



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Discontinued at Digi-Key                                                                        |
|----------------------------|-------------------------------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                                                 |
| Core Size                  | 32-Bit Single-Core                                                                              |
| Speed                      | 180MHz                                                                                          |
| Connectivity               | CANbus, EBI/EMI, I <sup>2</sup> C, IrDA, Microwire, SD, SPI, SSI, SSP, UART/USART, USB, USB OTG |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                                    |
| Number of I/O              | 83                                                                                              |
| Program Memory Size        | -                                                                                               |
| Program Memory Type        | ROMIess                                                                                         |
| EEPROM Size                | -                                                                                               |
| RAM Size                   | 168K x 8                                                                                        |
| Voltage - Supply (Vcc/Vdd) | 2.2V ~ 3.6V                                                                                     |
| Data Converters            | A/D 8x10b; D/A 1x10b                                                                            |
| Oscillator Type            | Internal                                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                               |
| Mounting Type              | Surface Mount                                                                                   |
| Package / Case             | 144-LQFP                                                                                        |
| Supplier Device Package    | 144-LQFP (20x20)                                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1820fbd144-551                       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M3 microcontroller

| Cumbal | 360, a  |     |     |     | are | not avai |     | Description                                                                                                                                                                                     |
|--------|---------|-----|-----|-----|-----|----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol | 26      | 180 | 100 | 4   |     | tate     |     | Description                                                                                                                                                                                     |
|        | 3A2     | GA  | GA  | P12 |     | et s     | a   |                                                                                                                                                                                                 |
|        | LBG     | TFB | TFB | LQF |     | Res      | Typ |                                                                                                                                                                                                 |
| P3_4   | <br>A15 | C14 | B8  | 119 | [2] | N; PU    | I/O | GPI01[14] — General purpose digital input/output pin.                                                                                                                                           |
|        |         |     |     |     |     |          | -   | R — Function reserved.                                                                                                                                                                          |
|        |         |     |     |     |     |          | -   | R — Function reserved.                                                                                                                                                                          |
|        |         |     |     |     |     |          | I/O | SPIFI_SIO3 — I/O lane 3 for SPIFI.                                                                                                                                                              |
|        |         |     |     |     |     |          | 0   | U1_TXD — Transmitter output for UART1.                                                                                                                                                          |
|        |         |     |     |     |     |          | I/O | <b>I2S0_TX_WS</b> — Transmit Word Select. It is driven by the master and received by the slave. Corresponds to the signal WS in the <i>I</i> <sup>2</sup> <i>S</i> - <i>bus specification</i> . |
|        |         |     |     |     |     |          | I/O | <b>I2S1_RX_SDA</b> — $I^2$ S1 receive data. It is driven by the transmitter and read by the receiver. Corresponds to the signal SD in the $I^2$ S-bus specification.                            |
|        |         |     |     |     |     |          | 0   | LCD_VD13 — LCD data.                                                                                                                                                                            |
| P3_5   | C12     | C11 | B7  | 121 | [2] | N; PU    | I/O | <b>GPIO1[15]</b> — General purpose digital input/output pin.                                                                                                                                    |
|        |         |     |     |     |     |          | -   | R — Function reserved.                                                                                                                                                                          |
|        |         |     |     |     |     |          | -   | R — Function reserved.                                                                                                                                                                          |
|        |         |     |     |     |     |          | I/O | SPIFI_SIO2 — I/O lane 2 for SPIFI.                                                                                                                                                              |
|        |         |     |     |     |     |          | I   | <b>U1_RXD</b> — Receiver input for UART1.                                                                                                                                                       |
|        |         |     |     |     |     |          | I/O | <b>I2S0_TX_SDA</b> — $I^2S$ transmit data. It is driven by the transmitter and read by the receiver. Corresponds to the signal SD in the $I^2S$ -bus specification.                             |
|        |         |     |     |     |     |          | I/O | <b>I2S1_RX_WS</b> — Receive Word Select. It is driven by the master and received by the slave. Corresponds to the signal WS in the <i>I</i> <sup>2</sup> <i>S</i> - <i>bus specification</i> .  |
|        |         |     |     |     |     |          | 0   | LCD_VD12 — LCD data.                                                                                                                                                                            |
| P3_6   | B13     | B12 | C7  | 122 | [2] | N; PU    | I/O | GPIO0[6] — General purpose digital input/output pin.                                                                                                                                            |
|        |         |     |     |     |     |          | -   | R — Function reserved.                                                                                                                                                                          |
|        |         |     |     |     |     |          | I/O | SSP0_SSEL — Slave Select for SSP0.                                                                                                                                                              |
|        |         |     |     |     |     |          | I/O | <b>SPIFI_MISO</b> — Input 1 in SPIFI quad mode; SPIFI output IO1.                                                                                                                               |
|        |         |     |     |     |     |          | -   | R — Function reserved.                                                                                                                                                                          |
|        |         |     |     |     |     |          | I/O | SSP0_MISO — Master In Slave Out for SSP0.                                                                                                                                                       |
|        |         |     |     |     |     |          | -   | R — Function reserved.                                                                                                                                                                          |
|        |         |     |     |     |     |          | -   | R — Function reserved.                                                                                                                                                                          |
| P3_7   | C11     | C10 | D7  | 123 | [2] | N; PU    | -   | R — Function reserved.                                                                                                                                                                          |
|        |         |     |     |     |     |          | -   | R — Function reserved.                                                                                                                                                                          |
|        |         |     |     |     |     |          | I/O | SSP0_MISO — Master In Slave Out for SSP0.                                                                                                                                                       |
|        |         |     |     |     |     |          | I/O | SPIFI_MOSI — Input 0 in SPIFI quad mode; SPIFI output IO0.                                                                                                                                      |
|        |         |     |     |     |     |          | I/O | <b>GPI05[10]</b> — General purpose digital input/output pin.                                                                                                                                    |
|        |         |     |     |     |     |          | I/O | SSP0_MOSI — Master Out Slave in for SSP0.                                                                                                                                                       |
|        |         |     |     |     |     |          | -   | R — Function reserved.                                                                                                                                                                          |
|        |         |     |     |     |     |          | -   | R — ⊢unction reserved.                                                                                                                                                                          |

#### Table 3. Pin description ... continued

all narts See Table ? ailahla ai 4 .... 11000 

Product data sheet

LPC1850\_30\_20\_10

All information provided in this document is subject to legal disclaimers.

