

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	F ² MC-8FX
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SIO, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/fujitsu/mb95f168japmc1-ge1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-bit Microcontrollers

CMOS

F²MC-8FX MB95160MA Series

MB95168MA/F168MA/F168NA/F168JA/ MB95FV100D-103

DESCRIPTION

The MB95160MA series is general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions.

Note : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURE

• F²MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instruction
- Bit manipulation instructions etc.
- Clock
 - Main clock
 - Main PLL clock
 - Sub clock
 - Sub PLL clock

(Continued)

For the information for microcontroller supports, see the following web site.

This web site includes the **"Customer Design Review Supplement"** which provides the latest cautions on system development and the minimal requirements to be checked to prevent problems before the system development.

http://edevice.fujitsu.com/micom/en-support/

- Timer
 - 8/16-bit compound timer $\times\,2$ channels
 - Can be used to interval timer, PWC timer, PWM timer and input capture.
 - 8/16-bit PPG × 2 channels
 - 16-bit PPG \times 1 channel
 - Time-base timer \times 1 channel
 - Watch prescaler \times 1 channel
- LIN-UART \times 1 channel
 - LIN function, clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
 - Full duplex double buffer
- \bullet UART/SIO \times 1 channel
 - Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
 - Full duplex double buffer
- $I^2C \times 1$ channel
 - Built-in wake-up function
- \bullet External interrupt $\times\,8$ channels
 - Interrupt by edge detection (rising, falling, or both edges can be selected)
 - Can be used to recover from low-power consumption (standby) modes.
- \bullet 8/10-bit A/D converter \times 8 channels
 - 8-bit or 10-bit resolution can be selected.
- LCD controller (LCDC)
 - 32 SEG $\times\,4$ COM (Max 128 pixels)
 - With blinking function
- Low-power consumption (standby) mode
 - Stop mode
 - Sleep mode
 - Watch mode
 - Time-base timer mode
- I/O port
 - The number of maximum ports : Max 52
 - Port configuration
 - General-purpose I/O ports (N-ch open drain) : 2 ports
 - General-purpose I/O ports (CMOS) : 50 ports
- Programmable input voltage levels of port
- Automotive input level / CMOS input level / hysteresis input level
- Flash memory security function (Flash memory product only)
 - Protects the content of Flash memory

■ PRODUCT LINEUP

Par	Part number rameter	MB95168MA	MB95F168MA	MB95F168NA	MB95F168JA			
Тур	Type Mask ROM Flash memory product							
RO	M capacity		60 Kbytes					
RAI	RAM capacity 2 Kbytes							
Res	set output	Yes/No selectable	Y	es	No			
	Clock system		Dual	clock				
Option*	Low voltage detection reset	Yes/No selectable	No	Ye	es			
0	Clock supervisor	Yes/No selectable	Ν	lo	Yes			
CPI	U functions	Number of basic instructions: 136Instruction bit length: 8 bitsInstruction length: 1 to 3 bytesData bit length: 1, 8, and 16 bitsMinimum instruction execution time: 61.5 ns (at machine clock frequency 16.25 MHz)Interrupt processing time: 0.6 µs (at machine clock frequency 16.25 MHz)						
	Ports (Max 52 ports)	General-purpose I/O port (N-ch open drain) : 2 ports General-purpose I/O port (CMOS) : 50 ports Programmable input voltage levels of port : Automotive input level / CMOS input level / hysteresis input level						
	Time-base timer (1 channel)	Interrupt cycle : 0.5	ms, 2.1 ms, 8.2 ms, 3	32.8 ms (at main osci	llation clock 4 MHz)			
	Watchdog timer	Reset generated cy At main oscillation of At sub oscillation clo	lock 10 MHz	: dual clock product) :	Min 105 ms Min 250 ms			
	Wild register	Capable of replacing	g 3 bytes of ROM da	ıta				
Peripheral functions	l ² C (1 channel)	Master/slave sending and receiving Bus error function and arbitration function Detecting transmitting direction function Start condition repeated generation and detection functions Built-in wake-up function						
Periph	UART/SIO (1 channel)	Data transfer capable in UART/SIO Full duplex double buffer, variable data length (5/6/7/8-bit), built-in baud rate generator NRZ type transfer format, error detected function LSB-first or MSB-first can be selected. Clock synchronous (SIO) or clock asynchronous (UART) serial data transfer ca- pable						
	LIN-UART (1 channel)	Full duplex double b Capable of serial da	ouffer.	ange of communication ous or asynchronous or or LIN slave.				
	8/10-bit A/D converter (8 channels)	8-bit or 10-bit resolu	ition can be selected	l.				

