

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, Microwire, SD, SPI, SSI, SSP, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	83
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	200K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1830fbd144k

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M3 microcontroller

6. Pinning information

6.1 Pinning

32-bit ARM Cortex-M3 microcontroller

6.2 Pin description

On the LPC1850/30/20/10, digital pins are grouped into 16 ports, named P0 to P9 and PA to PF, with up to 20 pins used per port. Each digital pin can support up to eight different digital functions, including General-Purpose I/O (GPIO), selectable through the System Configuration Unit (SCU) registers. The pin name is not indicative of the GPIO port assigned to it.

Not all functions listed in <u>Table 3</u> are available on all packages. See <u>Table 2</u> for availability of USB0, USB1, Ethernet, and LCD functions.

The parts contain two 10-bit ADCs (ADC0 and ADC1). The input channels of ADC0 and ADC1 on dedicated pins and multiplexed pins are combined in such a way that all channel 0 inputs (named ADC0_0 and ADC1_0) are tied together and connected to both, channel 0 on ADC0 and channel 0 on ADC1, channel 1 inputs (named ADC0_1 and ADC1_1) are tied together and connected to channel 1 on ADC0 and ADC1, and so forth. There are eight ADC channels total for the two ADCs.

LPC1850_30_20_10

7 of 153

32-bit ARM Cortex-M3 microcontroller

7.5.2 Interrupt sources

Each peripheral device has one interrupt line connected to the NVIC but can have several interrupt flags. Individual interrupt flags can also represent more than one interrupt source.

7.6 Event router

The event router combines various internal signals, interrupts, and the external interrupt pins (WAKEUP[3:0]) to create an interrupt in the NVIC, if enabled. In addition, the event router creates a wake-up signal to the ARM core and the CCU for waking up from Sleep, Deep-sleep, Power-down, and Deep power-down modes. Individual events can be configured as edge or level sensitive and can be enabled or disabled in the event router. The event router can be battery powered.

The following events if enabled in the event router can create a wake-up signal from sleep, deep-sleep, power-down, and deep power-down modes and/or create an interrupt:

- External pins WAKEUP0/1/2/3 and RESET
- Alarm timer, RTC (32 kHz oscillator running)

The following events if enabled in the event router can create a wake-up signal from sleep mode only and/or create an interrupt:

- WWDT, BOD interrupts
- C_CAN0/1 and QEI interrupts
- Ethernet, USB0, USB1 signals
- Selected outputs of combined timers (SCTimer/PWM and timer0/1/3)

Remark: Any interrupt can wake up the ARM Cortex-M3 from sleep mode if enabled in the NVIC.

7.7 Global Input Multiplexer Array (GIMA)

The GIMA routes internal and external signals to event-driven peripheral targets like the SCTimer/PWM, timers, event router, or the ADCs.

7.7.1 Features

- Single selection of a source.
- Signal inversion.
- Can capture a pulse if the input event source is faster than the target clock.
- Synchronization of input event and target clock.
- Single-cycle pulse generation for target.

7.8 On-chip static RAM

The LPC1850/30/20/10 support up to 200 kB SRAM with separate bus master access for higher throughput and individual power control for low-power operation.

32-bit ARM Cortex-M3 microcontroller

Boot mode	Pins				Description
	P2_9	P2_8	P1_2	P1_1	
USART0	LOW	LOW	LOW	LOW	Boot from device connected to USART0 using pins P2_0 and P2_1.
SPIFI	LOW	LOW	LOW	HIGH	Boot from Quad SPI flash connected to the SPIFI interface on P3_3 to P3_8 ^[1] .
EMC 8-bit	LOW	LOW	HIGH	LOW	Boot from external static memory (such as NOR flash) using CS0 and an 8-bit data bus.
EMC 16-bit	LOW	LOW	HIGH	HIGH	Boot from external static memory (such as NOR flash) using CS0 and a 16-bit data bus.
EMC 32-bit	LOW	HIGH	LOW	LOW	Boot from external static memory (such as NOR flash) using CS0 and a 32-bit data bus.
USB0	LOW	HIGH	LOW	HIGH	Boot from USB0
USB1	LOW	HIGH	HIGH	LOW	Boot from USB1.
SPI (SSP0)	LOW	HIGH	HIGH	HIGH	Boot from SPI flash connected to the SSP0 interface on P3_3 (function SSP0_SCK), P3_6 (function SSP0_SSEL), P3_7 (function SSP0_MISO), and P3_8 (function SSP0_MOSI) ^[1] .
USART3	HIGH	LOW	LOW	LOW	Boot from device connected to USART3 using pins P2_3 and P2_4.

 Table 5.
 Boot mode when OPT BOOT_SRC bits are zero

[1] The boot loader programs the appropriate pin function at reset to boot using the SSP0 or SPIFI. **Remark:** Pin functions for SPIFI and SSP0 boot are different. Product data sheet

ntormation provided in this document is subject to legal disclain Rev. 6.7 — 14 March 2016

Fig 8.