32-bit ARM Cortex-M3 microcontroller

| Symbol | LBGA256 | TFBGA180 | TFBGA100 | LQFP144 |     | Reset state | Type | Description                                                          |
|--------|---------|----------|----------|---------|-----|-------------|------|----------------------------------------------------------------------|
| P6_10  | H15     | G13      | -        | 100     | [2] | N; PU       | I/O  | GPIO3[6] — General purpose digital input/output pin.                 |
|        |         |          |          |         |     |             | 0    | <b>MCABORT</b> — Motor control PWM, LOW-active fast abort.           |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | 0    | <b>EMC_DQMOUT1</b> — Data mask 1 used with SDRAM and static devices. |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
| P6_11  | H12     | F11      | C9       | 101     | [2] | N; PU       | I/O  | GPIO3[7] — General purpose digital input/output pin.                 |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | 0    | EMC_CKEOUT0 — SDRAM clock enable 0.                                  |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | 0    | T2_MAT3 — Match output 3 of timer 2.                                 |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
| P6_12  | G15     | F13      | -        | 103     | [2] | N; PU       | I/O  | GPIO2[8] — General purpose digital input/output pin.                 |
|        |         |          |          |         |     |             | 0    | <b>CTOUT_7</b> — SCTimer/PWM output 7. Match output 3 of timer 1.    |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | 0    | <b>EMC_DQMOUT0</b> — Data mask 0 used with SDRAM and static devices. |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
| P7_0   | B16     | B14      | -        | 110     | [2] | N; PU       | I/O  | GPIO3[8] — General purpose digital input/output pin.                 |
|        |         |          |          |         |     |             | 0    | <b>CTOUT_14</b> — SCTimer/PWM output 14. Match output 2 of timer 3.  |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | 0    | LCD_LE — Line end signal.                                            |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |

#### Table 3. Pin description ... continued

32-bit ARM Cortex-M3 microcontroller

| Symbol | LBGA256 | TFBGA180 | TFBGA100 | LQFP144 |     | Reset state | Type | Description                                                          |
|--------|---------|----------|----------|---------|-----|-------------|------|----------------------------------------------------------------------|
| PD_0   | N2      | -        | -        | -       | [2] | N; PU       | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | 0    | <b>CTOUT_15</b> — SCTimer/PWM output 15. Match output 3 of timer 3.  |
|        |         |          |          |         |     |             | 0    | <b>EMC_DQMOUT2</b> — Data mask 2 used with SDRAM and static devices. |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | I/O  | GPIO6[14] — General purpose digital input/output pin.                |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
| PD_1   | P1      | -        | -        | -       | [2] | N; PU       | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | 0    | EMC_CKEOUT2 — SDRAM clock enable 2.                                  |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | I/O  | GPIO6[15] — General purpose digital input/output pin.                |
|        |         |          |          |         |     |             | 0    | <b>SD_POW</b> — SD/MMC power monitor output.                         |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
| PD_2   | R1      | -        | -        | -       | [2] | N; PU       | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | 0    | <b>CTOUT_7</b> — SCTimer/PWM output 7. Match output 3 of timer 1.    |
|        |         |          |          |         |     |             | I/O  | EMC_D16 — External memory data line 16.                              |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | I/O  | GPIO6[16] — General purpose digital input/output pin.                |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
| PD_3   | P4      | -        | -        | -       | [2] | N; PU       | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | 0    | <b>CTOUT_6</b> — SCTimer/PWM output 7. Match output 2 of timer 1.    |
|        |         |          |          |         |     |             | I/O  | EMC_D17 — External memory data line 17.                              |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | I/O  | GPIO6[17] — General purpose digital input/output pin.                |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |
|        |         |          |          |         |     |             | -    | R — Function reserved.                                               |

#### Table 3. Pin description ... continued

32-bit ARM Cortex-M3 microcontroller

| LCD, Ethernet, U | ISBO, a | ina USI  | B1 fun   | ctions  | are | not avai           | lable | on all parts. See <u>Table 2</u> .                                        |
|------------------|---------|----------|----------|---------|-----|--------------------|-------|---------------------------------------------------------------------------|
| Symbol           | LBGA256 | TFBGA180 | TFBGA100 | LQFP144 |     | Reset state<br>[1] | Type  | Description                                                               |
| PD_12            | N11     | P9       | -        | -       | [2] | N; PU              | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | 0     | EMC_CS2 — LOW active Chip Select 2 signal.                                |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | I/O   | GPIO6[26] — General purpose digital input/output pin.                     |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | 0     | <b>CTOUT_10</b> — SCTimer/PWM output 10. Match output 3 of timer 3.       |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |
| PD_13            | T14     | -        | -        | -       | [2] | N; PU              | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | I     | <b>CTIN_0</b> — SCTimer/PWM input 0. Capture input 0 of timer 0, 1, 2, 3. |
|                  |         |          |          |         |     |                    | 0     | <b>EMC_BLS2</b> — LOW active Byte Lane select signal 2.                   |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | I/O   | GPIO6[27] — General purpose digital input/output pin.                     |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | 0     | <b>CTOUT_13</b> — SCTimer/PWM output 13. Match output 3 of timer 3.       |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |
| PD_14            | R13     | L11      | -        | -       | [2] | N; PU              | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | 0     | EMC_DYCS2 — SDRAM chip select 2.                                          |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | I/O   | <b>GPIO6[28]</b> — General purpose digital input/output pin.              |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | 0     | <b>CTOUT_11</b> — SCTimer/PWM output 11. Match output 3 of timer 2.       |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |
| PD_15            | T15     | P13      | -        | -       | [2] | N; PU              | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | I/O   | EMC_A17 — External memory address line 17.                                |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |
|                  |         |          |          |         |     |                    | I/O   | <b>GPIO6[29]</b> — General purpose digital input/output pin.              |
|                  |         |          |          |         |     |                    | I     | <b>SD_WP</b> — SD/MMC card write protect input.                           |
|                  |         |          |          |         |     |                    | 0     | <b>CTOUT_8</b> — SCTimer/PWM output 8. Match output 0 of timer 2.         |
|                  |         |          |          |         |     |                    | -     | R — Function reserved.                                                    |