■ OSCILLATION STABILIZATION WAIT TIME

The initial value of the main clock oscillation stabilization wait time is fixed to the maximum value. The maximum value is shown as follows.

Oscillation stabilization wait time	Remarks
(2 ¹⁴ -2) / F сн	Approx. 4.10 ms (at main oscillation clock 4 MHz)

■ PACKAGES AND CORRESPONDING PRODUCTS

Part number Package	MB95168MA	MB95F168MA/ F168NA/F168JA	MB95FV100D-103
FPT-64P-M23	0	0	×
FPT-64P-M24	0	0	×
BGA-224P-M08	×	×	0

 \bigcirc : Available

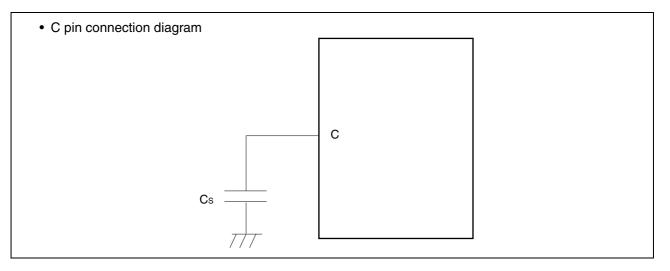
 \times : Unavailable

(Continued)

Pin no.	Pin name	I/O circuit type*1	Function		
55	P67/SEG23/ SIN	N	General-purpose I/O port. The pin is shared with LCDC SEG output (SEG23) and LIN-UART data input (SIN) .		
56	P07/INT07/ AN07/SEG24				
57	P06/INT06/ AN06/SEG25				
58	P05/INT05/ AN05/SEG26				
59	P04/INT04/ AN04/SEG27	_	F	F	General-purpose I/O ports. The pins are shared with external interrupt input (INT00 to INT07),
60	P03/INT03/ AN03/SEG28		A/D analog input (AN00 to AN07) and LCDC SEG output (SEG31 to SEG24) .		
61	P02/INT02/ AN02/SEG29				
62	P01/INT01/ AN01/SEG30				
63	P00/INT00/ AN00/SEG31				
64	AVss		Power supply pin (GND) of A/D converter		

*1 : Refer to "
I/O CIRCUIT TYPE" for details on the I/O circuit types.

*2 : When using P07 for segment output (SEG24) of LCDC, P95 can not be used as an output port. It can be used only as an input port.


• Mode Pin (MOD)

Connect the MOD pin directly to $V\mbox{cc}$ or $V\mbox{ss}.$

To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the MOD pin to V_{CC} or V_{SS} and to provide a low-impedance connection.

• C Pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of $V_{\rm CC}$ pin must have a capacitance value higher than Cs. For connection of smoothing capacitor Cs, refer to the diagram below.

• Analog Power Supply

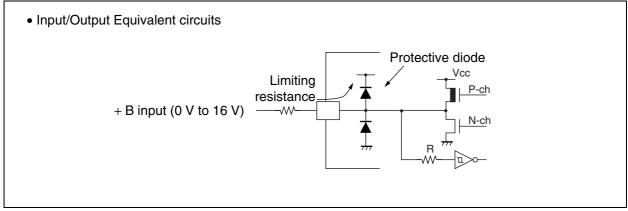
Always set the same potential to AV_{CC} and V_{CC} pins. When $V_{CC} > AV_{CC}$, the current may flow through the AN00 to AN07 pins.

• Treatment of Power Supply Pins on A/D Converter

Connect to be $AV_{CC} = V_{CC}$ and $AV_{SS} = AVR = V_{SS}$ even if the A/D converter is not in use.

Noise riding on the AV_{cc} pin may cause accuracy degradation. So, connect approx. 0.1 μ F ceramic capacitor as a bypass capacitor between AV_{cc} and AV_{ss} pins in the vicinity of this device.