LPC1850/30/20/10 Memory mapping (peripherals)

002aaf229

32-bit ARM Cortex-M3 microcontroller

PC1850/30/20/10

66 of 15:

32-bit ARM Cortex-M3 microcontroller

- Two AHB bus masters for transferring data. These interfaces transfer data when a DMA request goes active. Master 1 can access memories and peripherals, master 0 can access memories only.
- 32-bit AHB master bus width.
- Incrementing or non-incrementing addressing for source and destination.
- Programmable DMA burst size. The DMA burst size can be programmed to more efficiently transfer data.
- Internal four-word FIFO per channel.
- Supports 8, 16, and 32-bit wide transactions.
- Big-endian and little-endian support. The DMA Controller defaults to little-endian mode on reset.
- An interrupt to the processor can be generated on a DMA completion or when a DMA error has occurred.
- Raw interrupt status. The DMA error and DMA count raw interrupt status can be read prior to masking.

7.13.3 SPI Flash Interface (SPIFI)

The SPI Flash Interface allows low-cost serial flash memories to be connected to the ARM Cortex-M3 processor with little performance penalty compared to parallel flash devices with higher pin count.

After a few commands configure the interface at startup, the entire flash content is accessible as normal memory using byte, halfword, and word accesses by the processor and/or DMA channels. Simple sequences of commands handle erasing and programming.

Many serial flash devices use a half-duplex command-driven SPI protocol for device setup and initialization and then move to a half-duplex, command-driven 4-bit protocol for normal operation. Different serial flash vendors and devices accept or require different commands and command formats. SPIFI provides sufficient flexibility to be compatible with common flash devices and includes extensions to help insure compatibility with future devices.

7.13.3.1 Features

- Interfaces to serial flash memory in the main memory map.
- Supports classic and 4-bit bidirectional serial protocols.
- Half-duplex protocol compatible with various vendors and devices.
- Quad SPI Flash Interface (SPIFI) with 1-, 2-, or 4-bit data at rates of up to 52 MB per second.
- Supports DMA access.

7.13.4 SD/MMC card interface

The SD/MMC card interface supports the following modes:

- Secure Digital memory (SD version 3.0)
- Secure Digital I/O (SDIO version 2.0)
- Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1)

© NXP Semiconductors N.V. 2016. All rights reserved.

32-bit ARM Cortex-M3 microcontroller

7.17.1.1 Features

- Measures the passage of time to maintain a calendar and clock. Provides seconds, minutes, hours, day of month, month, year, day of week, and day of year.
- Ultra-low power design to support battery powered systems. Uses power from the CPU power supply when it is present.
- Dedicated battery power supply pin.
- RTC power supply is isolated from the rest of the chip.
- Calibration counter allows adjustment to better than ± 1 sec/day with 1 sec resolution.
- Periodic interrupts can be generated from increments of any field of the time registers.
- Alarm interrupt can be generated for a specific date/time.

7.17.2 Alarm timer

The alarm timer is a 16-bit timer and counts down at 1 kHz from a preset value generating alarms in intervals of up to 1 min. The counter triggers a status bit when it reaches 0x00 and asserts an interrupt if enabled.

The alarm timer is part of the RTC power domain and can be battery powered.

7.18 System control

7.18.1 Configuration registers (CREG)

The following settings are controlled in the configuration register block:

- BOD trip settings
- Oscillator output
- DMA-to-peripheral muxing
- Ethernet mode
- Memory mapping
- Timer/USART inputs
- Enabling the USB controllers

In addition, the CREG block contains the part identification and part configuration information.

7.18.2 System Control Unit (SCU)

The system control unit determines the function and electrical mode of the digital pins. By default function 0 is selected for all pins with pull-up enabled. For pins that support a digital and analog function, the ADC function select registers in the SCU enable the analog function.

A separate set of analog I/Os for the ADCs and the DAC as well as most USB pins are located on separate pads and are not controlled through the SCU.

In addition, the clock delay register for the SDRAM EMC_CLK pins and the registers that select the pin interrupts are located in the SCU.

