

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	F ² MC-8FX
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SIO, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb95f168japmc-ge1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(Continued)

Pa	Part number rameter	MB95168MA	MB95F168MA	MB95F168NA	MB95F168JA				
	LCD controller (LCDC)	SEG output : 32 (Max) LCD drive power supply (bias) pin : 4 32 SEG × 4 COM : 128 pixels can be displayed. Duty LCD mode Operable in LCD standby mode With blinking function Built-in division resistance for LCD drive							
unctions	8/16-bit compound timer (2 channels)	Each channel of the timer can be used as "8-bit timer × 2 channels" or "16-bit timer >mpound nannels) Built-in timer function, PWC function, PWM function, capture function, and squa wave form output Count clock : 7 internal clocks and external clock can be selected.							
ripheral f	16-bit PPG (1 channel)	PWM mode or one-shot mode can be selected. Counter operating clock : Eight selectable clock sources Support for external trigger start							
\u03c9 Each channel of the PPG can be used as "8-bit PPG × 2 channels" or "16-bit × 1 channel". Counter operating clock : Eight selectable clock sources									
	Watch counter	Count clock : Four selectable clock sources (125 ms, 250 ms, 500 ms, or 1 s) Counter value can be set from 0 to 63. (Capable of counting for 1 minute when selecting clock source 1 second and setting counter value to 60)							
	Watch prescaler (1 channel)	4 selectable interval	times (125 ms, 250	ms, 500 ms, or 1 s)					
	External interrupt (8 channels)	Interrupt by edge de Can be used to reco	etection (rising, falling	, or both edges can odes.	be selected.)				
Fla	sh memory								
Standby mode Sleep, stop, watch, and time-base timer									

* : For details of option, refer to "■ MASK OPTION".

Note : Part number of evaluation product in MB95160MA series is MB95FV100D-103. When using it, the MCU board (MB2146-303A-E) is required.

■ DIFFERENCES AMONG PRODUCTS AND NOTES ON SELECTING PRODUCTS

• Notes on Using Evaluation Products

The evaluation product has not only the functions of the MB95160MA series but also those of other products to support software development for multiple series and models of the F²MC-8FX family. The I/O addresses for peripheral resources not used by the MB95160MA series are therefore access-barred. Read/write access to these access-barred addresses may cause peripheral resources supposed to be unused to operate, resulting in unexpected malfunctions of hardware or software.

Particularly, do not use word access to odd numbered byte address in the prohibited areas (If these access are used, the address may be read or written unexpectedly).

Also, as the read values of prohibited addresses on the evaluation product are different to the values on the Flash memory products or Mask ROM products, do not use these values in the program.

The functions corresponding to certain bits in single-byte registers may not be supported depending on the type of Flash memory products and Mask ROM products. However, reading or writing to these bits will not cause malfunction of the hardware. Also, the products with either evaluation, Flash memory or Mask ROM are designed to have the same operation in software and hardware.

• Difference of Memory Spaces

If the amount of memory on the evaluation product is different from that of the Flash memory and Mask ROM products, carefully check the difference in the amount of memory from the model to be actually used when developing software.

For details of memory space, refer to "■ CPU CORE".

Current Consumption

Current in Flash memory products is consumed more than Mask ROM products. For details of current consumption, refer to "ELECTRICAL CHARACTERISTICS".

Package

For details of information on each package, refer to "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSIONS".

• Operating voltage

The operating voltage is different among the evaluation, Flash memory products and Mask ROM products. For details of operating voltage, refer to "■ ELECTRICAL CHARACTERISTICS"