■ I/O MAP


Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	0000000в
0001 н	DDR0	Port 0 direction register	R/W	0000000в
0002н	PDR1	Port 1 data register	R/W	0000000в
0003н	DDR1	Port 1 direction register	R/W	0000000в
0004н		(Disabled)	—	
0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	PLLC	PLL control register	R/W	0000000в
0007н	SYCC	System clock control register	R/W	1010Х011в
0008н	STBC	Standby control register	R/W	0000000в
0009н	RSRR	Reset factor register	R/W	XXXXXXXX
000Ан	TBTC	Time-base timer control register	R/W	0000000в
000Вн	WPCR	Watch prescaler control register	R/W	0000000в
000Сн	WDTC	Watchdog timer control register	R/W	0000000в
000Dн		(Disabled)	—	—
000Eн	PDR2	Port 2 data register	R/W	0000000в
000Fн	DDR2	Port 2 direction register	R/W	0000000в
0010⊦ to 0015⊦	_	(Disabled)	_	_
0016 H	PDR6	Port 6 data register	R/W	0000000в
0017 н	DDR6	Port 6 direction register	R/W	0000000в
0018⊦ to 001B⊦		(Disabled)	_	_
001С н	PDR9	Port 9 data register	R/W	0000000в
001D н	DDR9	Port 9 direction register	R/W	0000000в
001Е н	PDRA	Port A data register	R/W	0000000в
001Fн	DDRA	Port A direction register	R/W	0000000в
0020н	PDRB	Port B data register	R/W	0000000в
0021 н	DDRB	Port B direction register	R/W	0000000в
0022н	PDRC	Port C data register	R/W	0000000в
0023н	DDRC	Port C direction register	R/W	0000000в
0024н to 002Сн	_	(Disabled)	_	_

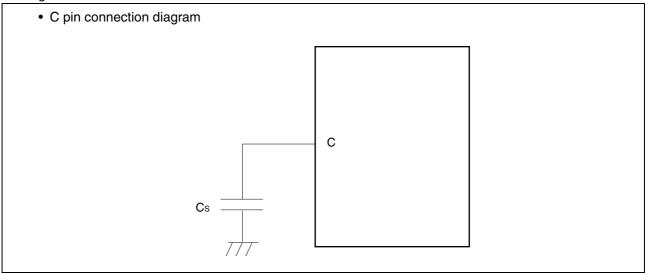
Address	Register abbreviation	Register name	R/W	Initial value
0059 н	TDR0	UART/SIO serial output data register ch.0	R/W	0000000в
005 А н	RDR0	UART/SIO serial input data register ch.0	R	0000000в
005Вн to 005Fн		(Disabled)		_
0060н	IBCR00	I ² C bus control register 0 ch.0	R/W	0000000в
0061 н	IBCR10	I ² C bus control register 1 ch.0	R/W	0000000в
0062н	IBSR0	I ² C bus status register ch.0	R	0000000в
0063н	IDDR0	l ² C data register ch.0	R/W	0000000в
0064н	IAAR0	I ² C address register ch.0	R/W	0000000в
0065н	ICCR0	I ² C clock control register ch.0	R/W	0000000в
0066н to 006Вн		(Disabled)		_
006Сн	ADC1	8/10-bit A/D converter control register 1	R/W	0000000в
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	0000000в
006Eн	ADDH	8/10-bit A/D converter data register (upper byte)	R/W	0000000в
006Fн	ADDL	8/10-bit A/D converter data register (lower byte)	R/W	0000000в
0070н	WCSR	Watch counter status register	R/W	0000000в
0071 н		(Disabled)		
0072н	FSR	Flash memory status register	R/W	000Х000в
0073н	SWRE0	Flash memory sector writing control register 0	R/W	0000000в
0074н	SWRE1	Flash memory sector writing control register 1	R/W	0000000в
0075н		(Disabled)		
0076н	WREN	Wild register address compare enable register	R/W	0000000в
0077н	WROR	Wild register data test setting register	R/W	0000000в
0078н		Register bank pointer (RP), Mirror of direct bank pointer (DP)		
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Bн	ILR2	Interrupt level setting register 2	R/W	11111111в
007Сн	ILR3	Interrupt level setting register 3	R/W	11111111
007Dн	ILR4	Interrupt level setting register 4	R/W	11111111в
007Е н	ILR5	Interrupt level setting register 5	R/W	11111111в
007F н		(Disabled)	_	
0F80н	WRARH0	Wild register address setting register (upper byte) ch.0	R/W	0000000в
	•			(Continued

(Continued)