32-bit ARM Cortex-M3 microcontroller

$T_{amb} = -40$ °C to	+85 $^{\circ}$ C unless otherwise	specified.					
Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
I/O pins - high d	rive strength: standard driv	ve mode		1	I		
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD(IO)} - 0.4 V$		-4	-	-	mA
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		4	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	drive HIGH; connected to ground	[12]	-	-	32	mA
I _{OLS}	LOW-level short-circuit output current	drive LOW; connected to $V_{DD(IO)}$	[12]	-	-	32	mA
I/O pins - high d	rive strength: medium driv	e mode					
I _{ОН}	HIGH-level output current	$V_{OH} = V_{DD(IO)} - 0.4 \text{ V}$		-8	-	-	mA
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		8	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	drive HIGH; connected to ground	[12]	-	-	65	mA
I _{OLS}	LOW-level short-circuit output current	drive LOW; connected to $V_{DD(IO)}$	[12]	-	-	63	mA
I/O pins - high d	rive strength: high drive m	ode		1	I	I	
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD(IO)} - 0.4 \text{ V}$		-14	-	-	mA
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		14	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	drive HIGH; connected to ground	[12]	-	-	113	mA
I _{OLS}	LOW-level short-circuit output current	drive LOW; connected to $V_{DD(IO)}$	[12]	-	-	110	mA
I/O pins - high d	rive strength: ultra-high dr	ive mode			ŧ		
I _{ОН}	HIGH-level output current	$V_{OH} = V_{DD(IO)} - 0.4 V$		-20	-	-	mA
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		20	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	drive HIGH; connected to ground	[12]	-	-	165	mA
I _{OLS}	LOW-level short-circuit output current	drive LOW; connected to $V_{DD(IO)}$	[12]	-	-	156	mA
I/O pins - high-	speed			1	I	I	
CI	input capacitance			-	-	2	pF
ILL	LOW-level leakage current	$V_I = 0 V$; on-chip pull-up resistor disabled		-	3	-	nA
I _{LH}	HIGH-level leakage current	V _I = V _{DD(IO)} ; on-chip pull-down resistor disabled		-	3	-	nA
		$V_{I} = 5 V$		-	-	20	nA

Table 10. Static characteristics ... continued

32-bit ARM Cortex-M3 microcontroller

11.3 Crystal oscillator

Table 15. Dynamic characteristic: oscillator

 $T_{amb} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C}; V_{DD(IO)} \text{ over specified ranges; } 2.2 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V}.^{[1]}$

Symbol	Parameter	Conditions		Min	Typ <u>[2]</u>	Max	Unit
Low-freque	ncy mode (1 MHz to	20 MHz) <u>^[5]</u>					
t _{jit(per)}	period jitter time	5 MHz crystal	[3][4]	-	13.2	-	ps
		10 MHz crystal		-	6.6	-	ps
		15 MHz crystal		-	4.8	-	ps
High-freque	ency mode (20 MHz f	to 25 MHz) <u>^[6]</u>					
t _{jit(per)}	period jitter time	20 MHz crystal	[3][4]	-	4.3	-	ps
		25 MHz crystal		-	3.7	-	ps

[1] Parameters are valid over operating temperature range unless otherwise specified.

- [2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.
- [3] Indicates RMS period jitter.
- [4] PLL-induced jitter is not included.
- [5] Select HF = 0 in the XTAL_OSC_CTRL register.
- [6] Select HF = 1 in the XTAL_OSC_CTRL register.

11.4 IRC oscillator

Table 16. Dynamic characteristic: IRC oscillator

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 2.2 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V}.$ [1]

Symbol	Parameter	Conditions	Min	Typ <u>[2]</u>	Max	Unit
f _{osc(RC)}	internal RC oscillator frequency	-	11.82	12.0	12.18	MHz

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

11.5 RTC oscillator

Table 17. Dynamic characteristic: RTC oscillator

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 2.2 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V or } 2.2 \text{ V} \le V_{BAT} \le 3.6 \text{ V}_{\underline{11}}; \text{ typical } C_{RTCX1/2} = 20 \text{ pF}; \text{ also see } \underline{\text{Section } 13.3}$

Symbol	Parameter	Conditions	Min	Typ <u>[2]</u>	Max	Unit
f _{i(RTC)}	RTC input frequency	-	-	32.768	-	kHz
I _{DD(RTC)}	RTC supply current			280	800	nA

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

32-bit ARM Cortex-M3 microcontroller

11.6 GPCLKIN

Table 18. Dynamic characteristic: GPCLKIN

 $T_{amb} = 25 \ ^{\circ}C; 2.4 \ V \le V_{DD(REG)(3V3)} \le 3.6 \ V$

Symbol	Parameter	Min	Тур	Мах	Unit
GP_CLKIN	input frequency	-	-	25	MHz

11.7 I/O pins

Table 19. Dynamic characteristic: I/O pins[1]