■ PIN DESCRIPTION

Pin no.	Pin name	I/O circuit type*1	Function			
1	AVcc		A/D converter power supply pin			
2	AVR	—	A/D converter reference input pin			
3	P14/PPG0		General-purpose I/O port. The pin is shared with 16-bit PPG ch.0 output.			
4	P13/TRG0/ ADTG	н	General-purpose I/O port. The pin is shared with 16-bit PPG ch.0 trigger input (TRG0) and A/D converter trigger input (ADTG) .			
5	P12/UCK0		General-purpose I/O port. The pin is shared with UART/SIO ch.0 clock I/O.			
6	P11/UO0		General-purpose I/O port. The pin is shared with UART/SIO ch.0 data output.			
7	P10/UI0	G	General-purpose I/O port. The pin is shared with UART/SIO ch.0 data input.			
8	P24/EC0/ SDA0		General-purpose I/O port. The pin is shared with 8/16-bit compound timer ch.0 clock input (EC0) and I ² C ch.0 data I/O (SDA0) .			
9	9 P23/T001/ SCL0		General-purpose I/O port. The pin is shared with 8/16-bit compound timer ch.0 output (TO01) and I ² C ch.0 clock I/O (SCL0).			
10	P22/TO00		General-purpose I/O port. The pin is shared with 8/16-bit compound timer ch.0 output.			
11	P21/PPG01	Н	General-purpose I/O port. The pin is shared with 8/16-bit PPG ch.0 output.			
12	P20/PPG00		General-purpose I/O port. The pin is shared with 8/16-bit PPG ch.0 output.			
13	MOD	В	Operating mode designation pin			
14	X0	^	Main clock ascillation nins			
15	X1		Main clock oscillation pins			
16	Vss	—	Power supply pin (GND)			
17	Vcc	—	Power supply pin			
18	С	—	Capacitor connection pin			
19	X1A	Δ	Sub clock oscillation nins (32 kHz)			
20	X0A		Sub clock oscillation pins (32 kirz)			
21	RST	B'	Reset pin			
22	P90/V3					
23	P91/V2	B	General-purpose I/O ports.			
24	P92/V1] '`	The pins are shared with power supply pin for LCDC drive.			
25	P93/V0					

• Mode Pin (MOD)

Connect the MOD pin directly to $V\mbox{cc}$ or $V\mbox{ss}.$

To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the MOD pin to V_{CC} or V_{SS} and to provide a low-impedance connection.

• C Pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of $V_{\rm CC}$ pin must have a capacitance value higher than Cs. For connection of smoothing capacitor Cs, refer to the diagram below.

• Analog Power Supply

Always set the same potential to AVcc and Vcc pins. When Vcc > AVcc, the current may flow through the AN00 to AN07 pins.

• Treatment of Power Supply Pins on A/D Converter

Connect to be $AV_{CC} = V_{CC}$ and $AV_{SS} = AVR = V_{SS}$ even if the A/D converter is not in use.

Noise riding on the AV_{cc} pin may cause accuracy degradation. So, connect approx. 0.1 μ F ceramic capacitor as a bypass capacitor between AV_{cc} and AV_{ss} pins in the vicinity of this device.

The RP indicates the address of the register bank currently being used. The relationship between the content of RP and the real address conforms to the conversion rule illustrated below:

Rule for Conversion of Actual Addresses in the General-purpose Register Area																
										RP	upp	er		OP c	ode	lower
	"0"	"0"	"0"	"0"	"0"	"0"	"0"	"1"	R4	R3	R2	R1	R0	b2	b1	b0
	•	¥	¥	¥	¥	¥	¥	¥	+	¥	¥	¥	¥	¥	¥	+
Generated address	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0

The DP specifies the area for mapping instructions (16 different instructions such as MOV A, dir) using direct addresses to 0080^H to 00FF^H.

Direct bank pointer (DP2 to DP0)	Specified address area	Mapping area		
XXX _B (no effect to mapping)	0000н to 007Fн	0000н to 007Fн (without mapping)		
000₀ (initial value)		0080н to 00FFн (without mapping)		
001в		0100н to 017Fн		
010в		0180н to 01FFн		
011в		0200н to 027Fн		
100в		0280н to 02FFн		
101в		0300н to 037Fн		
110в		0380н to 03FFн		
111в		0400н to 047Fн		

The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits that control CPU operations at interrupt.

- H flag : Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. This flag is for decimal adjustment instructions.
- I flag : Interrupt is enabled when this flag is set to "1". Interrupt is disabled when this flag is set to "0". The flag is set to "0" when reset.
- IL1, IL0 : Indicates the level of the interrupt currently enabled. Processes an interrupt only if its request level is higher than the value indicated by these bits.