- *1 : The parameter is based on $V_{\mbox{\scriptsize SS}}=0.0$ V.
- *2 : Apply equal potential to AVcc and Vcc. AVR should not exceed AVcc + 0.3 V.
- *3 : V0 to V3 should not exceed Vcc + 0.3 V.
- *4 : V_I and Vo should not exceed V_{CC} + 0.3 V. V_I must not exceed the rating voltage. However, if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.
- *5 : Applicable to pins :
 - P00 to P07, P10 to P14, P20 to P22,P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - + B signal is an input signal that exceeds V_{CC} voltage. The + B signal should always be applied a limiting resistance placed between the + B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the + B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this affects other devices.
 - Note that if the + B signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the + B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the + B input pin open.
 - •Note that analog system input/output pins other than the A/D input pins (LCD drive pins, etc.) cannot accept + B signal input.
 - Sample recommended circuits :

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions


(Vss = 0.0 V)

Parameter	Symbol Condi- Value		Unit	Remarks				
Falametei	Symbol	tions	Min	Max	Unit	neman	N 5	
			2.42*1,*2	5.5* ¹		In normal operating	Other than	
Power supply	Vcc,		2.3	5.5	v	Hold condition in STOP mode	MB95FV100D- 103	
voltage	AVcc		2.7	5.5	v	In normal operating	MB95FV100D-	
			2.3	5.5		Hold condition in STOP mode	103	
Power supply voltage for LCD	V0 to V3	—	Vss	Vcc	v	The range of liquid crystal power supply (The optimal value depends on liquid crystal display elements used.)		
A/D converter reference input voltage	AVR		4.0	AVcc	V			
Smoothing capacitor	Cs		0.1	1.0	μF	*3		
	Ta		- 40	+ 85	°C	Other than MB95FV10	0D-103	
Operating temperature	IA		+ 5	+35	°C	MB95FV100D-103		

*1 : The values vary with the operating frequency, machine clock or analog guarantee range.

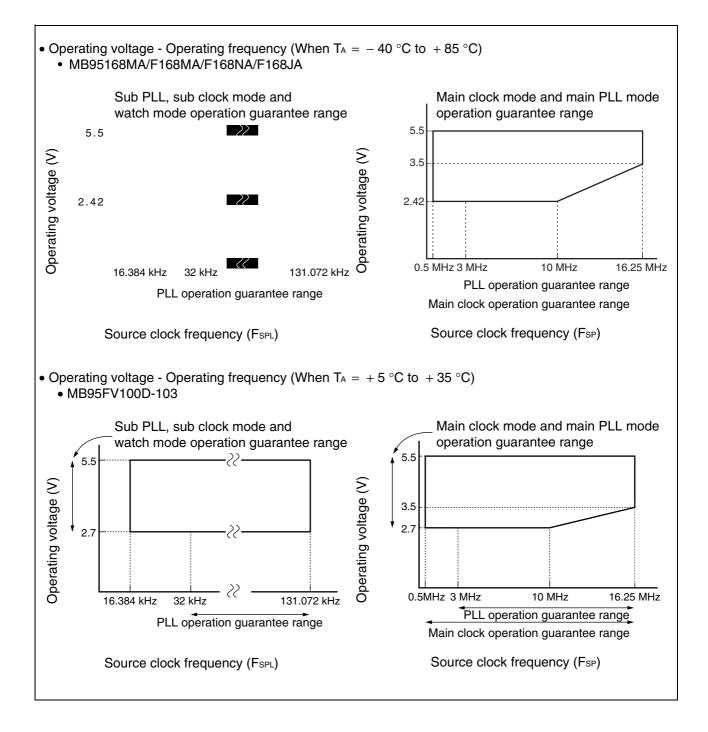
*2 : When the low voltage detection reset is used, reset occurs while the low voltage is detected. For details on Low voltage detection, see "(9) Low Voltage Detection" in "4. AC Characteristics ".

