
Microchip Technology - ATMEGA1281V-8AUR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 8MHz

Connectivity EBI/EMI, I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 54

Program Memory Size 128KB (64K x 16)

Program Memory Type FLASH

EEPROM Size 4K x 8

RAM Size 8K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-TQFP

Supplier Device Package 64-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega1281v-8aur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega1281v-8aur-4388626
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


7. AVR CPU Core

7.1 Introduction

This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure cor-
rect program execution. The CPU must therefore be able to access memories, perform calculations, control
peripherals, and handle interrupts.

7.2 Architectural Overview

Figure 7-1. Block Diagram of the AVR Architecture 

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories
and buses for program and data. Instructions in the program memory are executed with a single level pipelining.
While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept
enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable
Flash memory.

The fast-access Register File contains 32 × 8-bit general purpose working registers with a single clock cycle
access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two oper-

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Control Lines

32 x 8
General
Purpose

Registers

ALU

Status
and Control

I/O Lines

EEPROM

Data Bus 8-bit

 

Data
SRAM

D
ire

ct
 A

dd
re

ss
in

g

In
di

re
ct

 A
dd

re
ss

in
g

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

I/O Module 2

I/O Module1

I/O Module n
11ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



ands are output from the Register File, the operation is executed, and the result is stored back in the Register File
– in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing –
enabling efficient address calculations. One of the these address pointers can also be used as an address pointer
for look up tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single
register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated
to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the
whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address
contains a 16-bit or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the Application Program
section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes
into the Application Flash memory section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack
is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total
SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before sub-
routines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data
SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in
the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have
priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the
priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other
I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the Reg-
ister File, 0x20 - 0x5F. In addition, the ATmega640/1280/1281/2560/2561 has Extended I/O space from 0x60 -
0x1FF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used.

7.3 ALU – Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers.
Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an
immediate are executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-
functions. Some implementations of the architecture also provide a powerful multiplier supporting both
signed/unsigned multiplication and fractional format. See the “Instruction Set Summary” on page 404 for a detailed
description.

7.4 Status Register

The Status Register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the Status
Register is updated after all ALU operations, as specified in the “Instruction Set Summary” on page 404. This will in
many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact
code.

The Status Register is not automatically stored when entering an interrupt routine and restored when returning
from an interrupt. This must be handled by software.
12ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



Figure 7-6. The Parallel Instruction Fetches and Instruction Executions

Figure 7-7 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using
two register operands is executed, and the result is stored back to the destination register.

Figure 7-7. Single Cycle ALU Operation

7.8 Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a
separate program vector in the program memory space. All interrupts are assigned individual enable bits which
must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the
interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when Boot Lock bits
BLB02 or BLB12 are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 325 for details.

The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors.
The complete list of vectors is shown in “Interrupts” on page 101. The list also determines the priority levels of the
different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next
is INT0 – the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash sec-
tion by setting the IVSEL bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 101 for more
information. The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see “Memory Programming” on page 325.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user soft-
ware can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current
interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For
these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt
handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writ-
ing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding
interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
17ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit
is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is
set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not nec-
essarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will
not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction
before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when
returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be
executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example
shows how this can be used to avoid interrupts during the timed EEPROM write sequence.

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pend-
ing interrupts, as shown in this example.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMPE ; start EEPROM write

sbi EECR, EEPE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

__disable_interrupt(); 

EECR |= (1<<EEMPE); /* start EEPROM write */

EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */

Assembly Code Example

sei ; set Global Interrupt Enable

sleep; enter sleep, waiting for interrupt

; note: will enter sleep before any pending 

; interrupt(s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */

__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */
18ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



11.10.2 PRR0 – Power Reduction Register 0

• Bit 7 - PRTWI: Power Reduction TWI
Writing a logic one to this bit shuts down the TWI by stopping the clock to the module. When waking up the TWI
again, the TWI should be re initialized to ensure proper operation.

• Bit 6 - PRTIM2: Power Reduction Timer/Counter2
Writing a logic one to this bit shuts down the Timer/Counter2 module in synchronous mode (AS2 is 0). When the
Timer/Counter2 is enabled, operation will continue like before the shutdown.