#### Table 3. Pin description ... continued

#### 32-bit ARM Cortex-M3 microcontroller

| - ,           | ,                                                                                                 |          |          |                         |      |                    |      |                |
|---------------|---------------------------------------------------------------------------------------------------|----------|----------|-------------------------|------|--------------------|------|----------------|
| Symbol        | LBGA256                                                                                           | TFBGA180 | TFBGA100 | LQFP144                 |      | Reset state<br>[1] | Type | Description    |
| VSSIO         | C4,<br>D13,<br>G6,<br>G7,<br>G8,<br>H8,<br>H9,<br>J8,<br>J9,<br>K9,<br>K10,<br>M13,<br>P7,<br>P13 | -        | -        | 4,<br>40,<br>76,<br>109 | [13] | -                  | -    | Ground.        |
| VSSA          | B2                                                                                                | A3       | C2       | 135                     |      | -                  | -    | Analog ground. |
| Not connected |                                                                                                   |          |          |                         |      |                    |      |                |
| -             | B9                                                                                                | B8       | -        | -                       |      | -                  | -    | n.c.           |

#### Table 3. Pin description ...continued

LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2

[1] N = neutral, input buffer disabled; no extra VDDIO current consumption if the input is driven midway between supplies; set the EZI bit in the SFS register to enable the input buffer; I = input; OL = output driving LOW; OH = output driving HIGH; AI/O = analog input/output; IA = inactive; PU = pull-up enabled (weak pull-up resistor pulls up pin to VDDIO; F = floating. Reset state reflects the pin state at reset without boot code operation.

- [2] 5 V tolerant pad with 15 ns glitch filter (5 V tolerant if VDDIO present; if VDDIO not present, do not exceed 3.6 V); provides digital I/O functions with TTL levels and hysteresis; normal drive strength (see Figure 44).
- [3] 5 V tolerant pad with 15 ns glitch filter (5 V tolerant if VDDIO present; if VDDIO not present, do not exceed 3.6 V); provides digital I/O functions with TTL levels, and hysteresis; high drive strength (see Figure 44).
- [4] 5 V tolerant pad with 15 ns glitch filter (5 V tolerant if VDDIO present; if VDDIO not present, do not exceed 3.6 V); provides high-speed digital I/O functions with TTL levels and hysteresis (see Figure 44).
- [5] 5 V tolerant pad providing digital I/O functions (with TTL levels and hysteresis) and analog input or output (5 V tolerant if VDDIO present; if VDDIO not present, do not exceed 3.6 V). When configured as an ADC input or DAC output, the pin is not 5 V tolerant and the digital section of the pad must be disabled by setting the pin to an input function and disabling the pull-up resistor through the pin's SFSP register.
- [6] 5 V tolerant transparent analog pad.
- [7] For maximum load  $C_L = 6.5 \,\mu$ F and maximum pull-down resistance  $R_{pd} = 80 \,k\Omega$ , the VBUS signal takes about 2 s to fall from VBUS = 5 V to VBUS = 0.2 V when it is no longer driven.
- [8] Transparent analog pad. Not 5 V tolerant.
- [9] Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode only).
- [10] Open-drain 5 V tolerant digital I/O pad, compatible with I<sup>2</sup>C-bus Fast Mode Plus specification. This pad requires an external pull-up to provide output functionality. When power is switched off, this pin connected to the I<sup>2</sup>C-bus is floating and does not disturb the I<sup>2</sup>C lines.
- [11] 5 V tolerant pad with 20 ns glitch filter; provides digital I/O functions with open-drain output and hysteresis (see Figure 45).
- [12] If not pinned out, VPP is internally connected to VDDIO.
- [13] On the TFBGA100 package, VSS is internally connected to VSSIO.

### 32-bit ARM Cortex-M3 microcontroller

- Two AHB bus masters for transferring data. These interfaces transfer data when a DMA request goes active. Master 1 can access memories and peripherals, master 0 can access memories only.
- 32-bit AHB master bus width.
- Incrementing or non-incrementing addressing for source and destination.
- Programmable DMA burst size. The DMA burst size can be programmed to more efficiently transfer data.
- Internal four-word FIFO per channel.
- Supports 8, 16, and 32-bit wide transactions.
- Big-endian and little-endian support. The DMA Controller defaults to little-endian mode on reset.
- An interrupt to the processor can be generated on a DMA completion or when a DMA error has occurred.
- Raw interrupt status. The DMA error and DMA count raw interrupt status can be read prior to masking.

### 7.13.3 SPI Flash Interface (SPIFI)

The SPI Flash Interface allows low-cost serial flash memories to be connected to the ARM Cortex-M3 processor with little performance penalty compared to parallel flash devices with higher pin count.

After a few commands configure the interface at startup, the entire flash content is accessible as normal memory using byte, halfword, and word accesses by the processor and/or DMA channels. Simple sequences of commands handle erasing and programming.

Many serial flash devices use a half-duplex command-driven SPI protocol for device setup and initialization and then move to a half-duplex, command-driven 4-bit protocol for normal operation. Different serial flash vendors and devices accept or require different commands and command formats. SPIFI provides sufficient flexibility to be compatible with common flash devices and includes extensions to help insure compatibility with future devices.

### 7.13.3.1 Features

- Interfaces to serial flash memory in the main memory map.
- Supports classic and 4-bit bidirectional serial protocols.
- Half-duplex protocol compatible with various vendors and devices.
- Quad SPI Flash Interface (SPIFI) with 1-, 2-, or 4-bit data at rates of up to 52 MB per second.
- Supports DMA access.

### 7.13.4 SD/MMC card interface

The SD/MMC card interface supports the following modes:

- Secure Digital memory (SD version 3.0)
- Secure Digital I/O (SDIO version 2.0)
- Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1)

### 32-bit ARM Cortex-M3 microcontroller

- Setup and control via a separate AHB slave interface.
- Dual 16-deep programmable 64-bit wide FIFOs for buffering incoming display data.
- Supports single and dual-panel monochrome Super Twisted Nematic (STN) displays with 4-bit or 8-bit interfaces.
- Supports single and dual-panel color STN displays.
- Supports Thin Film Transistor (TFT) color displays.
- Programmable display resolution including, but not limited to:  $320 \times 200$ ,  $320 \times 240$ ,  $640 \times 200$ ,  $640 \times 240$ ,  $640 \times 480$ ,  $800 \times 600$ , and  $1024 \times 768$ .
- Hardware cursor support for single-panel displays.
- 15 gray-level monochrome, 3375 color STN, and 32 K color palettized TFT support.
- 1, 2, or 4 bits-per-pixel (bpp) palettized displays for monochrome STN.
- 1, 2, 4, or 8 bpp palettized color displays for color STN and TFT.
- 16 bpp true-color non-palettized for color STN and TFT.
- 24 bpp true-color non-palettized for color TFT.
- Programmable timing for different display panels.
- 256 entry, 16-bit palette RAM, arranged as a 128 × 32-bit RAM.
- Frame, line, and pixel clock signals.
- AC bias signal for STN, data enable signal for TFT panels.
- Supports little and big-endian, and Windows CE data formats.
- LCD panel clock can be generated from the peripheral clock, or from a clock input pin.

