

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	150MHz
Connectivity	CANbus, EBI/EMI, I ² C, Microwire, SPI, SSI, SSP, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	64
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	168K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1820fet100-551

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M3 microcontroller

LCD, Ethernet, U	<i>зв</i> о, а	1005			are	notava		on all parts. See <u>Table 2</u> .
Symbol	256	A180	A100	44		state		Description
	GAS	BG/	BG/	FP1		set	be	
	Е	Ë	11	ГO		E	Σ	
P2_8	J16	H14	C6	98	[2]	N; PU	-	R — Function reserved. Boot pin (see <u>Table 5</u>)
							0	CTOUT_0 — SCTimer/PWM output 0. Match output 0 of timer 0.
							I/O	U3_DIR — RS-485/EIA-485 output enable/direction control for USART3.
							I/O	EMC_A8 — External memory address line 8.
							I/O	GPIO5[7] — General purpose digital input/output pin.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
P2_9	H16	G14	B10	102	[2]	N; PU	I/O	GPIO1[10] — General purpose digital input/output pin. Boot pin (see <u>Table 5</u>).
							0	CTOUT_3 — SCTimer/PWM output 3. Match output 3 of timer 0.
							I/O	U3_BAUD — Baud pin for USART3.
							I/O	EMC_A0 — External memory address line 0.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
P2_10	G16	F14	E8	104	[2]	N; PU	I/O	GPIO0[14] — General purpose digital input/output pin.
							0	CTOUT_2 — SCTimer/PWM output 2. Match output 2 of timer 0.
							0	U2_TXD — Transmitter output for USART2.
							I/O	EMC_A1 — External memory address line 1.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
P2_11	F16	E13	A9	105	[2]	N; PU	I/O	GPIO1[11] — General purpose digital input/output pin.
							0	CTOUT_5 — SCTimer/PWM output 5. Match output 3 of timer 3.
							I	U2_RXD — Receiver input for USART2.
							I/O	EMC_A2 — External memory address line 2.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.

Table 3. Pin description ...continued

LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.

32-bit ARM Cortex-M3 microcontroller

- Complies with USB On-The-Go supplement.
- Complies with Enhanced Host Controller Interface Specification.
- Supports auto USB 2.0 mode discovery.
- Supports all high-speed USB-compliant peripherals.
- Supports all full-speed USB-compliant peripherals.
- Supports software Host Negotiation Protocol (HNP) and Session Request Protocol (SRP) for OTG peripherals.
- Supports interrupts.
- This module has its own, integrated DMA engine.
- USB interface electrical test software included in ROM USB stack.

7.13.7 High-speed USB Host/Device interface with ULPI (USB1)

Remark: USB1 is available on parts LPC1850/30 (see <u>Table 2</u>).

The USB1 interface can operate as a full-speed USB host/device interface or can connect to an external ULPI PHY for High-speed operation.

7.13.7.1 Features

- Complies with Universal Serial Bus specification 2.0.
- Complies with Enhanced Host Controller Interface Specification.
- Supports auto USB 2.0 mode discovery.
- Supports all high-speed USB-compliant peripherals if connected to external ULPI PHY.
- Supports all full-speed USB-compliant peripherals.
- Supports interrupts.
- This module has its own, integrated DMA engine.
- USB interface electrical test software included in ROM USB stack.

7.13.8 LCD controller

Remark: The LCD controller is available on LPC1850 only.

The LCD controller provides all of the necessary control signals to interface directly to various color and monochrome LCD panels. Both STN (single and dual panel) and TFT panels can be operated. The display resolution is selectable and can be up to 1024×768 pixels. Several color modes are provided, up to a 24-bit true-color non-palettized mode. An on-chip 512 byte color palette allows reducing bus utilization (that is, memory size of the displayed data) while still supporting many colors.

The LCD interface includes its own DMA controller to allow it to operate independently of the CPU and other system functions. A built-in FIFO acts as a buffer for display data, providing flexibility for system timing. Hardware cursor support can further reduce the amount of CPU time required to operate the display.

7.13.8.1 Features

• AHB master interface to access frame buffer.

32-bit ARM Cortex-M3 microcontroller

and velocity. In addition, a third channel, or index signal, can be used to reset the position counter. The quadrature encoder interface decodes the digital pulses from a quadrature encoder wheel to integrate position over time and determine direction of rotation. In addition, the QEI can capture the velocity of the encoder wheel.