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 2.7 \text{ V} \le V_{DD(IO)} \le 3.6 \text{ V}.$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Standard	I/O pins - no	rmal drive strength					
t _r	rise time	pin configured as output; EHS = 1	[2][3]	1.0	-	2.5	ns
t _f	fall time	pin configured as output; EHS = 1	[2][3]	0.9	-	2.5	ns
t _r	rise time	pin configured as output; EHS = 0	[2][3]	1.9	-	4.3	ns
t _f	fall time	pin configured as output; $EHS = 0$	[2][3]	1.9	-	4.0	ns
t _r	rise time	pin configured as input	<u>[4]</u>	0.3	-	1.3	ns
t _f	fall time	pin configured as input	<u>[4]</u>	0.2	-	1.2	ns
I/O pins -	high drive s	trength					
t _r	rise time	pin configured as output; standard drive mode (EHD = 0x0)	<u>[2][5]</u>	4.3	-	7.9	ns
t _f	fall time	pin configured as output; standard drive mode (EHD = 0x0)	[2][5]	4.7	-	8.7	ns
t _r	rise time	pin configured as output; medium drive mode (EHD = 0x1)	[2][5]	3.2	-	5.7	ns
t _f	fall time	pin configured as output; medium drive mode (EHD = 0x1)	[2][5]	3.2	-	5.5	ns
t _r	rise time	pin configured as output; high drive mode (EHD = 0x2)	[2][5]	2.9	-	4.9	ns
t _f	fall time	pin configured as output; high drive mode (EHD = 0x2)	[2][5]	2.5	-	3.9	ns
t _r	rise time	pin configured as output; ultra-high drive mode (EHD = 0x3)	<u>[2][5]</u>	2.8	-	4.7	ns
t _f	fall time	pin configured as output; ultra-high drive mode (EHD = 0x3)	[2][5]	2.4	-	3.4	ns
t _r	rise time	pin configured as input	[4]	0.3	-	1.3	ns
t _f	fall time	pin configured as input	[4]	0.2	-	1.2	ns
I/O pins -	high-speed						
t _r	rise time	pin configured as output; EHS = 1	<u>[2][3]</u>	350	-	670	ps
t _f	fall time	pin configured as output; EHS = 1	[2][3]	450	-	730	ps
t _r	rise time	pin configured as output; $EHS = 0$	[2][3]	1.0	-	1.9	ns
t _f	fall time	pin configured as output; $EHS = 0$	[2][3]	1.0	-	2.0	ns
t _r	rise time	pin configured as input	[4]	0.3	-	1.3	ns
t _f	fall time	pin configured as input	[4]	0.2	-	1.2	ns

[1] Simulated data.

All information provided in this document is subject to legal disclaimers.

32-bit ARM Cortex-M3 microcontroller

- [2] Simulated using 10 cm of 50 Ω PCB trace with 5 pF receiver input. Rise and fall times measured between 80 % and 20 % of the full output signal level.
- [3] The slew rate is configured in the system control block in the SFSP registers using the EHS bit. See the LPC18xx user manual.
- [4] $C_L = 20 \text{ pF}$. Rise and fall times measured between 90 % and 10 % of the full input signal level.
- [5] The drive modes are configured in the system control block in the SFSP registers using the EHD bit. See the *LPC18xx user manual*.

11.8 I²C-bus

Table 20. Dynamic characteristic: I²C-bus pins

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 2.2 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V}.$ [1]

Symbol	Parameter		Conditions	Min	Max	Unit
f _{SCL}	SCL clock frequency		Standard-mode	0	100	kHz
			Fast-mode	0	400	kHz
			Fast-mode Plus	0	1	MHz
t _f	fall time	[3][4][5][6]	of both SDA and SCL signals	-	300	ns
			Standard-mode			
			Fast-mode	$20 + 0.1 \times C_b$	300	ns
			Fast-mode Plus	-	120	ns
t _{LOW}	LOW period of the SCL clock		Standard-mode	4.7	-	μS
			Fast-mode	1.3	-	μS
			Fast-mode Plus	0.5	120 - - - - - - -	μS
t _{HIGH}	HIGH period of the SCL clock		Standard-mode	4.0	-	μS
			Fast-mode	0.6	-	μS
			Fast-mode Plus	0.26	-	μS
t _{HD;DAT}	data hold time	[2][3][7]	Standard-mode	0	-	μS
			Fast-mode	0	-	μS
			Fast-mode Plus	0	-	μS
t _{SU;DAT}	data set-up time	[8][9]	Standard-mode	250	-	ns
			Fast-mode	100	-	ns
			Fast-mode Plus	50	-	ns

[1] Parameters are valid over operating temperature range unless otherwise specified. See the I²C-bus specification UM10204 for details.

[2] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.

[3] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.

[4] C_b = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.

- [5] The maximum t_f for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage t_f is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t_f.
- [6] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing.
- [7] The maximum t_{HD;DAT} could be 3.45 μs and 0.9 μs for Standard-mode and Fast-mode but must be less than the maximum of t_{VD;DAT} or t_{VD;ACK} by a transition time. This maximum must only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
- [8] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the acknowledge.

LPC1850 30 20 10

© NXP Semiconductors N.V. 2016. All rights reserved.