### 7.13.9 Ethernet

Remark: Ethernet is available on parts LPC1850/30 (see Table 2).

#### 7.13.9.1 Features

- 10/100 Mbit/s
- DMA support
- Power management remote wake-up frame and magic packet detection
- Supports both full-duplex and half-duplex operation
  - Supports CSMA/CD Protocol for half-duplex operation.
  - Supports IEEE 802.3x flow control for full-duplex operation.
  - Optional forwarding of received pause control frames to the user application in full-duplex operation.
  - Back-pressure support for half-duplex operation.
  - Automatic transmission of zero-quanta pause frame on deassertion of flow control input in full-duplex operation.
- Support for IEEE 1588 time stamping and IEEE 1588 advanced time stamping (IEEE 1588-2008 v2).

### 32-bit ARM Cortex-M3 microcontroller

The LPC1850/30/20/10 can wake up from Deep-sleep, Power-down, and Deep power-down modes via the WAKEUP[3:0] pins and interrupts generated by battery powered blocks in the RTC power domain.

### 7.19 Emulation and debugging

Debug and trace functions are integrated into the ARM Cortex-M3. Serial wire debug and trace functions are supported in addition to a standard JTAG debug and parallel trace functions. The ARM Cortex-M3 is configured to support up to eight breakpoints and four watch points.

LPC1850\_30\_20\_10

### 32-bit ARM Cortex-M3 microcontroller

### 9. Thermal characteristics

The average chip junction temperature,  $T_{j}\,(^{\circ}C),$  can be calculated using the following equation:

$$T_j = T_{amb} + (P_D \times R_{th(j-a)}) \tag{1}$$

- T<sub>amb</sub> = ambient temperature (°C),
- R<sub>th(j-a)</sub> = the package junction-to-ambient thermal resistance (°C/W)
- P<sub>D</sub> = sum of internal and I/O power dissipation

The internal power dissipation is the product of  $I_{DD(REG)(3V3)}$  and  $V_{DD(REG)(3V3)}$ . The I/O power dissipation of the I/O pins is often small and many times can be negligible. However it can be significant in some applications.

#### Table 7.Thermal characteristics

| Symbol              | Parameter                       | Min | Тур | Мах | Unit |
|---------------------|---------------------------------|-----|-----|-----|------|
| T <sub>j(max)</sub> | maximum junction<br>temperature | -   | -   | 125 | °C   |

#### Table 8. Thermal resistance (LQFP packages)

| Symbol               | Parameter                                   | Conditions                                     | Thermal resistance<br>in °C/W ±15 % |
|----------------------|---------------------------------------------|------------------------------------------------|-------------------------------------|
|                      |                                             |                                                | LQFP144                             |
| R <sub>th(j-a)</sub> | thermal resistance from junction to ambient | JEDEC (4.5 in $\times$ 4 in); still air        | 38                                  |
|                      |                                             | Single-layer (4.5 in $\times$ 3 in); still air | 50                                  |
| R <sub>th(j-c)</sub> | thermal resistance from junction to case    |                                                | 11                                  |

#### Table 9. Thermal resistance value (BGA packages)

| Symbol               | Parameter                                   | Conditions                                | Thermal resista | nce in °C/W ±15 | %        |
|----------------------|---------------------------------------------|-------------------------------------------|-----------------|-----------------|----------|
|                      |                                             |                                           | LBGA256         | TFBGA180        | TFBGA100 |
| R <sub>th(j-a)</sub> | thermal resistance from junction to ambient | JEDEC (4.5 in $\times$ 4 in); still air   | 29              | 38              | 46       |
|                      |                                             | 8-layer (4.5 in $\times$ 3 in); still air | 24              | 30              | 37       |
| R <sub>th(j-c)</sub> | thermal resistance from junction to case    |                                           | 14              | 11              | 11       |

32-bit ARM Cortex-M3 microcontroller

### 10. Static characteristics

### Table 10. Static characteristics

 $T_{amb} = -40 \ ^{\circ}C$  to +85  $^{\circ}C$  unless otherwise specified.

| Symbol                    | Parameter                           | Conditions                                                                       |            | Min | Typ <u>[1]</u> | Max | Unit |
|---------------------------|-------------------------------------|----------------------------------------------------------------------------------|------------|-----|----------------|-----|------|
| Supply pins               |                                     |                                                                                  |            |     |                |     |      |
| V <sub>DD(IO)</sub>       | input/output supply voltage         |                                                                                  |            | 2.2 | -              | 3.6 | V    |
| V <sub>DD(REG)(3V3)</sub> | regulator supply voltage<br>(3.3 V) |                                                                                  | [2]        | 2.2 | -              | 3.6 | V    |
| V <sub>DDA(3V3)</sub>     | analog supply voltage               | on pin VDDA                                                                      |            | 2.2 | -              | 3.6 | V    |
|                           | (3.3 V)                             | on pins<br>USB0_VDDA3V3_<br>DRIVER and<br>USB0_VDDA3V3                           |            | 3.0 | 3.3            | 3.6 | V    |
| V <sub>BAT</sub>          | battery supply voltage              |                                                                                  | [2]        | 2.2 | -              | 3.6 | V    |
| V <sub>prog(pf)</sub>     | polyfuse programming voltage        | on pin VPP (for OTP)                                                             | [3]        | 2.7 | -              | 3.6 | V    |
| I <sub>prog(pf)</sub>     | polyfuse programming<br>current     | on pin VPP; OTP<br>programming time ≤<br>1.6 ms                                  |            | -   | -              | 30  | mA   |
| I <sub>DD(REG)(3V3)</sub> | regulator supply current            | Active mode; code                                                                |            |     |                |     |      |
|                           | (3.3 V)                             | while(1){}                                                                       |            |     |                |     |      |
|                           |                                     | executed from RAM; all<br>peripherals disabled;<br>PLL1 enabled                  |            |     |                |     |      |
|                           |                                     | CCLK = 12 MHz                                                                    | [4]        | -   | 6.6            | -   | mA   |
|                           |                                     | CCLK = 60 MHz                                                                    | [4]        |     | 25.3           | -   | mA   |
|                           |                                     | CCLK = 120 MHz                                                                   | [4]        | -   | 48.4           | -   | mA   |
|                           |                                     | CCLK = 180 MHz                                                                   | [4]        | -   | 72.0           | -   | mA   |
| I <sub>DD(REG)(3V3)</sub> | regulator supply current (3.3 V)    | after WFE/WFI instruction<br>executed from RAM; all<br>peripherals disabled      |            |     |                |     |      |
|                           |                                     | sleep mode                                                                       | [4][5]     | -   | 5.0            | -   | mA   |
|                           |                                     | deep-sleep mode                                                                  | [4]        | -   | 30             | -   | μΑ   |
|                           |                                     | power-down mode                                                                  | [4]        | -   | 15             | -   | μA   |
|                           |                                     | deep power-down<br>mode                                                          | [4][6]     | -   | 0.03           | -   | μA   |
|                           |                                     | deep power-down<br>mode; VBAT floating                                           | <u>[4]</u> | -   | 2              | -   | μA   |
| I <sub>BAT</sub>          | battery supply current              | active mode; $V_{BAT} = 3.2 \text{ V}$ ;<br>$V_{DD(REG)(3V3)} = 3.6 \text{ V}$ . | [7]        | -   | 0              | -   | nA   |
| I <sub>BAT</sub>          | battery supply current              | V <sub>DD(REG)(3V3)</sub> = 3.3 V;<br>V <sub>BAT</sub> = 3.6 V                   | [9]        |     |                | -   |      |
|                           |                                     | deep-sleep mode                                                                  |            | -   | 2              |     | μA   |
|                           |                                     | power-down mode                                                                  | [9]        | -   | 2              | -   | μA   |
|                           |                                     | deep power-down<br>mode                                                          | <u>[9]</u> | -   | 2              | -   | μA   |