7.15.3.1 Features

- Tracks encoder position.
- Increments/decrements depending on direction.
- Programmable for 2× or 4× position counting.
- Velocity capture using built-in timer.
- Velocity compare function with "less than" interrupt.
- Uses 32-bit registers for position and velocity.
- Three position-compare registers with interrupts.
- Index counter for revolution counting.
- Index compare register with interrupts.
- Can combine index and position interrupts to produce an interrupt for whole and partial revolution displacement.
- Digital filter with programmable delays for encoder input signals.
- Can accept decoded signal inputs (clk and direction).

7.15.4 Repetitive Interrupt (RI) timer

The repetitive interrupt timer provides a free-running 32-bit counter which is compared to a selectable value, generating an interrupt when a match occurs. Any bits of the timer compare function can be masked such that they do not contribute to the match detection. The repetitive interrupt timer can be used to create an interrupt that repeats at predetermined intervals.

7.15.4.1 Features

- 32-bit counter. Counter can be free-running or be reset by a generated interrupt.
- 32-bit compare value.
- 32-bit compare mask. An interrupt is generated when the counter value equals the compare value, after masking. This mechanism allows for combinations not possible with a simple compare.

7.15.5 Windowed WatchDog Timer (WWDT)

The purpose of the watchdog is to reset the controller if software fails to periodically service it within a programmable time window.

7.15.5.1 Features

- Internally resets chip if not periodically reloaded during the programmable time-out period.
- Optional windowed operation requires reload to occur between a minimum and maximum time period, both programmable.

32-bit ARM Cortex-M3 microcontroller

10. Static characteristics

Table 10. Static characteristics

 $T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ <u>[1]</u>	Max	Unit
Supply pins							
V _{DD(IO)}	input/output supply voltage			2.2	-	3.6	V
V _{DD(REG)(3V3)}	regulator supply voltage (3.3 V)		[2]	2.2	-	3.6	V
V _{DDA(3V3)}	analog supply voltage	on pin VDDA		2.2	-	3.6	V
	(3.3 V)	on pins USB0_VDDA3V3_ DRIVER and USB0_VDDA3V3		3.0	3.3	3.6	V
V _{BAT}	battery supply voltage		[2]	2.2	-	3.6	V
V _{prog(pf)}	polyfuse programming voltage	on pin VPP (for OTP)	[3]	2.7	-	3.6	V
I _{prog(pf)}	polyfuse programming current	on pin VPP; OTP programming time ≤ 1.6 ms		-	-	30	mA
I _{DD(REG)(3V3)}	regulator supply current	Active mode; code					
	(3.3 V)	while(1){}					
		executed from RAM; all peripherals disabled; PLL1 enabled					
		CCLK = 12 MHz	[4]	-	6.6	-	mA
		CCLK = 60 MHz	[4]		25.3	-	mA
		CCLK = 120 MHz	[4]	-	48.4	-	mA
		CCLK = 180 MHz	[4]	-	72.0	-	mA
I _{DD(REG)(3V3)}	regulator supply current (3.3 V)	after WFE/WFI instruction executed from RAM; all peripherals disabled					
		sleep mode	[4][5]	-	5.0	-	mA
		deep-sleep mode	[4]	-	30	-	μΑ
		power-down mode	[4]	-	15	-	μA
		deep power-down mode	[4][6]	-	0.03	-	μA
		deep power-down mode; VBAT floating	<u>[4]</u>	-	2	-	μA
I _{BAT}	battery supply current	active mode; $V_{BAT} = 3.2 \text{ V}$; $V_{DD(REG)(3V3)} = 3.6 \text{ V}$.	[7]	-	0	-	nA
I _{BAT}	battery supply current	V _{DD(REG)(3V3)} = 3.3 V; V _{BAT} = 3.6 V	[9]			-	
		deep-sleep mode		-	2		μA
		power-down mode	[9]	-	2	-	μA
		deep power-down mode	<u>[9]</u>	-	2	-	μA

© NXP Semiconductors N.V. 2016. All rights reserved.