IL1	IL0	Interrupt level	Priority
0	0	0	High
0	1	1	≜
1	0	2	
1	1	3	Low (no interruption)

- N flag : Set to "1" if the MSB is set to "1" as the result of an arithmetic operation. Cleared to "0" when the bit is set to "0".
- Z flag : Set to "1" when an arithmetic operation results in "0". Cleared to "0" otherwise.
- V flag : Set to "1" if the complement on 2 overflows as a result of an arithmetic operation. Cleared to "0" otherwise.
- C flag : Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

Address	Register abbreviation	Register name	R/W	Initial value
0059н	TDR0	UART/SIO serial output data register ch.0	R/W	0000000в
005 А н	RDR0	UART/SIO serial input data register ch.0	R	0000000в
005Вн to 005Fн	_	(Disabled)	_	_
0060н	IBCR00	I ² C bus control register 0 ch.0	R/W	0000000в
0061 н	IBCR10	I ² C bus control register 1 ch.0	R/W	0000000в
0062н	IBSR0	I ² C bus status register ch.0	R	0000000в
0063н	IDDR0	I ² C data register ch.0	R/W	0000000в
0064н	IAAR0	I ² C address register ch.0	R/W	0000000в
0065н	ICCR0	I ² C clock control register ch.0	R/W	0000000в
0066н to 006Вн	_	(Disabled)	_	_
006Сн	ADC1	8/10-bit A/D converter control register 1	R/W	0000000в
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	0000000в
006Eн	ADDH	8/10-bit A/D converter data register (upper byte)	R/W	0000000в
006Fн	ADDL	8/10-bit A/D converter data register (lower byte)	R/W	0000000в
0070н	WCSR	Watch counter status register	R/W	0000000в
0071 н		(Disabled)		
0072н	FSR	Flash memory status register	R/W	000Х0000в
0073н	SWRE0	Flash memory sector writing control register 0	R/W	0000000в
0074н	SWRE1	Flash memory sector writing control register 1	R/W	0000000в
0075н		(Disabled)	_	
0076н	WREN	Wild register address compare enable register	R/W	0000000в
0077н	WROR	Wild register data test setting register	R/W	0000000в
0078 н	_	Register bank pointer (RP) , Mirror of direct bank pointer (DP)		—
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	11111111в
007Сн	ILR3	Interrupt level setting register 3	R/W	11111111в
007Dн	ILR4	Interrupt level setting register 4	R/W	11111111в
007Eн	ILR5	Interrupt level setting register 5	R/W	11111111в
007Fн		(Disabled)		
0F80н	WRARH0	Wild register address setting register (upper byte) ch.0	R/W	0000000в
				(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0FAAH	PDCRH0	16-bit PPG down counter register (upper byte) ch.0	R	0000000в
0FABн	PDCRL0	16-bit PPG down counter register (lower byte) ch.0	R	0000000в
0FACH	PCSRH0	16-bit PPG cycle setting buffer register (upper byte) ch.0	R/W	11111111в
0FADH	PCSRL0	16-bit PPG cycle setting buffer register (lower byte) ch.0	R/W	11111111в
0FAEH	PDUTH0	16-bit PPG duty setting buffer register (upper byte) ch.0	R/W	11111111в
0FAFH	PDUTL0	16-bit PPG duty setting buffer register (lower byte) ch.0	R/W	11111111 _В
0FB0н to 0FBBн		(Disabled)	_	
0FBCH	BGR1	LIN-UART baud rate generator register 1	R/W	0000000в
0FBDH	BGR0	LIN-UART baud rate generator register 0	R/W	0000000в
0FBEн	PSSR0	UART/SIO dedicated baud rate generator prescaler se- lecting register ch.0	R/W	0000000в
0FBFн	BRSR0	UART/SIO dedicated baud rate generator setting register ch.0	R/W	0000000в
0FC0н to 0FC2н		(Disabled)		
0FC3н	AIDRL	A/D input disable register (lower byte)	R/W	0000000в
0FC4н	LCDCC	LCDC control register	R/W	00010000в
0FC5н	LCDCE1	LCDC enable register 1	R/W	00110000в
0FC6н	LCDCE2	LCDC enable register 2	R/W	0000000в
0FC7н	LCDCE3	LCDC enable register 3	R/W	0000000в
0FC8н	LCDCE4	LCDC enable register 4	R/W	0000000в
0FC9н	LCDCE5	LCDC enable register 5	R/W	0000000в
0FCAH		(Disabled)		
0FCBH	LCDCB1	LCDC blinking setting register 1	R/W	0000000в
0FCCH	LCDCB2	LCDC blinking setting register 2	R/W	0000000в
0FCDн to 0FDCн	LCDRAM	LCDC display RAM		0000000в
0FDDн to 0FE2н	_	(Disabled)		
0FE3H	WCDR	Watch counter data register	R/W	00111111в