32-bit ARM Cortex-M3 microcontroller

| $T_{amb} = -40$ °C to | +85 $^{\circ}$ C unless otherwise       | specified.                                                                       |      |     |        |          |      |
|-----------------------|-----------------------------------------|----------------------------------------------------------------------------------|------|-----|--------|----------|------|
| Symbol                | Parameter                               | Conditions                                                                       |      | Min | Typ[1] | Max      | Unit |
| I/O pins - high d     | rive strength: standard driv            | ve mode                                                                          |      | 1   | I      |          |      |
| I <sub>OH</sub>       | HIGH-level output current               | $V_{OH} = V_{DD(IO)} - 0.4 \text{ V}$                                            |      | -4  | -      | -        | mA   |
| I <sub>OL</sub>       | LOW-level output current                | V <sub>OL</sub> = 0.4 V                                                          |      | 4   | -      | -        | mA   |
| I <sub>OHS</sub>      | HIGH-level short-circuit output current | drive HIGH; connected to ground                                                  | [12] | -   | -      | 32       | mA   |
| I <sub>OLS</sub>      | LOW-level short-circuit output current  | drive LOW; connected to $V_{DD(IO)}$                                             | [12] | -   | -      | 32       | mA   |
| I/O pins - high d     | rive strength: medium driv              | e mode                                                                           |      |     |        |          |      |
| I <sub>ОН</sub>       | HIGH-level output<br>current            | $V_{OH} = V_{DD(IO)} - 0.4 \text{ V}$                                            |      | -8  | -      | -        | mA   |
| I <sub>OL</sub>       | LOW-level output<br>current             | V <sub>OL</sub> = 0.4 V                                                          |      | 8   | -      | -        | mA   |
| I <sub>OHS</sub>      | HIGH-level short-circuit output current | drive HIGH; connected to ground                                                  | [12] | -   | -      | 65       | mA   |
| I <sub>OLS</sub>      | LOW-level short-circuit output current  | drive LOW; connected to $V_{DD(IO)}$                                             | [12] | -   | -      | 63       | mA   |
| I/O pins - high d     | rive strength: high drive m             | ode                                                                              |      | 1   | I      | <b>I</b> |      |
| I <sub>OH</sub>       | HIGH-level output current               | $V_{OH} = V_{DD(IO)} - 0.4 \text{ V}$                                            |      | -14 | -      | -        | mA   |
| I <sub>OL</sub>       | LOW-level output current                | V <sub>OL</sub> = 0.4 V                                                          |      | 14  | -      | -        | mA   |
| I <sub>OHS</sub>      | HIGH-level short-circuit output current | drive HIGH; connected to ground                                                  | [12] | -   | -      | 113      | mA   |
| I <sub>OLS</sub>      | LOW-level short-circuit output current  | drive LOW; connected to $V_{DD(IO)}$                                             | [12] | -   | -      | 110      | mA   |
| I/O pins - high d     | rive strength: ultra-high dr            | ive mode                                                                         |      |     | ŧ      |          |      |
| I <sub>ОН</sub>       | HIGH-level output<br>current            | $V_{OH} = V_{DD(IO)} - 0.4 V$                                                    |      | -20 | -      | -        | mA   |
| I <sub>OL</sub>       | LOW-level output current                | V <sub>OL</sub> = 0.4 V                                                          |      | 20  | -      | -        | mA   |
| I <sub>OHS</sub>      | HIGH-level short-circuit output current | drive HIGH; connected to ground                                                  | [12] | -   | -      | 165      | mA   |
| I <sub>OLS</sub>      | LOW-level short-circuit output current  | drive LOW; connected to $V_{DD(IO)}$                                             | [12] | -   | -      | 156      | mA   |
| I/O pins - high-      | speed                                   |                                                                                  |      | 1   | I      | <b>I</b> |      |
| CI                    | input capacitance                       |                                                                                  |      | -   | -      | 2        | pF   |
| ILL                   | LOW-level leakage current               | $V_I = 0 V$ ; on-chip pull-up resistor disabled                                  |      | -   | 3      | -        | nA   |
| I <sub>LH</sub>       | HIGH-level leakage current              | V <sub>I</sub> = V <sub>DD(IO)</sub> ; on-chip<br>pull-down resistor<br>disabled |      | -   | 3      | -        | nA   |
|                       |                                         | $V_{I} = 5 V$                                                                    |      | -   | -      | 20       | nA   |