32-bit ARM Cortex-M3 microcontroller

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
I _{OZ}	OFF-state output current	$V_O = 0 V$ to $V_{DD(IO)}$; on-chip pull-up/down resistors disabled; absolute value		-	3	-	nA
VI	input voltage	pin configured to provide a digital function;					
		$V_{DD(IO)} \ge 2.2 \text{ V}$		0	-	5.5	V
		$V_{DD(IO)} = 0 V$		0	-	3.6	V
Vo	output voltage	output active		0	-	V _{DD(IO)}	V
V _{IH}	HIGH-level input voltage			$0.7 \times V_{DD(IO)}$	-	5.5	V
V _{IL}	LOW-level input voltage			0	-	$0.3 \times V_{DD(IO)}$	V
V _{hys}	hysteresis voltage			$0.1 \times V_{DD(IO)}$	-	-	V
V _{OH}	HIGH-level output voltage	I _{OH} = -8 mA		V _{DD(IO)} - 0.4	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 8 mA		-	-	0.4	V
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD(IO)} - 0.4 V$		-8	-	-	mA
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		8	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	drive HIGH; connected to ground	[12]	-	-	86	mA
I _{OLS}	LOW-level short-circuit output current	drive LOW; connected to $V_{DD(IO)}$	[12]	-	-	76	mA
l _{pd}	pull-down current	$V_{I} = V_{DD(IO)}$	[14] [15] [16]	-	62	-	μΑ
I _{pu}	pull-up current	V _I = 0 V	[14] [15] [16]	-	-62	-	μΑ
		$V_{DD(IO)} < V_I \le 5 V$		-	0	-	μA
Open-drain	I ² C0-bus pins						
V _{IH}	HIGH-level input voltage			$0.7 \times V_{DD(IO)}$	-	-	V
V _{IL}	LOW-level input voltage			0	0.14	$0.3 \times V_{DD(IO)}$	V
V _{hys}	hysteresis voltage			$0.1 \times V_{DD(IO)}$	-	-	V
V _{OL}	LOW-level output voltage	I _{OLS} = 3 mA		-	-	0.4	V
ILI	input leakage current	$V_{I} = V_{DD(IO)}$ $V_{I} = 5 V$	[13]	-	4.5 -	- 10	μΑ μΑ

Table 10. Static characteristics ... continued $T_{orb} = -40$ °C to +85 °C unless otherwise specified.

32-bit ARM Cortex-M3 microcontroller

32-bit ARM Cortex-M3 microcontroller

32-bit ARM Cortex-M3 microcontroller

Peripheral	Branch clock	I _{DD(REG)(3V3)} in mA			
		Branch clock frequency = 48 MHz	Branch clock frequency = 96 MHz		
ETHERNET	CLK_M3_ETHERNET	1.05	2.09		
UART0	CLK_M3_UART0, CLK_APB0_UART0	0.3	0.38		
UART1	CLK_M3_UART1, CLK_APB0_UART1	0.27	0.48		
UART2	CLK_M3_UART2, CLK_APB2_UART2	0.27	0.47		
UART3	CLK_M3_USART3, CLK_APB2_UART3	0.29	0.49		
TIMER0	CLK_M3_TIMER0	0.07	0.14		
TIMER1	CLK_M3_TIMER1	0.07	0.14		
TIMER2	CLK_M3_TIMER2	0.07	0.15		
TIMER3	CLK_M3_TIMER3	0.06	0.11		
SDIO	CLK_M3_SDIO, CLK_SDIO	0.79	1.37		
SCTimer/PWM	CLK_M3_SCT	0.52	1.05		
SSP0	CLK_M3_SSP0, CLK_APB0_SSP0	0.12	0.21		
SSP1	CLK_M3_SSP1, CLK_APB2_SSP1	0.15	0.28		
DMA	CLK_M3_DMA	1.88	3.71		
WWDT	CLK_M3_WWDT	0.05	0.08		
QEI	CLK_M3_QEI	0.33	0.68		
USB0	CLK_M3_USB0, CLK_USB0	1.46	3.32		
USB1	CLK_M3_USB1, CLK_USB1	2.83	5.03		
RITIMER	CLK_M3_RITIMER	0.04	0.08		
EMC	CLK_M3_EMC, CLK_M3_EMC_DIV	3.6	6.97		
SCU	CLK_M3_SCU	0.09	0.23		
CREG	CLK_M3_CREG	0.37	0.72		

Table 11. Peripheral power consumption

32-bit ARM Cortex-M3 microcontroller

11. Dynamic characteristics

11.1 Wake-up times

Table 13. Dynamic characteristic: Wake-up from Deep-sleep, Power-down, and Deep power-down modes