3. DC Characteristics

	Svm-			Va				,
Parameter	bol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
	VIH1	P10, P67	*1	0.7 Vcc		Vcc + 0.3	V	When selecting CMOS input level
	VIH2	P23, P24	*1	0.7 Vcc		Vss + 5.5	V	
"H" level input voltage	VIHA	P00 to P07, P10 to P14, P20 to P22, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7		0.8 Vcc		Vcc + 0.3	v	Port inputs if Auto- motive input levels are selected
	VIHS1	P00 to P07, P10 to P14, P20 to P22, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7	*1	0.8 Vcc		Vcc + 0.3	v	Hysteresis input
	VIHS2	P23, P24	*1	0.8 Vcc		Vss + 5.5	V	
	VIHM	RST, MOD		0.8 Vcc	—	Vcc + 0.3	V	
	Vı∟	P10,P23, P24,P67	*1	Vss – 0.3	_	0.3 Vcc	V	Hysteresis input (When selecting CMOS input level)
"L" level input voltage	Vila	P00 to P07, P10 to P14, P20 to P24, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7		Vss - 0.3		0.5 Vcc	v	Port inputs if Automotive input levels are selected
Voltage	Vils	P00 to P07, P10 to P14, P20 to P24, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7		Vss – 0.3		0.2 Vcc	v	Hysteresis input
	VILM	RST, MOD		$V_{\text{SS}}-0.3$		0.3 Vcc	V	Hysteresis input
"H" level output voltage	Vон	All output pins	Iон = - 4.0 mA	$V_{\text{cc}}-0.5$			V	
"L" level output voltage	Vol	RST ^{*2} , All output pins	$I_{OL} = 4.0 \text{ mA}$			0.4	v	

 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, T_A = -40 \circ C to + 85 \circ C)$

Demonstra	Svm-	Diaman			Value			Bemarka
Parameter	bol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
	IccL		$F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Sub clock mode (divided by 2) $T_{A} = +25 \text{ °C}$		45	100	μA	
	Iccls		$F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Sub sleep mode (divided by 2) $T_{A} = +25 \text{ °C}$		10	81	μA	
	Ісст		$F_{CL} = 32 \text{ kHz}$ Watch mode Main stop mode $T_A = +25 \text{ °C}$	_	4.6	27.0	μA	
	Іссмец	Vcc	Fсн = 4 MHz Fмр = 10 MHz	_	9.3	12.5	mA	Flash memory product
		(External clock operation)	Main PLL mode (multiplied by 2.5)		— 7 9.5	9.5	mA	Mask ROM product
Power supply current*3	ICOMPLE		Fсн = 6.4 MHz Fмр = 16 MHz		14.9	20.0	mA	Flash memory product
			Main PLL mode (multiplied by 2.5)		11.2	15.2	mA	Mask ROM product
	ICCSPLL		$\label{eq:Fcl} \begin{aligned} F_{CL} &= 32 \text{ kHz} \\ F_{MPL} &= 128 \text{ kHz} \\ \text{Sub PLL mode} \\ (multiplied by 4) , \\ T_{A} &= +25 \ ^{\circ}\text{C} \end{aligned}$	_	160	400	μA	
	Істѕ		$F_{CH} = 10 \text{ MHz}$ Time-base timer mode $T_A = +25 \text{ °C}$		0.15	1.10	mA	
	Іссн		Sub stop mode $T_A = +25 \ ^{\circ}C$	_	5	20	μA	
	la		$F_{CH} = 16 \text{ MHz}$ At operating of A/D conversion		2.4	4.7	mA	
	Іан	AVcc	$F_{CH} = 16 \text{ MHz}$ At stopping of A/D conversion $T_A = +25 \text{ °C}$		1	5	μA	
LCD internal division resistance	RLCD		Between V3 and Vss		300		kΩ	
COM0 to COM3 output impedance	Rvсом	COM0 to COM3	V1 to V3 – 5 0 V			5	kΩ	
SEG00 to SEG31 output impedance	Rvseg	SEG00 to SEG31				7	kΩ	

(Vcc = 5.0 V \pm 10%, Vss = 0.0 V, T_A = - 40 °C to + 85 °C)

(Continued)

Paramotor	Sym-	Bin namo	Conditions	Value		Value		Unit	Pomarka
Falameter	bol	Finnanie	Conditions	Min	Тур	Max		nemarks	
LCD leak current	ILCDL	V0 to V3, COM0 to COM3 SEG00 to SEG31	_	- 1		+ 1	μΑ		

*1: The input level of P10, P23, P24 and P67 can be switched to either the "CMOS input level" or "hysteresis input level". The switching of the input level can be set by the input level selection register (ILSR).