32-bit ARM Cortex-M3 microcontroller

Table 23. Dynamic characteristics: SSP pins in SPI mode

 $T_{amb} = -40$ °C to +85 °C; 2.2 V $\leq V_{DD(REG)(3V3)} \leq 3.6$ V; 2.7 V $\leq V_{DD(IO)} \leq 3.6$ V; C_L = 20 pF. Sampled at 10 % and 90 % of the signal level; EHS = 1 for all pins. Simulated values.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _d	delay time	continuous transfer mode SPI mode; CPOL = 0; CPHA = 0		-	$0.5 \times T_{cy(clk)}$	-	ns
		SPI mode; CPOL = 0; CPHA = 1		-	n/a	-	ns
		SPI mode; CPOL = 1; CPHA = 0		-	$0.5 \times T_{cy(clk)}$	-	ns
		SPI mode; CPOL = 1; CPHA = 1		-	n/a	-	ns
		synchronous serial frame mode		-	T _{cy(clk)}	-	ns
		microwire frame format		-	n/a	-	ns
SSP slave	9						
PCLK	Peripheral clock frequency			-	-	180	MHz
T _{cy(clk)}	clock cycle time		[2]	1/(11 × 10 ⁶)	-	-	s
t _{DS}	data set-up time	in SPI mode		1.15	-	-	ns
t _{DH}	data hold time	in SPI mode		0.5	-	-	ns
t _{v(Q)}	data output valid time	in SPI mode		-	-	[4 × (1/PCLK)] + 3	ns
t _{h(Q)}	data output hold time	in SPI mode		5.1	-	-	ns
t _{lead}	lead time	continuous transfer mode SPI mode; CPOL = 0; CPHA = 0		T _{cy(clk)} + 2.2	-	-	ns
		SPI mode; CPOL = 0; CPHA = 1		$0.5 \times T_{cy(clk)}$ + 2.2	-	-	ns
		SPI mode; CPOL = 1; CPHA = 0		$T_{cy(clk)}$ + 2.2	-	-	ns
		SPI mode; CPOL = 1; CPHA = 1		$0.5 \times T_{cy(clk)}$ + 2.2	-	-	ns
		synchronous serial frame mode		$0.5 \times T_{cy(clk)}$ + 2.2	-	-	ns
		microwire frame format		$T_{cy(clk)}$ + 2.2	-	-	ns

32-bit ARM Cortex-M3 microcontroller

Table 23. Dynamic characteristics: SSP pins in SPI mode

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 2.2 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V}; 2.7 \text{ V} \le V_{DD(IO)} \le 3.6 \text{ V}; C_L = 20 \text{ pF. Sampled at } 10 \text{ \% and } 90 \text{ \% of the signal level; EHS} = 1 \text{ for all pins. Simulated values.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{lag}	lag time	continuous transfer mode	0.5T _{cy(clk)} + 0.2	-	-	ns
		SPI mode; CPOL = 0; CPHA = 0				
		SPI mode; CPOL = 0; CPHA = 1	$T_{cy(clk)}$ + 0.2	-	-	ns
		SPI mode; CPOL = 1; CPHA = 0	$0.5 imes T_{cy(clk)} + 0.2$	-	-	ns
		SPI mode; CPOL = 1; CPHA = 1	$T_{cy(clk)}$ + 0.2	-	-	ns
		synchronous serial frame mode	$T_{cy(clk)} + 0.2$	-	-	ns
		microwire frame format	$0.5 imes T_{cy(clk)}$	-	-	ns
t _d	delay time	continuous transfer mode	-	$0.5 \times T_{cy(clk)}$	-	ns
		SPI mode; CPOL = 0; CPHA = 0				
		SPI mode; CPOL = 0; CPHA = 1	-	n/a	-	ns
		SPI mode; CPOL = 1; CPHA = 0	-	$0.5 \times T_{cy(clk)}$	-	ns
		SPI mode; CPOL = 1; CPHA = 1	-	n/a	-	ns
		synchronous serial frame mode	-	T _{cy(clk)}	-	ns
		microwire frame format	-	n/a	-	ns

[1] $T_{cy(clk)} = (SSPCLKDIV \times (1 + SCR) \times CPSDVSR) / f_{main}$. The clock cycle time derived from the SPI bit rate $T_{cy(clk)}$ is a function of the main clock frequency f_{main} , the SSP peripheral clock divider (SSPCLKDIV), the SSP SCR parameter (specified in the SSP0CR0 register), and the SSP CPSDVSR parameter (specified in the SSP clock prescale register).

32-bit ARM Cortex-M3 microcontroller

11.15 SD/MMC

Table 30. Dynamic characteristics: SD/MMC

 $T_{amb} = -40 \degree C$ to 85 $\degree C$, 2.2 V $\leq V_{DD(REG)(3V3)} \leq 3.6$ V; 2.7 V $\leq V_{DD(IO)} \leq 3.6$ V, $C_L = 20 \ pF$. SAMPLE_DELAY = 0x9, DRV_DELAY = 0xD in the SDDELAY register sampled at 90 % and 10 % of the signal level, EHS = 1 for SD_CLK pin, EHS = 1 for SD_DATn and SD_CMD pins. Simulated values.