• Bit 5 - PRTIM0: Power Reduction Timer/Counter0
Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0 is enabled, opera-
tion will continue like before the shutdown.

• Bit 4 - Res: Reserved bit
This bit is reserved bit and will always read as zero.

• Bit 3 - PRTIM1: Power Reduction Timer/Counter1
Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1 is enabled, opera-
tion will continue like before the shutdown.

• Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface
Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to the module. When
waking up the SPI again, the SPI should be re initialized to ensure proper operation.

• Bit 1 - PRUSART0: Power Reduction USART0
Writing a logic one to this bit shuts down the USART0 by stopping the clock to the module. When waking up the
USART0 again, the USART0 should be re initialized to ensure proper operation.

• Bit 0 - PRADC: Power Reduction ADC
Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down. The analog com-
parator cannot use the ADC input MUX when the ADC is shut down.

Bit 7 6 5 4 3 2 1 0

(0x64) PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC PRR0

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
55ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



11.10.3 PRR1 – Power Reduction Register 1

• Bit 7:6 - Res: Reserved bits
These bits are reserved and will always read as zero.

• Bit 5 - PRTIM5: Power Reduction Timer/Counter5
Writing a logic one to this bit shuts down the Timer/Counter5 module. When the Timer/Counter5 is enabled, opera-
tion will continue like before the shutdown.

• Bit 4 - PRTIM4: Power Reduction Timer/Counter4
Writing a logic one to this bit shuts down the Timer/Counter4 module. When the Timer/Counter4 is enabled, opera-
tion will continue like before the shutdown.

• Bit 3 - PRTIM3: Power Reduction Timer/Counter3
Writing a logic one to this bit shuts down the Timer/Counter3 module. When the Timer/Counter3 is enabled, opera-
tion will continue like before the shutdown.

• Bit 2 - PRUSART3: Power Reduction USART3
Writing a logic one to this bit shuts down the USART3 by stopping the clock to the module. When waking up the
USART3 again, the USART3 should be re initialized to ensure proper operation.

• Bit 1 - PRUSART2: Power Reduction USART2
Writing a logic one to this bit shuts down the USART2 by stopping the clock to the module. When waking up the
USART2 again, the USART2 should be re initialized to ensure proper operation.

• Bit 0 - PRUSART1: Power Reduction USART1
Writing a logic one to this bit shuts down the USART1 by stopping the clock to the module. When waking up the
USART1 again, the USART1 should be re initialized to ensure proper operation.

Bit 7 6 5 4 3 2 1 0

(0x65) – – PRTIM5 PRTIM4 PRTIM3 PRUSART3 PRUSART2 PRUSART1 PRR1

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
56ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



12. System Control and Reset

12.1 Resetting the AVR

During reset, all I/O Registers are set to their initial values, and the program starts execution from the Reset Vec-
tor. The instruction placed at the Reset Vector must be a JMP – Absolute Jump – instruction to the reset handling
routine. If the program never enables an interrupt source, the Interrupt Vectors are not used, and regular program
code can be placed at these locations. This is also the case if the Reset Vector is in the Application section while
the Interrupt Vectors are in the Boot section or vice versa. The circuit diagram in Figure 12-1 on page 58 shows the
reset logic. “System and Reset Characteristics” on page 360 defines the electrical parameters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes active. This does not
require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal reset. This allows the
power to reach a stable level before normal operation starts. The time-out period of the delay counter is defined by
the user through the SUT and CKSEL Fuses. The different selections for the delay period are presented in “Clock
Sources” on page 40.

12.2 Reset Sources

The ATmega640/1280/1281/2560/2561 has five sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset threshold (VPOT)

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum 
pulse length

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the Watchdog is enabled

• Brown-out Reset. The MCU is reset when the supply voltage AVCC is below the Brown-out Reset threshold 
(VBOT) and the Brown-out Detector is enabled

• JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one of the scan 
chains of the JTAG system. Refer to the section “IEEE 1149.1 (JTAG) Boundary-scan” on page 295 for details
57ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



12.5.2 WDTCSR – Watchdog Timer Control Register

• Bit 7 - WDIF: Watchdog Interrupt Flag
This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is configured for interrupt.
WDIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, WDIF is
cleared by writing a logic one to the flag. When the I-bit in SREG and WDIE are set, the Watchdog Time-out Inter-
rupt is executed.