*3 : Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of V_{cc} pin must have a capacitor value higher than C_s. For connection of smoothing capacitor C_s, refer to the diagram below.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

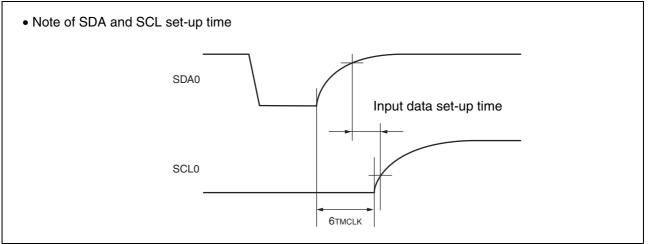

	Sym-			= 5.0 V ± 10%, Vss = 0.0 V Value					
Parameter	bol	Pin name	Conditions	Min Ty		Max	Unit	Remarks	
"H" level input voltage	VIH1	P10, P67	*1	0.7 Vcc	_	Vcc + 0.3	V	When selecting CMOS input level	
	VIH2	P23, P24	*1	0.7 Vcc		Vss + 5.5	V		
	VIHA	P00 to P07, P10 to P14, P20 to P22, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7		0.8 Vcc		Vcc + 0.3	V	Port inputs if Auto- motive input levels are selected	
	VIHS1	P00 to P07, P10 to P14, P20 to P22, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7	*1	0.8 Vcc		Vcc + 0.3	v	Hysteresis input	
	VIHS2	P23, P24	*1	0.8 Vcc	_	Vss + 5.5	V		
	VIHM	RST, MOD		0.8 Vcc	_	Vcc + 0.3	V		
	VIL	P10,P23, P24,P67	*1	Vss - 0.3	_	0.3 Vcc	V	Hysteresis input (When selecting CMOS input level)	
"L" level input voltage	Vila	P00 to P07, P10 to P14, P20 to P24, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7		Vss - 0.3		0.5 Vcc	V	Port inputs if Automotive input levels are selected	
voltage	Vils	P00 to P07, P10 to P14, P20 to P24, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7	*1	Vss - 0.3		0.2 Vcc	v	Hysteresis input	
	VILM	RST, MOD		Vss - 0.3		0.3 Vcc	V	Hysteresis input	
"H" level output voltage	Vон	All output pins	Іон = – 4.0 mA	$V_{\text{cc}}-0.5$			V		
"L" level output voltage	Vol	RST* ² , All output pins	lo∟ = 4.0 mA			0.4	۷		

 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, T_A = -40 \circ C to + 85 \circ C)$

	Sym-		(Vcc = 5.0 V ± 10%, Vss = 0.0 V Value								
Parameter	bol	Pin name	Conditions	Min Typ Max		Unit	Remarks				
Input leakage current (Hi-Z output leakage current)	Iu	Ports other than P23, P24	0.0 V < Vı < Vcc	- 5	_	+ 5	μA	When the pull-up prohibition setting			
Open drain output leakage current		P23, P24	0.0 V < VI < Vss + 5.5 V			5	μA				
Pull-up resistor	RPULL	P10 to P14, P20 to P22	$V_{I} = 0.0 V$	25	50	100	kΩ	When the pull-up permission setting			
Pull-down resistor	Rмор	MOD	VI = Vcc	50	100	200	kΩ	Mask ROM product only			
Input capacitance	CIN	Other than AVcc, AVss, AVR, Vcc, Vss	f = 1 MHz		5	15	pF				
			Fсн = 20 MHz		9.5	12.5	mA	Flash memory product (At other than Flash memory writ- ing and erasing)			
			$F_{MP} = 10 \text{ MHz}$ Main clock mode (divided by 2)	_	30.0	35.0	mA	Flash memory product (At Flash memory writing and eras- ing)			
	1			_	7.2	9.5	mA	Mask ROM product			
Power supply current*3	Icc	Vcc (External clock operation)	Fсн = 32 MHz		15.2	20.0	mA	Flash memory product (At other than Flash memory writ- ing and erasing)			
						opolation)	F _{MP} = 16 MHz Main clock mode (divided by 2)		35.7	42.5	mA
					11.6	15.2	mA	Mask ROM product			
	1000		$\label{eq:Fch} \begin{split} F_{CH} &= 20 \text{ MHz} \\ F_{MP} &= 10 \text{ MHz} \\ \text{Main Sleep mode} \\ (\text{divided by 2}) \end{split}$		4.5	7.5	mA				
	Iccs		$\label{eq:Fch} \begin{array}{l} F_{CH} = 32 \mbox{ MHz} \\ F_{MP} = 16 \mbox{ MHz} \\ Main \mbox{ Sleep mode} \\ (divided \mbox{ by 2}) \end{array}$		7.2	12.0	mA				

(Vcc = 5.0 V \pm 10%, Vss = 0.0 V, T_A = - 40 °C to + 85 °C)

