0_DP3	DPHY0	-	True_OF_DPHY0_DN3
В8	DPHY0_DN3	DPHY0	-	Comp_OF_DPHY0_DP3
C1	DPHY1_DP0	DPHY1	-	True_OF_DPHY1_DN0
C2	DPHY1_DN0	DPHY1	_	Comp_OF_DPHY1_DP0
C3	PB47	0	PCLKTO_0/USER_SDA	
C4	VCCPLL_DPHYX	DPHY		_
C5	VCCA_DPHYX	DPHY	_	_
C6	GNDA_DPHYX	GND	_	_
C7	DPHY0_DP1	DPHY0	_	True_OF_DPHY0_DN1
C8	DPHY0_DN1	DPHY0	_	Comp_OF_DPHY0_DP1
D1	PB34B	1	-	Comp_OF_PB34A
D2	PB34A	1	GR_PCLK1_0	True_OF_PB34B
D3	PB52	0	SPI_SS/CSN/SCL	
D4	GND	GND		_
D5	VCC	VCC	_	_
D6	VCCAUX	VCCAUX	-	_
D7	PB16A	2	PCLKT2_0	True_OF_PB16B
D8	PB12A	2	GPLLT2_0	True OF PB12B
E1	PB51	0	MISO	
E2	CRESET_B	0	_	_
E3	PB48	0	PCLKTO_1/USER_SCL	_
E4	VCC	VCC		_
E5	GND	GND	_	_
E6	VCCIO2	2	_	_
E7	PB16B	2	PCLKC2 0	Comp_OF_PB16A
E8	PB12B	2	GPLLC2_0	Comp_OF_PB12A
F1	PB53	0	SPI_SCK/MCK/SDA	
F2	PB50	0	MOSI	_
	. 550	1	111001	

ctfBGA80 Pinout (Continued)

Pin Number	Pin Function	Bank	Dual Function	Differential
F4	VCCIO0	0	_	_
F5	VCCIO1	1	_	_
F6	VCCIO2	2	_	_
F7	VCCIO2	2	_	_
F9	PB6A	2	GR_PCLK2_0	True_OF_PB6B
F10	PB6B	2	_	Comp_OF_PB6A
G1	PB50	0	MOSI	_
G2	VSS	GND	_	_
G4	VCCIO1	1	_	_
G5	VSS	GND	_	_
G6	VCCGPLL	VCCGPLL	_	_
G7	VSSGPLL	GND	_	_
G9	PB2A	2	_	True_OF_PB2B
G10	PB2B	2	_	Comp_OF_PB2A
H1	PB52	0	SPI_SS/CSN/SCL	_
H2	CRESET_B	0	_	_
Н9	PB2D	2	MIPI_CLKC2_0	Comp_OF_PB2C
H10	PB2C	2	MIPI_CLKT2_0	True_OF_PB2D
J1	PB53	0	SPI_SCK/MCK/SDA	_
J2	PB49	0	PMU_WKUPN/CDONE	_
J3	PB43D	1	_	Comp_OF_PB43C
J4	PB38D	1	_	Comp_OF_PB38C
J5	PB34D	1	MIPI_CLKC1_0	Comp_OF_PB34C
J6	PB29D	1	PCLKC1_1	Comp_OF_PB29C
J7	PB29A	1	PCLKT1_0	True_OF_PB29B
18	PB16D	2	PCLKC2_1	Comp_OF_PB16C
J9	PB6D	2	_	Comp_OF_PB6C
J10	PB6C	2	_	True_OF_PB6D
K1	PB51	0	MISO	_
K2	PB47	0	PCLKTO_0/USER_SDA	_
К3	PB43C	1	_	True_OF_PB43D
K4	PB38C	1	_	True_OF_PB38D
K5	PB34C	1	MIPI_CLKT1_0	True_OF_PB34D
К6	PB29C	1	PCLKT1_1	True_OF_PB29D
K7	PB29B	1	PCLKC1_0	Comp_OF_PB29A
К8	PB16C	2	PCLKT2_1	True_OF_PB16D
К9	PB12D	2		Comp_OF_PB12C
K10	PB12C	2	_	True_OF_PB12D