• Bit 6 - WDIE: Watchdog Interrupt Enable
When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is enabled. If WDE
is cleared in combination with this setting, the Watchdog Timer is in Interrupt Mode, and the corresponding inter-
rupt is executed if time-out in the Watchdog Timer occurs.

If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in the Watchdog
Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE and WDIF automatically by hard-
ware (the Watchdog goes to System Reset Mode). This is useful for keeping the Watchdog Timer security while
using the interrupt. To stay in Interrupt and System Reset Mode, WDIE must be set after each interrupt. This
should however not be done within the interrupt service routine itself, as this might compromise the safety-function
of the Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a System Reset will
be applied.

Note: 1. WDTON Fuse set to “0“ means programmed and “1” means unprogrammed.

• Bit 4 - WDCE: Watchdog Change Enable
This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit, and/or change the
prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

• Bit 3 - WDE: Watchdog System Reset Enable
WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is set. To clear WDE,
WDRF must be cleared first. This feature ensures multiple resets during conditions causing failure, and a safe
start-up after the failure.

• Bit 5, 2:0 - WDP3:0: Watchdog Timer Prescaler 3, 2, 1 and 0
The WDP3:0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is running. The different
prescaling values and their corresponding time-out periods are shown in Table 12-2 on page 66.

Bit 7 6 5 4 3 2 1 0

(0x60) WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 WDTCSR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X 0 0 0

Table 12-1. Watchdog Timer Configuration

WDTON(1) WDE WDIE Mode Action on Time-out

1 0 0 Stopped None

1 0 1 Interrupt Mode Interrupt

1 1 0 System Reset Mode Reset

1 1 1 Interrupt and System Reset Mode Interrupt, then go to System Reset Mode

0 x x System Reset Mode Reset
65ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



 

Note: 1. When enabled, the 2-wire Serial Interface enables Slew-Rate controls on the output pins PD0 and PD1. This is not 
shown in this table. In addition, spike filters are connected between the AIO outputs shown in the port figure and 
the digital logic of the TWI module.

13.3.5 Alternate Functions of Port E

The Port E pins with alternate functions are shown in Table 13-15.

Note: 1. Only for ATmega1281/2561. For ATmega640/1280/2560 these functions are placed on MISO/MOSI pins.

Table 13-14. Overriding Signals for Alternate Functions in PD3:PD0(1)

Signal Name PD3/INT3/TXD1 PD2/INT2/RXD1 PD1/INT1/SDA PD0/INT0/SCL

PUOE TXEN1 RXEN1 TWEN TWEN

PUOV 0 PORTD2 • PUD PORTD1 • PUD PORTD0 • PUD

DDOE TXEN1 RXEN1 TWEN TWEN

DDOV 1 0 SDA_OUT SCL_OUT

PVOE TXEN1 0 TWEN TWEN

PVOV TXD1 0 0 0

DIEOE INT3 ENABLE INT2 ENABLE INT1 ENABLE INT0 ENABLE

DIEOV 1 1 1 1

DI INT3 INPUT INT2 INPUT/RXD1 INT1 INPUT INT0 INPUT

AIO – – SDA INPUT SCL INPUT

Table 13-15. Port E Pins Alternate Functions

Port Pin Alternate Function

PE7
INT7/ICP3/CLK0

(External Interrupt 7 Input, Timer/Counter3 Input Capture Trigger or Divided System Clock)

PE6
INT6/ T3

(External Interrupt 6 Input or Timer/Counter3 Clock Input)

PE5
INT5/OC3C

(External Interrupt 5 Input or Output Compare and PWM Output C for Timer/Counter3)

PE4
INT4/OC3B

(External Interrupt4 Input or Output Compare and PWM Output B for Timer/Counter3)

PE3
AIN1/OC3A

(Analog Comparator Negative Input or Output Compare and PWM Output A for Timer/Counter3)

PE2
AIN0/XCK0

(Analog Comparator Positive Input or USART0 external clock input/output)

PE1
PDO(1)/TXD0

(Programming Data Output or USART0 Transmit Pin)

PE0
PDI(1)/RXD0/PCINT8

(Programming Data Input, USART0 Receive Pin or Pin Change Interrupt 8)
82ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