### Table 10. Static characteristics ... continued

### **NXP Semiconductors**

# LPC1850/30/20/10

- [5] PLL1 disabled; IRC running; CCLK = 12 MHz.
- [6] V<sub>BAT</sub> = 3.6 V.
- [7]  $V_{DD(IO)} = V_{DDA} = 3.6$  V; over entire frequency range CCLK = 12 MHz to 180 MHz.
- [8] V<sub>DD(REG)(3V3)</sub> = 3.3 V; V<sub>DD(IO)</sub> = 3.3 V. Input leakage increases when V<sub>DD(IO)</sub> is floating or grounded. It is recommended to keep V<sub>DD(REG)(3V3)</sub> and V<sub>DD(IO)</sub> powered in deep power-down mode.
- [9] On pin VBAT;  $T_{amb} = 25 \ ^{\circ}C$ .
- [10] V<sub>ps</sub> corresponds to the output of the power switch (see Figure 9) which is determined by the greater of V<sub>BAT</sub> and V<sub>DD(Reg)(3V3)</sub>.
- [11]  $V_{DDA(3V3)} = 3.3 \text{ V}; T_{amb} = 25 \text{ °C}.$
- [12] Allowed as long as the current limit does not exceed the maximum current allowed by the device.
- [13] To  $V_{\text{SS}}.$
- [14] The values specified are simulated and absolute values.
- [15] The weak pull-up resistor is connected to the  $V_{DD(IO)}$  rail and pulls up the I/O pin to the  $V_{DD(IO)}$  level.
- [16] The input cell disables the weak pull-up resistor when the applied input voltage exceeds  $V_{DD(IO)}$ .
- [17] The parameter value specified is a simulated value excluding bond capacitance.
- [18] For USB operation 3.0 V  $\leq$  V\_{DD((IO)}  $\leq$  3.6 V. Guaranteed by design.
- [19] V<sub>DD(IO)</sub> present.
- [20] Includes external resistors of 33  $\Omega\pm$  1 % on D+ and D–.

### 32-bit ARM Cortex-M3 microcontroller



### 10.2 Peripheral power consumption

The typical power consumption at T = 25  $^{\circ}$ C for each individual peripheral is measured as follows:

- 1. Enable all branch clocks and measure the current  $I_{DD(REG)(3V3)}$ .
- 2. Disable the branch clock to the peripheral to be measured and keep all other branch clocks enabled.
- 3. Calculate the difference between measurement 1 and 2. The result is the peripheral power consumption.

| Peripheral | Branch clock               | I <sub>DD(REG)(3V3)</sub> in mA    |                                    |
|------------|----------------------------|------------------------------------|------------------------------------|
|            |                            | Branch clock<br>frequency = 48 MHz | Branch clock<br>frequency = 96 MHz |
| I2C1       | CLK_APB3_I2C1              | 0.01                               | 0.02                               |
| I2C0       | CLK_APB1_I2C0              | 0.02                               | 0.01                               |
| DAC        | CLK_APB3_DAC               | 0.01                               | 0.02                               |
| ADC0       | CLK_APB3_ADC0              | 0.05                               | 0.05                               |
| ADC1       | CLK_APB3_ADC1              | 0.04                               | 0.04                               |
| CAN0       | CLK_APB3_CAN0              | 0.17                               | 0.17                               |
| CAN1       | CLK_APB1_CAN1              | 0.17                               | 0.17                               |
| MOTOCON    | CLK_APB1_MOTOCON           | 0.05                               | 0.05                               |
| 12S        | CLK_APB1_I2S               | 0.11                               | 0.11                               |
| SPIFI      | CLK_SPIFI,<br>CLK_M3_SPIFI | 0.95                               | 1.85                               |
| GPIO       | CLK_M3_GPIO                | 0.66                               | 1.31                               |
| LCD        | CLK_M3_LCD                 | 0.85                               | 1.72                               |

Table 11. Peripheral power consumption

### 32-bit ARM Cortex-M3 microcontroller

- [2] Simulated using 10 cm of 50  $\Omega$  PCB trace with 5 pF receiver input. Rise and fall times measured between 80 % and 20 % of the full output signal level.
- [3] The slew rate is configured in the system control block in the SFSP registers using the EHS bit. See the LPC18xx user manual.
- [4]  $C_L = 20 \text{ pF}$ . Rise and fall times measured between 90 % and 10 % of the full input signal level.
- [5] The drive modes are configured in the system control block in the SFSP registers using the EHD bit. See the *LPC18xx user manual*.

### 11.8 I<sup>2</sup>C-bus

Table 20. Dynamic characteristic: I<sup>2</sup>C-bus pins

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 2.2 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V}.$ [1]

| Symbol              | Parameter                    |              | Conditions                  | Min                   | Max | Unit |
|---------------------|------------------------------|--------------|-----------------------------|-----------------------|-----|------|
| f <sub>SCL</sub>    | SCL clock frequency          |              | Standard-mode               | 0                     | 100 | kHz  |
|                     |                              |              | Fast-mode                   | 0                     | 400 | kHz  |
|                     |                              |              | Fast-mode Plus              | 0                     | 1   | MHz  |
| t <sub>f</sub>      | fall time                    | [3][4][5][6] | of both SDA and SCL signals | -                     | 300 | ns   |
|                     |                              |              | Standard-mode               |                       |     |      |
|                     |                              |              | Fast-mode                   | $20 + 0.1 \times C_b$ | 300 | ns   |
|                     |                              |              | Fast-mode Plus              | -                     | 120 | ns   |
| t <sub>LOW</sub>    | LOW period of the SCL clock  |              | Standard-mode               | 4.7                   | -   | μs   |
|                     |                              |              | Fast-mode                   | 1.3                   | -   | μs   |
|                     |                              |              | Fast-mode Plus              | 0.5                   | -   | μs   |
| t <sub>HIGH</sub>   | HIGH period of the SCL clock |              | Standard-mode               | 4.0                   | -   | μS   |
|                     |                              |              | Fast-mode                   | 0.6                   | -   | μS   |
|                     |                              |              | Fast-mode Plus              | 0.26                  | -   | μS   |
| t <sub>HD;DAT</sub> | data hold time               | [2][3][7]    | Standard-mode               | 0                     | -   | μs   |
|                     |                              |              | Fast-mode                   | 0                     | -   | μs   |
|                     |                              |              | Fast-mode Plus              | 0                     | -   | μS   |
| t <sub>SU;DAT</sub> | data set-up time             | [8][9]       | Standard-mode               | 250                   | -   | ns   |
|                     |                              |              | Fast-mode                   | 100                   | -   | ns   |
|                     |                              |              | Fast-mode Plus              | 50                    | -   | ns   |

[1] Parameters are valid over operating temperature range unless otherwise specified. See the I<sup>2</sup>C-bus specification UM10204 for details.

[2] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.

[3] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the V<sub>IH</sub>(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.

[4] C<sub>b</sub> = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.

- [5] The maximum t<sub>f</sub> for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage t<sub>f</sub> is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t<sub>f</sub>.
- [6] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing.
- [7] The maximum t<sub>HD;DAT</sub> could be 3.45 μs and 0.9 μs for Standard-mode and Fast-mode but must be less than the maximum of t<sub>VD;DAT</sub> or t<sub>VD;ACK</sub> by a transition time. This maximum must only be met if the device does not stretch the LOW period (t<sub>LOW</sub>) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
- [8] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the acknowledge.