(8) I²C Timing


		(Vcc = 5	5.0 V ± 10%, A	Vss = Vss	s = 0.0 V, [·]	$T_{A} = -40$	°C to +	85 °C)
				Val	ue			
Parameter	Symbol	Pin name	Conditions	Standar	d-mode	Fast-	mode	Unit
				Min	Max	Min	Max	
SCL clock frequency	fsc∟	SCL0		0	100	0	400	kHz
(Repeat) Start condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thd;sta	SCL0 SDA0		4.0	—	0.6		μs
SCL clock "L" width	t∟ow	SCL0		4.7		1.3		μs
SCL clock "H" width	tніgн	SCL0		4.0	—	0.6		μs
(Repeat) Start condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sta	SCL0 SDA0	R = 1.7 kΩ,	4.7	—	0.6		μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thd;dat	SCL0 SDA0	$C = 50 \text{ pF}^{*1}$	0	3.45* ²	0	0.9* ³	μs
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsu;dat	SCL0 SDA0		0.25*4		0.1*4	_	μs
Stop condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsu;sto	SCL0 SDA0		4.0		0.6		μs
Bus free time between stop condition and start condition	tbur	SCL0 SDA0		4.7		1.3	_	μs

*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.

*2 : The maximum thd;DAT have only to be met if the device dose not stretch the "L" width (tLOW) of the SCL signal.

*3 : A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement $t_{SU;DAT} \ge 250$ ns must then be met.

*4 : Refer to " • Note of SDA and SCL set-up time".

The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor.

Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.

_	Sym-	Pin	Condi-	-	0, AVSS = VSS = 0.0 V				
Parameter	bol	name	tions	Min	Мах	Unit	Remarks		
SCL clock "L" width	tLOW	SCL0		(2 + nm / 2) tмськ – 20		ns	Master mode		
SCL clock "H" width	t HIGH	SCL0		(nm / 2) t _{MCLK} – 20	(nm / 2) t _{MCLK} + 20	ns	Master mode		
Start condition hold time	thd;sta	SCL0 SDA0		(–1 + nm / 2) tмськ – 20	(–1 + nm) t _{мськ} + 20	ns	Master mode Maximum value is applied when m, n = 1, 8. Otherwise, the minimum value is applied.		
Stop condition setup time	tsu;sto	SCL0 SDA0		(1 + nm / 2) tмськ – 20	(1 + nm / 2) tмськ + 20	ns	Master mode		
Start condition setup time	tsu;sta	SCL0 SDA0		(1 + nm / 2) tмськ - 20	(1 + nm / 2) tмськ + 20	ns	Master mode		
Bus free time between stop condition and start condition	t _{BUF}	SCL0 SDA0				(2 nm + 4) t _{MCLK} – 20		ns	
Data hold time	thd;dat	SCL0 SDA0		3 tмськ – 20	_	ns	Master mode		
Data setup time	tsu;dat	SCL0 SDA0	R = 1.7 kΩ, $C = 50 pF^{*1}$	(—2 + nm / 2) t _{MCLK} — 20	(-1 + nm / 2) t _{MCLK} + 20	ns	Master mode When assuming that "L" of SCL is not extended, the minimum value is applied to first bit of continuous data. Otherwise, the maximum value is applied.		
Setup time between clearing interrupt and SCL rising	tsu;int	SCL0		(nm / 2) t _{мськ} – 20	(1 + nm / 2) tмськ + 20	ns	Minimum value is applied to interrupt at 9th SCL \downarrow . Maximum value is applied to interrupt at 8th SCL \downarrow .		
SCL clock "L" width	t∟ow	SCL0		4 tмськ – 20		ns	At reception		
SCL clock "H" width	tніgн	SCL0		4 tмськ – 20		ns	At reception		
Start condition detection	thd;sta	SCL0 SDA0		2 t _{MCLK} – 20		ns	Undetected when 1 tMCLK is used at reception		

(Vcc = 5.0 V \pm 10%, AVss = Vss = 0.0 V, T_A = -40 $^\circ C$ to ~+ 85 $^\circ C)$

(Continued)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } + 85 \text{ }^{\circ}\text{C})$