6.4. csfBGA81 Pinout

Pin Number	Pin Function	Bank	Dual Function	Differential	
A1	DPHY1_CKP	DPHY1	_	True_OF_DPHY1_CKN	
A2	DPHY1_CKN	DPHY1	_	Comp_OF_DPHY1_CKP	
А3	DPHY1_DP1	DPHY1	_	True_OF_DPHY1_DN1	
A4	DPHY1_DP3	DPHY1	_	True_OF_DPHY1_DN3	
A5	VCCA_DPHY1	DPHY1	_	_	
A6	DPHY0_DN2	DPHY0	_	Comp_OF_DPHY0_DP2	
A7	DPHY0_DN0	DPHY0	_	Comp_OF_DPHY0_DP0	
A8	DPHY0_CKP	DPHY0	_	True_OF_DPHY0_CKN	
A9	DPHY0_CKN	DPHY0	_	Comp_OF_DPHY0_CKP	
B1	DPHY1_DP0	DPHY1	_	True_OF_DPHY1_DN0	
B2	DPHY1_DN0	DPHY1	_	Comp_OF_DPHY1_DP0	
В3	DPHY1_DN1	DPHY1	_	Comp_OF_DPHY1_DP1	
B4	DPHY1_DN3	DPHY1	_	Comp_OF_DPHY1_DP3	
B5	GNDPLL_DPHYX	GND	_	_	
В6	DPHY0_DP2	DPHY0	_	True_OF_DPHY0_DN2	
В7	DPHY0_DP0	DPHY0	_	True_OF_DPHY0_DN0	
В8	DPHY0_DP1	DPHY0	_	True_OF_DPHY0_DN1	
В9	DPHY0_DN1	DPHY0	_	Comp_OF_DPHY0_DP1	
C1	DPHY1_DP2	DPHY1	_	True_OF_DPHY1_DN2	
C2	DPHY1_DN2	DPHY1	_	Comp_OF_DPHY1_DP2	
C3	GNDA_DPHY1	DPHY1	_	_	
C4	VCCPLL_DPHY1	DPHY1	_	_	
C5	GND	GND	_	_	
C6	VCCPLL_DPHY0	DPHY0	_	_	
C7	GNDA DPHY0	DPHY0	_	_	
C8	DPHY0 DP3	DPHY0	_	True_OF_DPHY0_DN3	
C9	DPHY0_DN3	DPHY0	_	Comp_OF_DPHY0_DP3	
D1	PB34A	1	GR_PCLK1_0	True_OF_PB34B	
D2	PB34B	1		Comp_OF_PB34A	
D3	VCCA_DPHY1	DPHY1	_		
D4	GND	GND	_	_	
D5	VCCAUX	VCCAUX	_	_	
D6	GND	GND	_	_	
D7	VCCA_DPHY0	DPHY0	_	_	
D8	PB16B	2	PCLKC2_0	Comp_OF_PB16A	
D9	PB16A	2	PCLKT2_0	True_OF_PB16B	
E1	PB38A	1		True_OF_PB38B	
E2	PB38B	1	_	Comp OF PB38A	
E3	VCC	VCC	_	——————————————————————————————————————	
E4	VCC	VCC	_	_	
E5	GND	GND	_	_	
E6	VCCIO2	2		_	

6.7. Pin Information Summary

Die Tone	CrossLink					
Pin Type	WLCSP36	ucfBGA64	ctfBGA80	csfBGA81		
General Purpose I/O per Bank				•		
Bank 0	7	6	7	7		
Bank 1	0	10	14	14		
Bank 2	10	12	16	16		
Total General Purpose Single Ended IO	17	28	37	37		
Differential I/O pairs per Bank						
Bank 0	0	0	0	0		
Bank 1	0	5	7	7		
Bank 2	5	6	8	8		
Total General Purpose Differential I/O pairs	5	11	15	15		
D-PHY	1	2	2	2		
D-PHY Clock/Data	10	20	20	20		
D-PHY VCC	1	2	4	4		
D-PHY GND	1	1	3	3		
VCC/VCCIOx/VCCAUX/VCCGPLL	4	8	9	10		
GND	3	4	9	9		
CRESETB	1	1	1	1		
Total Balls	36	64	80	81		

7TH Floor, 111 SW 5th Avenue Portland, OR 97204, USA T 503.268.8000 www.latticesemi.com