 $T_{amb} = -40 \ ^{\circ}\text{C} \text{ to } +85 \ ^{\circ}\text{C}$

Symbol	Parameter	Conditions		Min	Typ <u>[1]</u>	Max	Unit
t _{wake}	wake-up time	from Sleep mode	[2]	$3 \times T_{cy(clk)}$	$5 imes T_{cy(clk)}$	-	ns
		from Deep-sleep and Power-down mode		12	51	-	μS
		from Deep power-down mode		-	250	-	μs
		after reset		-	250	-	μs

[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

[2] $T_{cy(clk)} = 1/CCLK$ with CCLK = CPU clock frequency.

11.2 External clock for oscillator in slave mode

Remark: The input voltage on the XTAL1/2 pins must be ≤ 1.2 V (see <u>Table 10</u>). For connecting the oscillator to the XTAL pins, also see <u>Section 13.2</u> and <u>Section 13.4</u>.

Table 14. Dynamic characteristic: external clock

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; V_{DD(IO)} \text{ over specified ranges}.$

Symbol	Parameter	Min	Max	Unit
f _{osc}	oscillator frequency	1	25	MHz
T _{cy(clk)}	clock cycle time	40	1000	ns
t _{CHCX}	clock HIGH time	$T_{cy(clk)} \times 0.4$	$T_{cy(clk)} imes 0.6$	ns
t _{CLCX}	clock LOW time	$T_{cy(clk)} imes 0.4$	$T_{cy(clk)} imes 0.6$	ns

[1] Parameters are valid over operating temperature range unless otherwise specified.

NXP Semiconductors

LPC1850/30/20/10

32-bit ARM Cortex-M3 microcontroller

[9] A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system but the requirement t_{SU;DAT} = 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{r(max)} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-mode I²C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.

11.9 I²S-bus interface

Table 21. Dynamic characteristics: I²S-bus interface pins

 T_{amb} = 25 °C; 2.2 V \leq V_{DD(REG)(3V3)} \leq 3.6 V; 2.7 V \leq V_{DD(10)} \leq 3.6 V; C_L = 20 pF. Conditions and data refer to I2S0 and I2S1 pins. Simulated values.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
common	to input and output	1	1		I	I	I
t _r	rise time			-	4	-	ns
t _f	fall time			-	4	-	ns
t _{WH}	pulse width HIGH	on pins I2Sx_TX_SCK and I2Sx_RX_SCK		36	-	-	ns
t _{WL}	pulse width LOW	on pins I2Sx_TX_SCK and I2Sx_RX_SCK		36	-	-	ns
output							
t _{v(Q)}	data output valid time	on pin I2Sx_TX_SDA	[1]	-	4.4	-	ns
		on pin I2Sx_TX_WS		-	4.3	-	ns
input							
t _{su(D)}	data input set-up time	on pin I2Sx_RX_SDA	[1]	-	0	-	ns
		on pin I2Sx_RX_WS			0.20		ns
t _{h(D)}	data input hold time	on pin I2Sx_RX_SDA	[1]	-	3.7	-	ns
		on pin I2Sx_RX_WS		-	3.9	-	ns

[1] Clock to the I²S-bus interface BASE_APB1_CLK = 150 MHz; peripheral clock to the I²S-bus interface PCLK = BASE_APB1_CLK / 12. I²S clock cycle time $T_{cy(clk)}$ = 79.2 ns; corresponds to the SCK signal in the I²S-bus specification.

32-bit ARM Cortex-M3 microcontroller

11.10 USART interface

Table 22. USART dynamic characteristics

 $T_{amb} = -40$ °C to 85 °C; 2.2 V $\leq V_{DD(REG)(3V3)} \leq 3.6$ V; 2.7 V $\leq V_{DD(IO)} \leq 3.6$ V; C_L = 20 pF. EHS = 1 for all pins. Simulated values.