LPC1850 30 20 10

### **NXP Semiconductors**

# LPC1850/30/20/10

### 32-bit ARM Cortex-M3 microcontroller

[9] A Fast-mode I<sup>2</sup>C-bus device can be used in a Standard-mode I<sup>2</sup>C-bus system but the requirement t<sub>SU;DAT</sub> = 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t<sub>r(max)</sub> + t<sub>SU;DAT</sub> = 1000 + 250 = 1250 ns (according to the Standard-mode I<sup>2</sup>C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.



### 11.9 I<sup>2</sup>S-bus interface

#### Table 21. Dynamic characteristics: I<sup>2</sup>S-bus interface pins

 $T_{amb}$  = 25 °C; 2.2 V  $\leq$  V<sub>DD(REG)(3V3)</sub>  $\leq$  3.6 V; 2.7 V  $\leq$  V<sub>DD(10)</sub>  $\leq$  3.6 V; C<sub>L</sub> = 20 pF. Conditions and data refer to I2S0 and I2S1 pins. Simulated values.

| Symbol                     | Parameter              | Conditions                             |            | Min | Тур  | Max | Unit |
|----------------------------|------------------------|----------------------------------------|------------|-----|------|-----|------|
| common to input and output |                        |                                        |            |     |      |     |      |
| t <sub>r</sub>             | rise time              |                                        |            | -   | 4    | -   | ns   |
| t <sub>f</sub>             | fall time              |                                        |            | -   | 4    | -   | ns   |
| t <sub>WH</sub>            | pulse width HIGH       | on pins I2Sx_TX_SCK<br>and I2Sx_RX_SCK |            | 36  | -    | -   | ns   |
| t <sub>WL</sub>            | pulse width LOW        | on pins I2Sx_TX_SCK<br>and I2Sx_RX_SCK |            | 36  | -    | -   | ns   |
| output                     |                        |                                        |            |     |      |     |      |
| t <sub>v(Q)</sub>          | data output valid time | on pin I2Sx_TX_SDA                     | <u>[1]</u> | -   | 4.4  | -   | ns   |
|                            |                        | on pin I2Sx_TX_WS                      |            | -   | 4.3  | -   | ns   |
| input                      |                        |                                        |            |     |      |     |      |
| t <sub>su(D)</sub>         | data input set-up time | on pin I2Sx_RX_SDA                     | <u>[1]</u> | -   | 0    | -   | ns   |
|                            |                        | on pin I2Sx_RX_WS                      |            |     | 0.20 |     | ns   |
| t <sub>h(D)</sub>          | data input hold time   | on pin I2Sx_RX_SDA                     | <u>[1]</u> | -   | 3.7  | -   | ns   |
|                            |                        | on pin I2Sx_RX_WS                      |            | -   | 3.9  | -   | ns   |

[1] Clock to the l<sup>2</sup>S-bus interface BASE\_APB1\_CLK = 150 MHz; peripheral clock to the l<sup>2</sup>S-bus interface PCLK = BASE\_APB1\_CLK / 12. l<sup>2</sup>S clock cycle time  $T_{cy(clk)}$  = 79.2 ns; corresponds to the SCK signal in the l<sup>2</sup>S-bus specification.

LPC1850\_30\_20\_10

32-bit ARM Cortex-M3 microcontroller





### 11.10 USART interface

#### Table 22. USART dynamic characteristics

 $T_{amb} = -40$  °C to 85 °C; 2.2 V  $\leq V_{DD(REG)(3V3)} \leq 3.6$  V; 2.7 V  $\leq V_{DD(IO)} \leq 3.6$  V; C<sub>L</sub> = 20 pF. EHS = 1 for all pins. Simulated values.

| Symbol                             | Parameter              | Min  | Max | Unit |  |  |  |
|------------------------------------|------------------------|------|-----|------|--|--|--|
| USART master (in synchronous mode) |                        |      |     |      |  |  |  |
| t <sub>su(D)</sub>                 | data input set-up time | 26.6 | -   | ns   |  |  |  |
| t <sub>h(D)</sub>                  | data input hold time   | 0    | -   | ns   |  |  |  |
| t <sub>v(Q)</sub>                  | data output valid time | 0    | 8.8 | ns   |  |  |  |
| USART slave (in synchronous mode)  |                        |      |     |      |  |  |  |
| t <sub>su(D)</sub>                 | data input set-up time | 1.2  | -   | ns   |  |  |  |
| t <sub>h(D)</sub>                  | data input hold time   | 0.4  | -   | ns   |  |  |  |
| t <sub>v(Q)</sub>                  | data output valid time | 5.5  | 24  | ns   |  |  |  |

### 32-bit ARM Cortex-M3 microcontroller

#### Table 25. Dynamic characteristics: Dynamic external memory interface

Simulated data over temperature and process range;  $C_L = 10 \text{ pF}$  for  $\overline{EMC_DYCSn}$ ,  $\overline{EMC_RAS}$ ,  $\overline{EMC_CAS}$ ,  $\overline{EMC_WE}$ ,  $EMC_An$ ;  $C_L = 9 \text{ pF}$  for  $EMC_Dn$ ;  $C_L = 5 \text{ pF}$  for  $EMC_DQMOUTn$ ,  $EMC_CLKn$ ,  $EMC_CKEOUTn$ ;  $T_{amb} = -40 \text{ °C}$  to 85 °C;  $2.2 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V}$ ;  $V_{DD(IO)} = 3.3 \text{ V} \pm 10 \text{ %}$ ; RD = 1 (see LPC18xx User manual);  $EMC_CLKn$  delays  $CLK0_DELAY = CLK1_DELAY = CLK2_DELAY = CL$ 