13.4.32 PORTL – Port L Data Register

13.4.33 DDRL – Port L Data Direction Register

13.4.34 PINL – Port L Input Pins Address

Bit 7 6 5 4 3 2 1 0

(0x10B) PORTL7 PORTL6 PORTL5 PORTL4 PORTL3 PORTL2 PORTL1 PORTL0 PORTL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x10A) DDL7 DDL6 DDL5 DDL4 DDL3 DDL2 DDL1 DDL0 DDRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x109) PINL5 PINL5 PINL5 PINL4 PINL3 PINGL PINL1 PINL0 PINL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
100ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



Table 16-7 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase correct PWM mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Compare Match is ignored, 
but the set or clear is done at TOP. See “Phase Correct PWM Mode” on page 122 for more details.

• Bits 3, 2 – Res: Reserved Bits
These bits are reserved bits and will always read as zero.

• Bits 1:0 – WGM01:0: Waveform Generation Mode
Combined with the WGM02 bit found in the TCCR0B Register, these bits control the counting sequence of the
counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used, see
Table 16-8. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on
Compare Match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes (see “Modes of Operation”
on page 144).

Note: 1. MAX        = 0xFF

2. BOTTOM = 0x00

Table 16-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected

0 1 Reserved

1 0
Clear OC0B on Compare Match when up-counting. Set OC0B on Compare Match when 

down-counting

1 1
Set OC0B on Compare Match when up-counting. Clear OC0B on Compare Match when 

down-counting

Table 16-8. Waveform Generation Mode Bit Description

Mode WGM2 WGM1 WGM0
Timer/Counter Mode of 

Operation TOP
Update of
OCRx at

TOV Flag
Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF TOP MAX

4 1 0 0 Reserved – – –

5 1 0 1 PWM, Phase Correct OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA BOTTOM TOP
128ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



The following code examples show how to do an atomic write of the TCNTn Register contents. Writing any of the
OCRnA/B/C or ICRn Registers can be done by using the same principle.

Note: 1. See “About Code Examples” on page 10.

The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNTn.

17.3.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high byte
only needs to be written once. However, note that the same rule of atomic operation described previously also
applies in this case.

17.4 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the
Clock Select logic which is controlled by the Clock Select (CSn2:0) bits located in the Timer/Counter control Regis-
ter B (TCCRnB). For details on clock sources and prescaler, see “Timer/Counter 0, 1, 3, 4, and 5 Prescaler” on
page 164.

Assembly Code Example(1)

TIM16_WriteTCNTn:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNTn to r17:r16

out TCNTnH,r17

out TCNTnL,r16

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNTn( unsigned int i )

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

__disable_interrupt();

/* Set TCNTn to i */

TCNTn = i;

/* Restore global interrupt flag */

SREG = sreg;

}

138ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sam-
pling. The external clock must be guaranteed to have less than half the system clock frequency (fExtClk < fclk_I/O/2)
given a 50/50% duty cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it
can detect is half the sampling frequency (Nyquist sampling theorem). However, due to variation of the system
clock frequency and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is rec-
ommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 18-2. Prescaler for synchronous Timer/Counters

PSR10

Clear

Tn

Tn

clkI/O

Synchronization

Synchronization

TIMER/COUNTERn CLOCK SOURCE
clk

Tn

TIMER/COUNTERn CLOCK SOURCE
clk

Tn

CSn0

CSn1

CSn2

CSn0

CSn1

CSn2
165ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to
Table 21-1. For more details on automatic port overrides, refer to “Alternate Port Functions” on page 72.

Note: 1. See “Alternate Functions of Port B” on page 76 for a detailed description of how to define the direction of the user 
defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a simple transmission.
DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins.
DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. For example,
if MOSI is placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB.

Table 21-1. SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input
192ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



Figure 24-9. Overview of the TWI Module

24.5.1 SCL and SDA Pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a slew-rate limiter in
order to conform to the TWI specification. The input stages contain a spike suppression unit removing spikes
shorter than 50ns. Note that the internal pull-ups in the AVR pads can be enabled by setting the PORT bits corre-
sponding to the SCL and SDA pins, as explained in the I/O Port section. The internal pull-ups can in some systems
eliminate the need for external ones.