Symbol	Parameter	Min	Max	Unit
USART master (ii	n synchronous mode)			
t _{su(D)}	data input set-up time	26.6	-	ns
t _{h(D)}	data input hold time	0	-	ns
t _{v(Q)}	data output valid time	0	8.8	ns
USART slave (in s	synchronous mode)			
t _{su(D)}	data input set-up time	1.2	-	ns
t _{h(D)}	data input hold time	0.4	-	ns
t _{v(Q)}	data output valid time	5.5	24	ns

32-bit ARM Cortex-M3 microcontroller

11.11 SSP interface

Table 23. Dynamic characteristics: SSP pins in SPI mode

 $T_{amb} = -40$ °C to +85 °C; 2.2 V $\leq V_{DD(REG)(3V3)} \leq 3.6$ V; 2.7 V $\leq V_{DD(IO)} \leq 3.6$ V; $C_L = 20$ pF. Sampled at 10 % and 90 % of the signal level; EHS = 1 for all pins. Simulated values.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
SSP mas	ster						
T _{cy(clk)}	clock cycle time	full-duplex mode	[1]	1/(25.5 × 10 ⁶)	-	-	S
		when only transmitting		1/(51 × 10 ⁶)	-	-	s
t _{DS}	data set-up time	in SPI mode		13.6	-	-	ns
t _{DH}	data hold time	in SPI mode		-3.8	-	-	ns
t _{v(Q)}	data output valid time	in SPI mode		-	-	6.0	ns
t _{h(Q)}	data output hold time	in SPI mode		-1.1	-	-	ns
t _{lead}	lead time	continuous transfer mode SPI mode; CPOL = 0; CPHA = 0		T _{cy(clk)} + 3.2	-	T _{cy(clk)} + 6.1	ns
		SPI mode; CPOL = 0; CPHA = 1		$0.5 imes T_{cy(clk)}$ + 3.2	-	$0.5 imes T_{cy(clk)} + 6.1$	ns
		SPI mode; CPOL = 1; CPHA = 0		$T_{cy(clk)}$ + 3.2	-	$T_{cy(clk)}$ + 6.1	ns
		SPI mode; CPOL = 1; CPHA = 1		$0.5\times T_{cy(clk)} + 3.2$	-	$0.5 imes T_{cy(clk)}$ + 6.1	ns
		synchronous serial frame mode		$0.5\times T_{cy(clk)} + 3.2$	-	$0.5 imes T_{cy(clk)}$ + 6.1	ns
		microwire frame format		$T_{cy(clk)}$ + 3.2	-	T _{cy(clk)} + 6.1	ns
t _{lag}	lag time	continuous transfer mode SPI mode; CPOL = 0; CPHA = 0		$0.5 \times T_{cy(clk)}$	-	-	ns
		SPI mode; CPOL = 0; CPHA = 1		T _{cy(clk)}	-	-	ns
		SPI mode; CPOL = 1; CPHA = 0		$0.5 \times T_{cy(clk)}$	-	-	ns
		SPI mode; CPOL = 1; CPHA = 1		T _{cy(clk)}	-	-	ns
		synchronous serial frame mode		T _{cy(clk)}	-	-	ns
		microwire frame format		$0.5 \times T_{cy(clk)}$	-	-	ns

32-bit ARM Cortex-M3 microcontroller

12. ADC/DAC electrical characteristics

Table 33. ADC characteristics

 $V_{DDA(3V3)}$ over specified ranges; $T_{amb} = -40$ °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
VIA	analog input voltage			0	-	V _{DDA(3V3)}	V
C _{ia}	analog input capacitance			-	-	2	pF
E _D	differential linearity error	$2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$	[1][2]	-	±0.8	-	LSB
		$2.2 \text{ V} \le \text{V}_{\text{DDA}(3V3)}$ < 2.7 V		-	±1.0	-	LSB
E _{L(adj)}	integral non-linearity	$2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$	[3]	-	±0.8	-	LSB
		$2.2 \text{ V} \le \text{V}_{\text{DDA}(3V3)}$ < 2.7 V		-	±1.5	-	LSB
Eo	offset error	$2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$	[4]	-	±0.15	-	LSB
		$2.2 \text{ V} \le \text{V}_{\text{DDA}(3V3)}$ < 2.7 V		-	±0.15	-	LSB
E _G	gain error	$2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$	[5]	-	±0.3	-	%
		$2.2 \text{ V} \le \text{V}_{\text{DDA}(3V3)}$ < 2.7 V		-	±0.35	-	%
Ε _T	absolute error	$2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$	[6]	-	±3	-	LSB
		$2.2 \text{ V} \le \text{V}_{\text{DDA}(3V3)}$ < 2.7 V		-	±4	-	LSB
R _{vsi}	voltage source interface resistance	see Figure 40		-	-	$\begin{array}{c} 1/(7\times f_{clk(ADC)} \\ \times C_{ia}) \end{array}$	kΩ
R _i	input resistance		[7][8]	-	-	1.2	MΩ
f _{clk(ADC)}	ADC clock frequency			-	-	4.5	MHz
f _s	sampling frequency	10-bit resolution; 11 clock cycles		-	-	400	kSamples/s
		2-bit resolution; 3 clock cycles				1.5	MSamples/s

[1] The ADC is monotonic, there are no missing codes.