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{clk}	clock frequency	on pin SD_CLK; data transfer mode		52	MHz
t _{su(D)}	data input set-up time	on pins SD_DATn as inputs	3.9	-	ns
		on pins SD_CMD as inputs	5.2	-	ns
t _{h(D)}	data input hold time	on pins SD_DATn as inputs	0.4	-	ns
		on pins SD_CMD as inputs	0		ns
t _{d(QV)}	data output valid delay	on pins SD_DATn as outputs	-	15.3	ns
	time	on pins SD_CMD as outputs	-	16	ns
t _{h(Q)}	data output hold time	on pins SD_DATn as outputs	4	-	ns
		on pins SD_CMD as outputs	4	-	ns

11.16 LCD

Table 31. Dynamic characteristics: LCD

 $T_{amb} = -40$ °C to 85 °C; 2.2 V $\leq V_{DD(REG)(3V3)} \leq 3.6$ V; 2.7 V $\leq V_{DD(IO)} \leq 3.6$ V; C_L = 20 pF. Simulated values.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{clk}	clock frequency	on pin LCD_DCLK	-	50	-	MHz
t _{d(QV)}	data output valid delay time			-	17	ns
t _{h(Q)}	data output hold time		8.5	-		ns

32-bit ARM Cortex-M3 microcontroller

13. Application information

13.1 LCD panel signal usage

Table 35.	LCD panel connect	ions for STN s	ingle panel mode
-----------	-------------------	----------------	------------------

External pin	4-bit mono STN single panel		8-bit mono STN single panel		Color STN single panel	
	LPC18xx pin used	LCD function	LPC18xx pin used	LCD function	LPC18xx pin used	LCD function
LCD_VD[23:8]	-	-	-	-	-	-
LCD_VD7	-	-	P8_4	UD[7]	P8_4	UD[7]
LCD_VD6	-	-	P8_5	UD[6]	P8_5	UD[6]
LCD_VD5	-	-	P8_6	UD[5]	P8_6	UD[5]
LCD_VD4	-	-	P8_7	UD[4]	P8_7	UD[4]
LCD_VD3	P4_2	UD[3]	P4_2	UD[3]	P4_2	UD[3]
LCD_VD2	P4_3	UD[2]	P4_3	UD[2]	P4_3	UD[2]
LCD_VD1	P4_4	UD[1]	P4_4	UD[1]	P4_4	UD[1]
LCD_VD0	P4_1	UD[0]	P4_1	UD[0]	P4_1	UD[0]
LCD_LP	P7_6	LCDLP	P7_6	LCDLP	P7_6	LCDLP
LCD_ENAB/ LCDM	P4_6	LCDENAB/ LCDM	P4_6	LCDENAB/ LCDM	P4_6	LCDENAB/ LCDM
LCD_FP	P4_5	LCDFP	P4_5	LCDFP	P4_5	LCDFP
LCD_DCLK	P4_7	LCDDCLK	P4_7	LCDDCLK	P4_7	LCDDCLK
LCD_LE	P7_0	LCDLE	P7_0	LCDLE	P7_0	LCDLE
LCD_PWR	P7_7	CDPWR	P7_7	LCDPWR	P7_7	LCDPWR
GP_CLKIN	PF_4	LCDCLKIN	PF_4	LCDCLKIN	PF_4	LCDCLKIN

Table 36. LCD panel connections for STN dual panel mode

External pin	4-bit mono STN	l dual panel	8-bit mono STN d	ual panel	Color STN dual pa	anel
	LPC18xx pin used	LCD function	LPC18xx pin used	LCD function	LPC18xx pin used	LCD function
LCD_VD[23:16]	-	-	-	-	-	-
LCD_VD15	-	-	PB_4	LD[7]	PB_4	LD[7]
LCD_VD14	-	-	PB_5	LD[6]	PB_5	LD[6]
LCD_VD13	-	-	PB_6	LD[5]	PB_6	LD[5]
LCD_VD12	-	-	P8_3	LD[4]	P8_3	LD[4]
LCD_VD11	P4_9	LD[3]	P4_9	LD[3]	P4_9	LD[3]
LCD_VD10	P4_10	LD[2]	P4_10	LD[2]	P4_10	LD[2]
LCD_VD9	P4_8	LD[1]	P4_8	LD[1]	P4_8	LD[1]
LCD_VD8	P7_5	LD[0]	P7_5	LD[0]	P7_5	LD[0]
LCD_VD7	-	-		UD[7]	P8_4	UD[7]
LCD_VD6	-	-	P8_5	UD[6]	P8_5	UD[6]
LCD_VD5	-	-	P8_6	UD[5]	P8_6	UD[5]
LCD_VD4	-	-	P8_7	UD[4]	P8_7	UD[4]
LCD_VD3	P4_2	UD[3]	P4_2	UD[3]	P4_2	UD[3]

32-bit ARM Cortex-M3 microcontroller

Recommended values for $C_{X1/X2}$ in oscillation mode (crystal and external Table 38. components parameters) low frequency mode

Fundamental oscillation frequency	Maximum crystal series resistance R _S	External load capacitors C_{X1}, C_{X2}
12 MHz	< 160 Ω	18 pF, 18 pF
	< 160 Ω	39 pF, 39 pF
16 MHz	< 120 Ω	18 pF, 18 pF
	< 80 Ω	33 pF, 33 pF
20 MHz	< 100 Ω	18 pF, 18 pF
	< 80 Ω	33 pF, 33 pF