- *2 : Product without clock supervisor only
- *3: The power-supply current is determined by the external clock. When both low voltage detection option and clock supervisor option are selected, the power-supply current will be a value of adding current consumption of the low voltage detection circuit (ILVD) and current consumption of built-in CR oscillator (Icsv) to the specified value.
 - Refer to "4. AC Characteristics (1) Clock Timing" for FCH and FCL.
 - Refer to "4. AC Characteristics (2) Source Clock/Machine Clock" for FMP and FMPL.

(3) External Reset

				(Vcc = 5.0 V \pm 10%, Vs	s = 0.0	V, T _A =	- 40 °C to $+$ 85 °C)
Paramotor	Sym-	Pin	Condi-	Value	Value		Pomarka
Falameter	bol	name	tions	Min	Max	Unit	nemarks
				2 tмськ*1		ns	At normal operating
RST "L" level pulse width	t rstl	RST		Oscillation time of oscillator*2 + 100	_	μs	At stop mode, sub clock mode, sub sleep mode, and watch mode
			100		μs	At time-base timer mode	

*1 : Refer to " (2) Source Clock/Machine Clock" for tmclk.

*2 : Oscillation time of oscillator is the time that the amplitude reaches 90%. In the crystal oscillator, the oscillation time is between several ms and tens of ms. In ceramic oscillators, the oscillation time is between hundreds of μ s and several ms. In the external clock, the oscillation time is 0 ms.

(5) Peripheral Input Timing

	-	``	,	,		,
Parameter	Symbol	Pin name	Conditions	Value		Unit
			Conditions	Min	Мах	Onit
Peripheral input "H" pulse width	tılıн	INT00 to INT07,		2 t мськ*	_	ns
Peripheral input "L" pulse width	tініL	EC0, EC1, TRG0/ADTG		2 t мськ*		ns

 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, T_A = -40 \circ C to + 85 \circ C)$

*: Refer to " (2) Source Clock/Machine Clock" for tMCLK.

(8) I²C Timing

$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ AV}_{SS} = \text{V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$								
	Symbol	Pin name	Conditions					
Parameter				Standard-mode		Fast-mode		Unit
				Min	Max	Min	Max	
SCL clock frequency	fsc∟	SCL0		0	100	0	400	kHz
(Repeat) Start condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thd;sta	SCL0 SDA0		4.0		0.6		μs
SCL clock "L" width	t∟ow	SCL0	B = 1 7 kO	4.7		1.3		μs
SCL clock "H" width	tніgн	SCL0		4.0		0.6	_	μs
(Repeat) Start condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sta	SCL0 SDA0		4.7		0.6		μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thd;dat	SCL0 SDA0	$C = 50 \text{ pF}^{*1}$	0	3.45* ²	0	0.9* ³	μs
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsu;dat	SCL0 SDA0		0.25*4		0.1*4	_	μs
Stop condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsu;sto	SCL0 SDA0		4.0		0.6		μs
Bus free time between stop condition and start condition	tbur	SCL0 SDA0		4.7		1.3		μs

*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.

*2 : The maximum thd;DAT have only to be met if the device dose not stretch the "L" width (tLOW) of the SCL signal.

*3 : A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement $t_{SU;DAT} \ge 250$ ns must then be met.

*4 : Refer to " • Note of SDA and SCL set-up time".

The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor.

Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.

(Continued)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } + 85 \text{ }^{\circ}\text{C})$

Doromotor	Sym-	Pin	Condi-	Valu	e * ²	llmit	Domorko	
Parameter	bol	name	tions	Min	Ain Max		Remarks	
Stop condition detection	t su;sто	SCL0 SDA0		2 tмськ – 20	_	ns	Undetected when 1 tmcLk is used at reception	
Restart condition detection condition	tsu;sta	SCL0 SDA0		2 tмськ – 20	_	ns	Undetected when 1 tмс∟к is used at reception	
Bus free time	tBUF	F SCL0 SDA0		2 тмськ – 20	_	ns	At reception	
Data hold time	t hd;dat	SCL0 SDA0	R = 1.7 kΩ,	2 тмськ – 20	_	ns	At slave transmission mode	
Data setup time	tsu;dat	SCL0 SDA0 SCL0 SDA0 SCL0 SDA0		t∟ow – 3 tмс∟к – 20	_	ns	At slave transmission mode	
Data hold time	thd;dat			0	_	ns	At reception	
Data setup time	tsu;dat			tмськ — 20	_	ns	At reception	
SDA↓→SCL↑ (at wakeup function)	twake- UP	SCL0 SDA0		Oscillation stabilization wait time + 2 tмськ – 20		ns		

*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.