24.5.2 Bit Rate Generator Unit

This unit controls the period of SCL when operating in a Master mode. The SCL period is controlled by settings in
the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status Register (TWSR). Slave operation
does not depend on Bit Rate or Prescaler settings, but the CPU clock frequency in the Slave must be at least 16
times higher than the SCL frequency. Note that slaves may prolong the SCL low period, thereby reducing the aver-
age TWI bus clock period.

The SCL frequency is generated according to the following equation:

T
W

I U
ni

t

Address Register
(TWAR)

Address Match Unit

Address Comparator

Control Unit

Control Register
(TWCR)

Status Register
(TWSR)

State Machine and
Status control

SCL

Slew-rate
Control

Spike
Filter

SDA

Slew-rate
Control

Spike
Filter

Bit Rate Generator

Bit Rate Register
(TWBR)

Prescaler

Bus Interface Unit

START / STOP
Control

Arbitration detection Ack

Spike Suppression

Address/Data Shift
Register (TWDR)

SCL frequency CPU Clock frequency

16 2(TWBR) 4
TWPS+

-----------------------------------------------------------=
242ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



Flash corruption can easily be avoided by following these design recommendations (one is sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock bits to prevent 
any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done by 
enabling the internal Brown-out Detector (BOD) if the operating voltage matches the detection level. If not, 
an external low VCC reset protection circuit can be used. If a reset occurs while a write operation is in prog-
ress, the write operation will be completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will prevent the CPU from 
attempting to decode and execute instructions, effectively protecting the SPMCSR Register and thus the 
Flash from unintentional writes.

29.6.12 Programming Time for Flash when Using SPM

The calibrated RC Oscillator is used to time Flash accesses. Table 29-6 shows the typical programming time for
Flash accesses from the CPU.

29.6.13 Simple Assembly Code Example for a Boot Loader

;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24), 
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:
; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SPMEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

Table 29-6. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and write Lock bits by SPM) 3.7ms 4.5ms
318ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



29.7 Register Description

29.7.1 SPMCSR – Store Program Memory Control and Status Register

The Store Program Memory Control and Status Register contains the control bits needed to control the Boot
Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM ready interrupt will
be enabled. The SPM ready Interrupt will be executed as long as the SPMEN bit in the SPMCSR Register is
cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy
When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initiated, the RWWSB will
be set (one) by hardware. When the RWWSB bit is set, the RWW section cannot be accessed. The RWWSB bit
will be cleared if the RWWSRE bit is written to one after a Self-Programming operation is completed. Alternatively
the RWWSB bit will automatically be cleared if a page load operation is initiated.

• Bit 5 – SIGRD: Signature Row Read
If this bit is written to one at the same time as SPMEN, the next LPM instruction within three clock cycles will read
a byte from the signature row into the destination register. see “Reading the Signature Row from Software” on
page 317 for details. An SPM instruction within four cycles after SIGRD and SPMEN are set will have no effect.
This operation is reserved for future use and should not be used.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable
When programming (Page Erase or Page Write) to the RWW section, the RWW section is blocked for reading (the
RWWSB will be set by hardware). To re-enable the RWW section, the user software must wait until the program-
ming is completed (SPMEN will be cleared). Then, if the RWWSRE bit is written to one at the same time as
SPMEN, the next SPM instruction within four clock cycles re-enables the RWW section. The RWW section cannot
be re-enabled while the Flash is busy with a Page Erase or a Page Write (SPMEN is set). If the RWWSRE bit is
written while the Flash is being loaded, the Flash load operation will abort and the data loaded will be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles sets Boot
Lock bits, according to the data in R0. The data in R1 and the address in the Z-pointer are ignored. The BLBSET
bit will automatically be cleared upon completion of the Lock bit set, or if no SPM instruction is executed within four
clock cycles.

An (E)LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCSR Register, will read
either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the destination register. See “Reading
the Fuse and Lock Bits from Software” on page 316 for details.

• Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles executes
Page Write, with the data stored in the temporary buffer. The page address is taken from the high part of the Z-
pointer. The data in R1 and R0 are ignored. The PGWRT bit will auto-clear upon completion of a Page Write, or if
no SPM instruction is executed within four clock cycles. The CPU is halted during the entire Page Write operation if
the NRWW section is addressed.