Table 39. Recommended values for $C_{X1/X2}$ in oscillation mode (crystal and external components parameters) high frequency mode

Fundamental oscillation frequency	Maximum crystal series resistance R _S	External load capacitors C_{X1} , C_{x2}
15 MHz	< 80 Ω	18 pF, 18 pF
20 MHz	< 80 Ω	39 pF, 39 pF
	< 100 Ω	47 pF, 47 pF

Fig 41. Slave mode operation of the on-chip oscillator

32-bit ARM Cortex-M3 microcontroller

16. Abbreviations

Table 40. Abbre	viations
Acronym	Description
ADC	Analog-to-Digital Converter
AHB	Advanced High-performance Bus
APB	Advanced Peripheral Bus
API	Application Programming Interface
BOD	BrownOut Detection
BGA	Ball Grid Array
CAN	Controller Area Network
CMAC	Cipher-based Message Authentication Code
CSMA/CD	Carrier Sense Multiple Access with Collision Detection
DAC	Digital-to-Analog Converter
DMA	Direct Memory Access
EOP	End Of Packet
ETB	Embedded Trace Buffer
ETM	Embedded Trace Macrocell
GPIO	General-Purpose Input/Output
IRC	Internal RC
IrDA	Infrared Data Association
JTAG	Joint Test Action Group
LCD	Liquid Crystal Display
LSB	Least Significant Bit
LQFP	Low Quad Flat Package
MAC	Media Access Control
MCU	MicroController Unit
MIIM	Media Independent Interface Management
n.c.	not connected
OTG	On-The-Go
PHY	PHYsical layer
PLL	Phase-Locked Loop
PWM	Pulse Width Modulator
RMII	Reduced Media Independent Interface
SDRAM	Synchronous Dynamic Random Access Memory
SPI	Serial Peripheral Interface
SSI	Serial Synchronous Interface
SSP	Synchronous Serial Port
TCP/IP	Transmission Control Protocol/Internet Protocol
TTL	Transistor-Transistor Logic
UART	Universal Asynchronous Receiver/Transmitter
ULPI	UTMI+ Low Pin Interface

32-bit ARM Cortex-M3 microcontroller

18. Revision history

Table 41. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
LPC1850_30_20_10 v.6.7	20160314	Product data sheet	-	LPC1850_30_20_10 v.6.6		
	 Updated <u>1</u> Read cvcl 	• Updated Table 25 "Dynamic characteristics: Dynamic external memory interface":				
LPC1850_30_20_10 v.6.6	20151116	Product data sheet	2015110031	LPC1850_30_20_10 v.6.5		
Modifications:	Updated SSP SSP pins in S	slave and SSP master valu PI mode". Updated footnot	es in Table 23 "D e 2 to: T _{cy(clk)} ≥ 1	ynamic characteristics: 2 × T _{cy(PCLK)} .		
	 removed t_{v(Q)}, data output valid time in SPI mode, minimum value of 3 ´ (1/PCLK) from SSP slave mode. 					
	 added units to t_d, delay time, for SSP slave and master mode. 					
	Added GPCLI "Dynamic cha	KIN section and table. See S aracteristic: GPCLKIN".	Section 11.6 "GP	CLKIN" and Table 18		
LPC1850_30_20_10 v.6.5	20150430	Product data sheet	-	LPC1850_30_20_10 v.6.4		
Modifications:	 For WAKEUP pin description: Changed external pull-up to internal pull-up. See Table 3 "Pin description". 					
	Table note 2 corrected in Table 10.					
	 Updated USART dynamic characteristics table. See Table 22. 					
	 Added SSP slave timing data. See Table 22. 					
	 Added USART timing diagram. See Figure 29. 					
	 Updated SD/MMC dynamic characteristics table. See Table 30. 					
	 Updated SPIFI dynamic characteristics table. See Table 32. 					
	• Updated Dynamic characteristics: USB0 and USB1 pins (full-speed). See Table 27.					
	 Updated Table 2: Motor control PWM instead of PWM. 					
	Added a remark to Table 27.					
LPC1850_30_20_10 v.6.4	20140818	Product data sheet	201408013F01	LPC1850_30_20_10 v.6.3		