- [2] The differential linearity error (E_D) is the difference between the actual step width and the ideal step width. See Figure 39.
- [3] The integral non-linearity (E_{L(adj)}) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See <u>Figure 39</u>.
- [4] The offset error (E_O) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See Figure 39.
- [5] The gain error (E_G) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See <u>Figure 39</u>.
- [6] The absolute error (E_T) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC and the ideal transfer curve. See <u>Figure 39</u>.

[7] $T_{amb} = 25 \ ^{\circ}C.$

[8] Input resistance R_i depends on the sampling frequency fs: R_i = 2 k Ω + 1 / (f_s × C_{ia}).

32-bit ARM Cortex-M3 microcontroller

13.6 Reset pin configuration

13.7 Suggested USB interface solutions

The USB device can be connected to the USB as self-powered device (see <u>Figure 46</u>) or bus-powered device (see <u>Figure 47</u>).

All information provided in this document is subject to legal disclaimers.

LPC1850 30 20 10

32-bit ARM Cortex-M3 microcontroller

On the LPC1850/30/20/10, USBn_VBUS pins are 5 V tolerant only when VDDIO is applied and at operating voltage level. Therefore, if the USBn_VBUS function is connected to the USB connector and the device is self-powered, the USBn_VBUS pins must be protected for situations when VDDIO = 0 V.

If VDDIO is always at operating level while VBUS = 5 V, the USBn_VBUS pin can be connected directly to the VBUS pin on the USB connector.

For systems where VDDIO can be 0 V and VBUS is directly applied to the USBn_VBUS pins, precautions must be taken to reduce the voltage to below 3.6 V, which is the maximum allowable voltage on the USBn_VBUS pins in this case.

One method is to use a voltage divider to connect the USBn_VBUS pins to VBUS on the USB connector. The voltage divider ratio should be such that the USB_VBUS pin will be greater than 0.7VDDIO to indicate a logic HIGH while below the 3.6 V allowable maximum voltage.

For the following operating conditions

 $VBUS_{max} = 5.25 V$ VDDIO = 3.6 V,

the voltage divider should provide a reduction of 3.6 V/5.25 V or ~0.686 V.

For bus-powered devices, a regulator powered by USB can provide 3.3 V to VDDIO whenever bus power is present and ensure that power to the USBn_VBUS pins is always present when the 5 V VBUS signal is applied. See Figure 47.

Remark: Applying 5 V to the USBn_VBUS pins for a short time while the regulator ramps up might compromise the long-term reliability of the part but does not affect its function.

32-bit ARM Cortex-M3 microcontroller

14. Package outline

Fig 49. Package outline of the LBGA256 package

All information provided in this document is subject to legal disclaimers.

LPC1850 30 20 10

32-bit ARM Cortex-M3 microcontroller

15. Soldering

32-bit ARM Cortex-M3 microcontroller

Table 40. Abbreviations ... continued

Acronym	Description
USART	Universal Synchronous Asynchronous Receiver/Transmitter
USB	Universal Serial Bus
UTMI	USB 2.0 Transceiver Macrocell Interface

17. References

- [1] LPC18xx User manual UM10430: http://www.nxp.com/documents/user_manual/UM10430.pdf
- [2] LPC18X0 Errata sheet: http://www.nxp.com/documents/errata_sheet/ES_LPC18X0.pdf

32-bit ARM Cortex-M3 microcontroller

19. Legal information

19.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP Semiconductors N.V. 2016. All rights reserved.