*2 : •Refer to " (2) Source Clock/Machine Clock" for tmcLK.

- m is CS4 bit and CS3 bit (bit 4 and bit 3) of I²C clock control register (ICCR) .
- n is CS2 bit to CS0 bit (bit 2 to bit 0) of I²C clock control register (ICCR) .
- Actual timing of I²C is determined by m and n values set by the machine clock (t_{MCLK}) and CS4 to CS0 of ICCR0 register.

FUITSU

 Standard-mode : m and n can be set at the range : 0.9 MHz < t_{MCLK} (machine clock) < 10 MHz.
 Setting of m and n determines the machine clock that can be used below.

 $(m, n) = (1, 8) : 0.9 \text{ MHz} < t_{MCLK} \le 1 \text{ MHz}$

$$(m,\,n) \;=\; (1,\,22)\;,\;\; (5,\,4)\;,\;\; (6,\,4)\;,\;\; (7,\,4)\;,\;\; (8,\,4)\;\; : 0.9\;MHz < t_{\text{MCLK}} \leq 2\;MHz$$

- $(m,\,n) \;=\; (1,\,38)\;,\;\; (5,\,8)\;,\;\; (6,\,8)\;,\;\; (7,\,8)\;,\;\; (8,\,8)\;\; : 0.9\;MHz < t_{\text{MCLK}} \leq 4\;MHz$
- $(m, n) = (1, 98) : 0.9 \text{ MHz} < t_{MCLK} \le 10 \text{ MHz}$
- Fast-mode :

m and n can be set at the range : 3.3 MHz < t_{MCLK} (machine clock) < 10 MHz. Setting of m and n determines the machine clock that can be used below.

 $(m, n) = (1, 8) : 3.3 \text{ MHz} < t_{MCLK} \le 4 \text{ MHz}$

 $(m,\,n) \;=\; (1,\,22)\;,\;\; (5,\,4): 3.3\;MHz < t_{\text{MCLK}} \leq 8\;MHz$

 $(m, n) = (6, 4) : 3.3 \text{ MHz} < t_{MCLK} \le 10 \text{ MHz}$

(9) Low Voltage Detection

(Vss = 0.0 V, $T_{\text{A}} = -40 \ ^{\circ}\text{C}$ to $\ + 85 \ ^{\circ}\text{C}$)

Daramatar	Sym-	Condi- tions	Value			Unit	Bemarks
Falameter	bol		Min	Тур	Max	Unit	nemarks
Release voltage	V _{DL+}		2.52	2.70	2.88	V	At power-supply rise
Detection voltage	Vdl-		2.42	2.60	2.78	V	At power-supply fall
Hysteresis width	VHYS		70	100		mV	
Power-supply start voltage	Voff			_	2.3	V	
Power-supply end voltage	Von		4.9		_	V	
Power-supply voltage change time (at power supply rise)	tr		0.3			μs	Slope of power supply that reset release signal generates
		_		3000		μs	Slope of power supply that reset release signal generates within rating (V _{DL+})
Power-supply voltage			300		_	μs	Slope of power supply that reset detection signal generates
change time (at power supply fall)	tr			300		μs	Slope of power supply that reset detection signal generates within rating (V _{DL} .)
Reset release delay time	td1				400	μs	
Reset detection delay time	t _{d2}				30	μs	
Current consumption	ILVD			38	50	μA	Current consumption of low voltage detection circuit only

(3) Definition of A/D Converter Terms

- Resolution
 The level of analog variation that can be distinguished by the A/D converter.
 When the number of bits is 10, analog voltage can be divided into 2¹⁰ = 1024.
- Linearity error (unit : LSB)
 The deviation between the value along a straight line connecting the zero transition point
 ("00 0000 0000" ← → "00 0000 0001") of a device and the full-scale transition point
 ("11 1111 1111" ← → "11 1111 1110") compared with the actual conversion values obtained.
- Differential linear error (Unit : LSB) Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
- Total error (unit: LSB)

Difference between actual and theoretical values, caused by a zero transition error, full-scale transition error, linearity error, quantum error, and noise.

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 *http://jp.fujitsu.com/fsl/en/*

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fsp/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department