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN SPMCSR

Read/Write R/W R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
323ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



6. The actual low period generated by the ATmega640/1280/1281/2560/2561 2-wire Serial Interface is (1/fSCL - 2/fCK), 
thus fCK must be greater than 6MHz for the low time requirement to be strictly met at fSCL = 100kHz.

7. The actual low period generated by the ATmega640/1280/1281/2560/2561 2-wire Serial Interface is (1/fSCL - 2/fCK), 
thus the low time requirement will not be strictly met for fSCL > 308kHz when fCK = 8MHz. Still, 
ATmega640/1280/1281/2560/2561 devices connected to the bus may communicate at full speed (400kHz) with 
other ATmega640/1280/1281/2560/2561 devices, as well as any other device with a proper tLOW acceptance 
margin.

Figure 31-6. 2-wire Serial Bus Timing

31.7 SPI Timing Characteristics

See Figure 31-7 and Figure 31-8 on page 364 for details.

Note: 1. In SPI Programming mode the minimum SCK high/low period is:
- 2 tCLCL for fCK < 12MHz
- 3 tCLCL for fCK > 12MHz

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

Table 31-8. SPI Timing Parameters

Description Mode Min. Typ. Max.

1 SCK period Master See Table 21-5 on page 198

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tck

11 SCK high/low(1) Slave 2 • tck

12 Rise/Fall time Slave 1600

13 Setup Slave 10

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 20
363ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



Figure 32-8. Idle Supply Current vs. VCC (Internal RC Oscillator, 8MHz)

Figure 32-9. Idle Supply Current vs. VCC (Internal RC Oscillator, 1MHz)

85°C
25°C

-40°C

0

0.5

1

1.5

2

2.5

3

3.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (m

A
)

85°C
25°C

-40°C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (m

A
)

377ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014



38. Datasheet Revision History

Note that the referring page numbers in this section are referring to this document. The referring revisions in this
section are referring to the document revision.

38.1 Rev. 2549Q-02/2014

 

38.2 Rev. 2549P-10/2012

38.3 Rev. 2549O-05/2012

38.4 Rev. 2549N-05/2011

1. Updated the “Reset Sources” on page 57. Brown-out Reset: The MCU is reset when the supply voltage
AVcc is below the Brown-out Reset threshold (VBOT) and the Brown-out Detector is enabled.

2. Updated the Figure 12-1 on page 58. Power-on reset is now connected to AVcc and not to Vcc.
3. Updated the content in “Brown-out Detection” on page 59. Replaced Vcc by AVcc throughout the section.
4. Updated the Figure 12-5 on page 60. Replaced Vcc by AVcc.
5. Updated “External Interrupts” on page 109. Removed the text “Note that recognition of falling or rising

edge.....”.
6. Updated the description of “PCMSK1 – Pin Change Mask Register 1” on page 113. The description men-

tions "PCIE1 bit in EIMSK". This has been changed to “PCIE1 bit in PCICR”.
7. Updated “Ordering Information” in “ATmega2561” on page 411.
8. Removed Errata “Inaccurate ADC conversion in differential mode with 200× gain” from “ATmega1280 rev.

B” on page 416 and from “ATmega1281 rev. B” on page 417
9. Updated “Errata” in “ATmega2560 rev. F” on page 417 and in “ATmega2561 rev. F” on page 419.
10. Updated the datasheet with new Atmel brand (new logo and addresses).

1. Replaced drawing of “64M2” on page 415.
2. Former page 439 has been deleted as the content of this page did not belong there (same page as the

last page).
3. Some small correction made in the setup.

1. The datasheet changed status from Preliminary to Complete. Removed “Preliminary” from the front page.
2. Replaced Figure 10-3 on page 44 by a new one.
3. Updated the last page to include the new address for Atmel Japan site.

1. Added Atmel QTouch Library Support and QTouch Sensing Capablity Features.
2. Updated Cross-reference in “Bit 5, 2:0 - WDP3:0: Watchdog Timer Prescaler 3, 2, 1 and 0” on page 65.
3. Updated Assembly codes in section “USART Initialization” on page 205.
4. Added “Standard Power-On Reset” on page 360.
422ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014