Parameter	Sym- bol	Pin name	Condi- tions	Value* ²		Unit	Remarks
Farameter				Min	Max	Unit	neillaiks
Stop condition detection	t su;sто	SCL0 SDA0	R = 1.7 kΩ, $C = 50 pF^{*1}$	2 tмськ – 20		ns	Undetected when 1 tмс∟к is used at reception
Restart condition detection condition	tsu;sta	SCL0 SDA0		2 tмськ – 20		ns	Undetected when 1 tмс∟к is used at reception
Bus free time	tBUF	SCL0 SDA0		2 тмськ – 20		ns	At reception
Data hold time	t hd;dat	SCL0 SDA0		2 тмськ – 20	_	ns	At slave transmission mode
Data setup time	tsu;dat	SCL0 SDA0		t∟ow – 3 tмс∟к – 20	_	ns	At slave transmission mode
Data hold time	thd;dat	SCL0 SDA0		0		ns	At reception
Data setup time	tsu;dat	SCL0 SDA0		tмськ — 20	_	ns	At reception
SDA↓→SCL↑ (at wakeup function)	twake- UP	SCL0 SDA0		Oscillation stabilization wait time + 2 tmclk – 20		ns	

*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.

*2 : •Refer to " (2) Source Clock/Machine Clock" for tmcLK.

- m is CS4 bit and CS3 bit (bit 4 and bit 3) of I²C clock control register (ICCR) .
- n is CS2 bit to CS0 bit (bit 2 to bit 0) of I²C clock control register (ICCR) .
- Actual timing of I²C is determined by m and n values set by the machine clock (t_{MCLK}) and CS4 to CS0 of ICCR0 register.

FUITSU

 Standard-mode : m and n can be set at the range : 0.9 MHz < t_{MCLK} (machine clock) < 10 MHz.
 Setting of m and n determines the machine clock that can be used below.

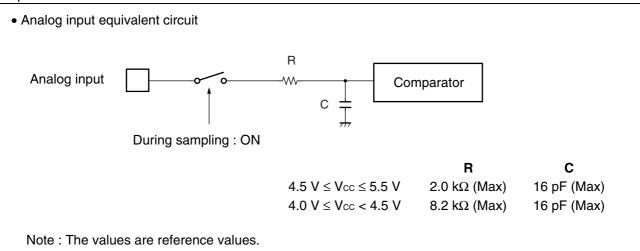
 $(m, n) = (1, 8) : 0.9 \text{ MHz} < t_{MCLK} \le 1 \text{ MHz}$

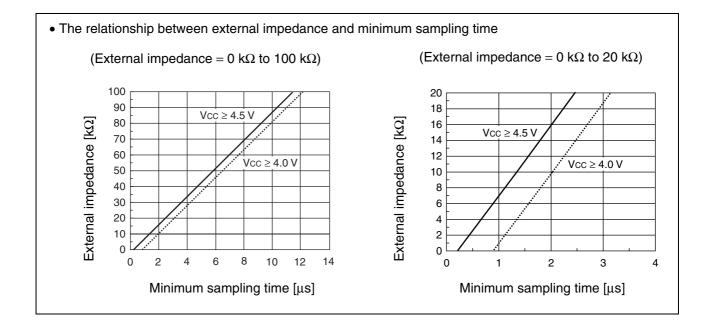
$$(m,\,n) \;=\; (1,\,22)\;,\;\; (5,\,4)\;,\;\; (6,\,4)\;,\;\; (7,\,4)\;,\;\; (8,\,4)\;\; : 0.9\;MHz < t_{\text{MCLK}} \leq 2\;MHz$$

- $(m,\,n) \;=\; (1,\,38)\;,\;\; (5,\,8)\;,\;\; (6,\,8)\;,\;\; (7,\,8)\;,\;\; (8,\,8)\;\; : 0.9\;MHz < t_{\text{MCLK}} \leq 4\;MHz$
- $(m, n) = (1, 98) : 0.9 \text{ MHz} < t_{MCLK} \le 10 \text{ MHz}$
- Fast-mode :

m and n can be set at the range : 3.3 MHz < t_{MCLK} (machine clock) < 10 MHz. Setting of m and n determines the machine clock that can be used below.