LPC1850 30 20 10

32-bit ARM Cortex-M3 microcontroller

10	Static characteristics	. 85
10.1	Power consumption	. 92
10.2	Peripheral power consumption	. 96
10.3	BOD characteristics	. 98
10.4	Electrical pin characteristics	. 99
11	Dynamic characteristics	103
11.1	Wake-up times	103
11.2	External clock for oscillator in slave mode	103
11.3	Crystal oscillator	104
11.4	IRC oscillator	104
11.5	RTC oscillator	104
11.6	GPCLKIN	105
11.7	I/O pins	105
11.8	I ² C-bus	106
11.9	I ² S-bus interface	107
11.10	USART interface	108
11.11	SSP interface	110
11.12	External memory interface	115
11.13	USB interface	120
11.14	Ethernet	121
11.15	SD/MMC	123
11.16		123
11.17	SPIFI	124
12	ADC/DAC electrical characteristics	125
13	Application information.	128
13.1	LCD panel signal usage	128
13.2	Crystal oscillator	130
13.3	RTC oscillator	132
13.4	XTAL and RTCX Printed Circuit Board (PCB)	
	layout guidelines	132
13.5	layout guidelines. Standard I/O pin configuration	132 132
13.5 13.6	layout guidelines. Standard I/O pin configuration	132 132 133
13.5 13.6 13.7	layout guidelines. Standard I/O pin configuration Reset pin configuration. Suggested USB interface solutions	132 132 133 133
13.5 13.6 13.7 14	layout guidelines. Standard I/O pin configuration Reset pin configuration. Suggested USB interface solutions Package outline	132 132 133 133 136
13.5 13.6 13.7 14 15	layout guidelines. Standard I/O pin configuration Reset pin configuration Suggested USB interface solutions Package outline Soldering	132 132 133 133 136 140
13.5 13.6 13.7 14 15 16	layout guidelines. Standard I/O pin configuration Reset pin configuration. Suggested USB interface solutions Package outline Soldering Abbreviations.	132 132 133 133 136 140 144
13.5 13.6 13.7 14 15 16 17	layout guidelines. Standard I/O pin configuration Reset pin configuration. Suggested USB interface solutions Package outline Soldering Abbreviations. References	132 132 133 133 136 140 144 145
13.5 13.6 13.7 14 15 16 17 18	layout guidelines. Standard I/O pin configuration Reset pin configuration. Suggested USB interface solutions Package outline Soldering Abbreviations. References Revision history.	132 132 133 133 136 140 144 145 146
13.5 13.6 13.7 14 15 16 17 18 19	layout guidelines. Standard I/O pin configuration Reset pin configuration. Suggested USB interface solutions Package outline Soldering Abbreviations. References Revision history. Legal information.	132 132 133 133 136 140 144 145 146 150
13.5 13.6 13.7 14 15 16 17 18 19 19.1	layout guidelines. Standard I/O pin configuration Reset pin configuration. Suggested USB interface solutions Package outline Soldering Abbreviations. References Revision history. Legal information. Data sheet status	132 133 133 136 140 144 145 146 150
13.5 13.6 13.7 14 15 16 17 18 19 19.1 19.2	layout guidelines. Standard I/O pin configuration Reset pin configuration. Suggested USB interface solutions Package outline Soldering Abbreviations. References Revision history. Legal information. Data sheet status Definitions.	132 132 133 133 136 140 144 145 146 150 150
13.5 13.6 13.7 14 15 16 17 18 19 19.1 19.2 19.3	layout guidelines. Standard I/O pin configuration Reset pin configuration. Suggested USB interface solutions Package outline Soldering Abbreviations. References Revision history. Legal information. Data sheet status Definitions. Disclaimers.	132 133 133 136 140 144 145 146 150 150 150
13.5 13.6 13.7 14 15 16 17 18 19 19.1 19.2 19.3 19.4	layout guidelines. Standard I/O pin configuration Reset pin configuration. Suggested USB interface solutions Package outline Soldering Abbreviations. References Revision history. Legal information. Data sheet status Definitions. Disclaimers. Trademarks.	132 133 133 136 140 144 145 146 150 1500 1500 151
13.5 13.6 13.7 14 15 16 17 18 19 19.1 19.2 19.3 19.4 20	layout guidelines. Standard I/O pin configuration Reset pin configuration. Suggested USB interface solutions Package outline Soldering Abbreviations. References Revision history. Legal information. Data sheet status Definitions. Disclaimers. Trademarks.	132 133 133 133 136 140 144 145 146 150 150 150 151 151

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2016.

.V. 2016. All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 14 March 2016 Document identifier: LPC1850_30_20_10