32-bit ARM Cortex-M3 microcontroller

Document ID	Release date	Data sheet status	Change notice	Supersedes		
Modifications:	 IEEE stand characteris 	dard 802.3 compliance addec stics of ENET_MDIO and EN	to Section 11.13 ET_MDC signals.	. Covers Ethernet dynamic		
	 Parameter C_I corrected for high-drive pins (changed from 2 pF to 5.2 pF). See Table 10. 					
	• Table 18 "	Dynamic characteristic: I/O pi	ns[1]" added.			
	 IRC accuracy changed from 1 % to 1.5 % over the full temperature range. See Table 16 "Dynamic characteristic: IRC oscillator". 					
	 Description and ALAR 	n of internal pull-up resistor c M pins. See Table 3.	onfiguration adde	d for \overline{RESET} , WAKEUPn,		
	 Description 	n of DEBUG pin updated.				
	 Input rang 	e for PLL1 corrected: 1 MHz t	o 25 MHz. See Se	ection 7.18.7 "System PLL1".		
	Section 13	3.7 "Suggested USB interface	solutions" added			
	 Reset stat 	e of the RTC alarm pin RTC_	ALARM added. S	ee Table 3.		
	 Signal pola signals are 	arity corrected for signals EM e active HIGH.	C_CKEOUT and	EMC_DQMOUT. Both		
	 SPIFI outp 	out timing parameters in Table	e 31 corrected to a	apply to Mode 0:		
	 t_{v(Q)} ch 	anged to 3.2 ns.				
	 t_{h(Q)} ch 	anged to 0.2 ns,				
	 Parameter See Table interface". 	r t _{CSLWEL} with condition PB = 23 "Dynamic characteristics:	1 corrected: (WAI Static asynchrono	TWEN + 1) \times T _{cy(clk)} added.		
	 Parameter See Table interface". 	r t _{CSLBLSL} with condition PB = 23 "Dynamic characteristics:	0 corrected: (WAI Static asynchrono	$TWEN + 1) \times T_{cy(clk)}$ added.		
	 SSP mast 29 "SSP m 	er mode timing diagram upda naster timing in SPI mode".	ted with SSEL tim	ning parameters. See Figure		
	 Parameter SPI mode² 	rs t _{lead} , t _{lag} , and t _d added in Ta ".	able 22 "Dynamic	characteristics: SSP pins in		

Table 41. Revision history ... continued

32-bit ARM Cortex-M3 microcontroller

Document ID	Release date	Data sheet status	Change notice	Supersedes		
LPC1850_30_20_10 v.6.3	20131210	Product data sheet	-	LPC1850_30_20_10 v.6.2		
Modifications:	 Maximum value for V_{i(RMS)} added in Section 13.3 "RTC oscillator". 					
	 V_O for RT 	C_ALARM pin added in Table	e 10.			
	RTC_ALA	RTC_ALARM and WAKEUPn pins added to Table 10.				
LPC1850_30_20_10 v.6.2	20131014	1014 Product data sheet - LPC1850_30_20_10 v.6.1				
Modifications:	 Parameter (max). Set 	Parameter I _{LH} (High-level leakage current) for condition V _I = 5 V changed to 20 nA (max). See Table 10.				
	 Parameter V_{DDA(3V3)} added for pins USB0_VDDA3V3_DRIVER and USB0_VDDA3V3 in Table 10. 					
	 Corrected max voltage on pins USB0_DP, USB0_DM, USB0_VBUS, USB1_DP, and USB1_DM in Table 6 and Table 10 to be consistent with USB specifications. 					
	 Description of RESET pin updated in Table 3. 					
	Table note 8 added in Table 10.					
	 Timing parameters in Table 28 "Dynamic characteristics: SD/MMC" corrected. 					
	 Band gap characteristics removed. 					
	 Part LPC1850FBD208 removed. 					
	 OTP mem 	ory size available for genera	I-purpose use cor	rected.		
LPC1850_30_20_10 v.6.1	20130207	Product data sheet	-	LPC1850_30_20_10 v.6		
Modifications:	 Table 13 " temperatu 	Band gap characteristics" an ires and process conditions" a	d Figure 20 "Banc added.	l gap voltage for different		
	 Table 10, a for V_{DD(RE} 	added Table note 2: "Dynami $_{G)(3V3)} \ge 2.7 V.$	c characteristics f	or peripherals are provided		
	 Description of ADC pins on digital/analog input pins changed. Each input to the ADC is connected to ADC0 and ADC1. See Table 3. 					
	 Use of C_CAN peripheral restricted in Section 2. 					
	• ADC channels limited to a total of 8 channels shared between ADC0 and ADC1.					
	• Minimum value for parameter V _{IL} changed to 0 V in Table 10 "Static characteristics".					
	 Power consumption in active mode corrected. See parameter I_{DD(REG)(3V3)} in Table 10 and graphs Figure 11, Figure 12, and Figure 13. 					
	Paramete	r name I _{DD(ADC)} changed to I _I	_{DDA} in Table 10.			
 Added note to limit data in Table 23 "Dynamic chara external memory interface" to single memory access 			ynamic characteri: emory accesses.	aracteristics: Static asynchronous esses.		
	arameter $I_{DD(REG)(3V3)}$ in dee	ter $I_{DD(REG)(3V3)}$ in deep power-down increased to 0.03 μA in				
• Value of parameter $I_{DD(IO)}$ in deep power-down increased to 0.05 μ A				d to 0.05 μA in Table 10.		

Table 41. Revision history ...continued