 $(m, n) = (1, 8) : 3.3 \text{ MHz} < t_{MCLK} \le 4 \text{ MHz}$

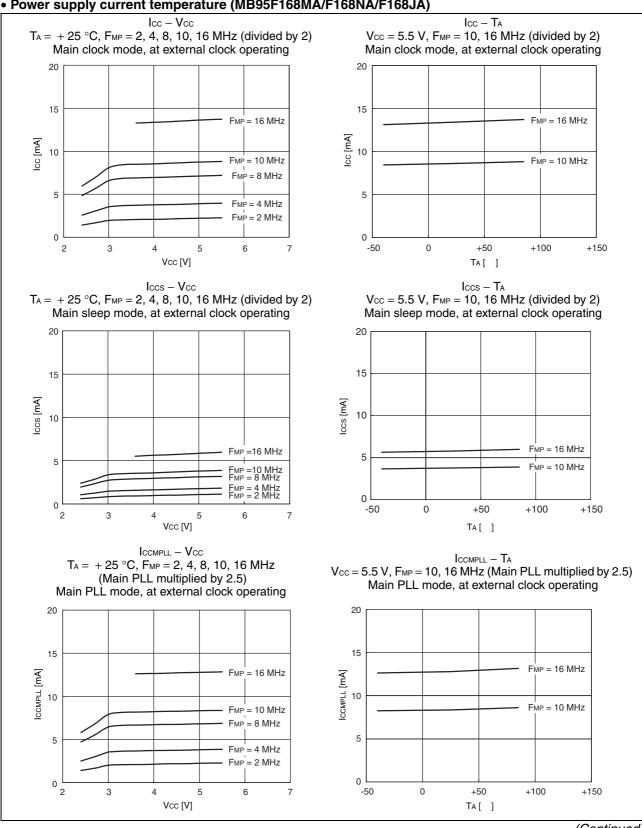

 $(m,\,n) \;=\; (1,\,22)\;,\;\; (5,\,4): 3.3\;MHz < t_{\text{MCLK}} \leq 8\;MHz$


 $(m, n) = (6, 4) : 3.3 \text{ MHz} < t_{MCLK} \le 10 \text{ MHz}$

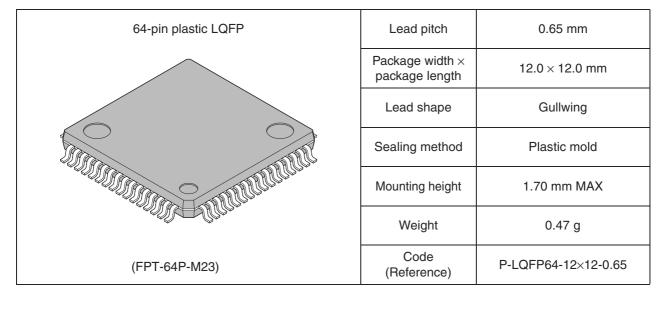
(2) Notes on Using A/D Converter

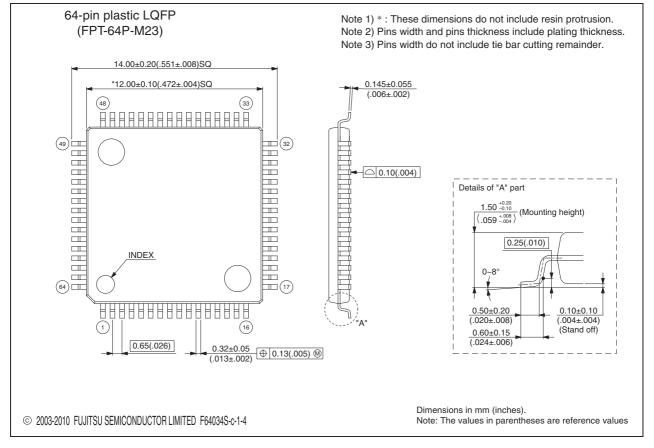
About the external impedance of analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also, if the sampling time cannot be sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

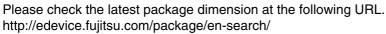


About errors


As $|V_{\text{CC}} - V_{\text{SS}}|$ becomes smaller, values of relative errors grow larger.


EXAMPLE CHARACTERISTICS

• Power supply current temperature (MB95F168MA/F168NA/F168JA)



■ PACKAGE DIMENSIONS

FUITSU

■ MAJOR CHANGES IN THIS EDITION

Page	Section	Change Results
35	 ELECTRICAL CHARACTERISTICS 3. DC Characteristics 	Corrected note *1 below the table. (The value is 2.88 V when the low voltage detection reset is used. \rightarrow The input level of P10, P23, P24 and P67 can be switched to either the "CMOS input level" or "Hysteresis in- put level". The switching of the input level can be set by the input level selection register (ILSR).)

The vertical lines marked in the left side of the page show the changes.