| Symbol                          | Parameter                              | Min                                                     | Тур                                       | Max                                              | Unit |  |  |  |
|---------------------------------|----------------------------------------|---------------------------------------------------------|-------------------------------------------|--------------------------------------------------|------|--|--|--|
| T <sub>cy(clk)</sub>            | clock cycle time                       | 8.4                                                     | -                                         | -                                                | ns   |  |  |  |
| Common to read and write cycles |                                        |                                                         |                                           |                                                  |      |  |  |  |
| t <sub>d(DYCSV)</sub>           | DYCS delay time                        | -                                                       | $3.1 + 0.5 \times T_{cy(clk)}$            | $5.1 + 0.5 \times T_{cy(clk)}$                   | ns   |  |  |  |
| t <sub>h(DYCS)</sub>            | DYCS hold time                         | $0.3 \textbf{+} 0.5 \times \textbf{T}_{\text{cy(clk)}}$ | $0.9 + 0.5 \times T_{cy(clk)}$            | -                                                | ns   |  |  |  |
| t <sub>d(RASV)</sub>            | row address strobe valid delay time    | -                                                       | $3.1 + 0.5 \times T_{cy(clk)}$            | $4.9 \textbf{+} 0.5 \times \textbf{T}_{cy(clk)}$ | ns   |  |  |  |
| t <sub>h(RAS)</sub>             | row address strobe hold time           | $0.5 \textbf{+} 0.5 \times T_{\text{cy(clk)}}$          | $1.1 + 0.5 \times T_{cy(clk)}$            | -                                                | ns   |  |  |  |
| t <sub>d(CASV)</sub>            | column address strobe valid delay time | -                                                       | $2.9 + 0.5 \times T_{cy(clk)}$            | $4.6 \textbf{+} 0.5 \times T_{cy(clk)}$          | ns   |  |  |  |
| t <sub>h(CAS)</sub>             | column address strobe hold time        | $0.3 \textbf{+} 0.5 \times T_{\text{cy(clk)}}$          | $0.9 + 0.5 \times T_{cy(clk)}$            | -                                                | ns   |  |  |  |
| t <sub>d(WEV)</sub>             | WE valid delay time                    | -                                                       | $3.2 \textbf{ + } 0.5 \times T_{cy(clk)}$ | $5.9 \textbf{+} 0.5 \times T_{cy(clk)}$          | ns   |  |  |  |
| t <sub>h(WE)</sub>              | WE hold time                           | $1.3 \textbf{+} 0.5 \times T_{cy(clk)}$                 | $1.4 + 0.5 \times T_{cy(clk)}$            | -                                                | ns   |  |  |  |
| t <sub>d(DQMOUTV)</sub>         | DQMOUT valid delay time                | -                                                       | $3.1 + 0.5 \times T_{cy(clk)}$            | $5.0 \textbf{+} 0.5 \times T_{cy(clk)}$          | ns   |  |  |  |
| t <sub>h(DQMOUT)</sub>          | DQMOUT hold time                       | $0.2 \textbf{ + } 0.5 \times T_{\text{cy(clk)}}$        | $0.8 + 0.5 \times T_{cy(clk)}$            | -                                                | ns   |  |  |  |
| t <sub>d(AV)</sub>              | address valid delay time               | -                                                       | $3.8 \textbf{+} 0.5 \times T_{cy(clk)}$   | $6.3 \textbf{+} 0.5 \times T_{cy(clk)}$          | ns   |  |  |  |
| t <sub>h(A)</sub>               | address hold time                      | $0.3 \textbf{+} 0.5 \times T_{\text{cy(clk)}}$          | $0.9 + 0.5 \times T_{cy(clk)}$            | -                                                | ns   |  |  |  |
| t <sub>d(CKEOUTV)</sub>         | CKEOUT valid delay time                | -                                                       | $3.1 \textbf{ + } 0.5 \times T_{cy(clk)}$ | $5.1 + 0.5 \times T_{cy(clk)}$                   | ns   |  |  |  |
| t <sub>h(CKEOUT)</sub>          | CKEOUT hold time                       | $0.5\times T_{cy(clk)}$                                 | $0.7 \textbf{ + } 0.5 \times T_{cy(clk)}$ | -                                                | ns   |  |  |  |
| Read cycle parameters           |                                        |                                                         |                                           |                                                  |      |  |  |  |
| t <sub>su(D)</sub>              | data input set-up time                 | -1.5                                                    | -0.5                                      | -                                                | ns   |  |  |  |
| t <sub>h(D)</sub>               | data input hold time                   | 2.2                                                     | 0.8                                       | -                                                | ns   |  |  |  |
| Write cycle parameters          |                                        |                                                         |                                           |                                                  |      |  |  |  |
| t <sub>d(QV)</sub>              | data output valid delay time           | -                                                       | $3.8 + 0.5 \times T_{cy(clk)}$            | $6.2 + 0.5 \times T_{cy(clk)}$                   | ns   |  |  |  |
| t <sub>h(Q)</sub>               | data output hold time                  | $0.5\times T_{cy(clk)}$                                 | $0.7 + 0.5 \times T_{cy(clk)}$            | -                                                | ns   |  |  |  |

Table 26. Dynamic characteristics: Dynamic external memory interface; EMC\_CLK[3:0] delay values  $T_{amb} = -40 \ ^{\circ}C \ to \ 85 \ ^{\circ}C: \ V_{DD/(D)} = 3.3 \ V \pm 10 \ \%: 2.2 \ V \leq V_{DD/(D)} E C V_{3} \ (3.6 \ V.)$ 

| Symbol         | Parameter  | Conditions       |            | Min | Тур | Max | Unit |  |
|----------------|------------|------------------|------------|-----|-----|-----|------|--|
| t <sub>d</sub> | delay time | delay value      | <u>[1]</u> |     |     |     |      |  |
|                |            | $CLKn_DELAY = 0$ |            | 0.0 | 0.0 | 0.0 | ns   |  |
|                |            | CLKn_DELAY = 1   | [1]        | 0.4 | 0.5 | 0.8 | ns   |  |
|                |            | CLKn_DELAY = 2   | [1]        | 0.7 | 1.0 | 1.7 | ns   |  |
|                |            | CLKn_DELAY = 3   | [1]        | 1.1 | 1.6 | 2.5 | ns   |  |
|                |            | CLKn_DELAY = 4   | [1]        | 1.4 | 2.0 | 3.3 | ns   |  |
|                |            | CLKn_DELAY = 5   | [1]        | 1.7 | 2.6 | 4.1 | ns   |  |
|                |            | CLKn_DELAY = 6   | [1]        | 2.1 | 3.1 | 4.9 | ns   |  |
|                |            | CLKn_DELAY = 7   | [1]        | 2.5 | 3.6 | 5.8 | ns   |  |

[1] Program the EMC\_CLKn delay values in the EMCDELAYCLK register (see the LPC18xx User manual). The delay values must be the same for all SDRAM clocks EMC\_CLKn: CLK0\_DELAY = CLK1\_DELAY = CLK2\_DELAY = CLK3\_DELAY.

All information provided in this document is subject to legal disclaimers.

LPC1850 30 20 10

### **NXP Semiconductors**

### LPC1850/30/20/10



### **NXP Semiconductors**

# LPC1850/30/20/10



