

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, Microwire, SD, SPI, SSI, SSP, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, WDT
Number of I/O	49
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	200K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1830fet100-551

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M3 microcontroller

Symbol						0		Description
Cymbol	256	A180	A100	44		stat		
	LBGA	TFBG/	TFBG/	LQFP		Reset	Type	
P1_8	R7	M5	H5	51	[2]	N; PU	I/O	GPIO1[1] — General purpose digital input/output pin.
							0	U1_DTR — Data Terminal Ready output for UART1.
							0	CTOUT_12 — SCTimer/PWM output 12. Match output 3 of timer 3.
							I/O	EMC_D1 — External memory data line 1.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							0	SD_VOLT0 — SD/MMC bus voltage select output 0.
P1_9	T7	N5	J5	52	[2]	N; PU	I/O	GPIO1[2] — General purpose digital input/output pin.
							0	U1_RTS — Request to Send output for UART1.
							0	CTOUT_11 — SCTimer/PWM output 11. Match output 3 of timer 2.
							I/O	EMC_D2 — External memory data line 2.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							I/O	SD_DAT0 — SD/MMC data bus line 0.
P1_10	R8	N6	H6	53	[2]	N; PU	I/O	GPIO1[3] — General purpose digital input/output pin.
							I	U1_RI — Ring Indicator input for UART1.
							0	CTOUT_14 — SCTimer/PWM output 14. Match output 2 of timer 3.
							I/O	EMC_D3 — External memory data line 3.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							I/O	SD_DAT1 — SD/MMC data bus line 1.
P1_11	Т9	P8	J7	55	[2]	N; PU	I/O	GPIO1[4] — General purpose digital input/output pin.
							I	U1_CTS — Clear to Send input for UART1.
							0	CTOUT_15 — SCTimer/PWM output 15. Match output 3 of timer 3.
							I/O	EMC_D4 — External memory data line 4.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							I/O	SD_DAT2 — SD/MMC data bus line 2.

Table 3. Pin description ...continued

LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See <u>Table 2</u>.

32-bit ARM Cortex-M3 microcontroller

Cumbal					are	not avai		Description
Symbol	256	A180	A100	44		state		Description
	GA	BG/	BG∕	FP		set	ЭС	
	ĽB	TFI	TFI	Ľ		E	Typ	
P7_7	B6	D5	-	140	[5]	N; PU	I/O	GPIO3[15] — General purpose digital input/output pin.
							0	CTOUT_8 — SCTimer/PWM output 8. Match output 0 of timer 2.
							-	R — Function reserved.
							0	LCD_PWR — LCD panel power enable.
							-	R — Function reserved.
							0	TRACEDATA[3] — Trace data, bit 3.
							0	ENET_MDC — Ethernet MIIM clock.
							-	R — Function reserved.
							AI	ADC1_6 — ADC1 and ADC0, input channel 6. Configure the
								pin as GPIO input and use the ADC function select register in the SCU to select the ADC.
P8_0	E5	E4	-	-	[3]	N; PU	I/O	GPIO4[0] — General purpose digital input/output pin.
							I	USB0_PWR_FAULT — Port power fault signal indicating
								overcurrent condition; this signal monitors over-current on the
								condition).
							-	R — Function reserved.
							I	MCI2 — Motor control PWM channel 2, input.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							0	T0_MAT0 — Match output 0 of timer 0.
P8_1	H5	G4	-	-	[3]	N; PU	I/O	GPIO4[1] — General purpose digital input/output pin.
							0	USB0_IND1 — USB0 port indicator LED control output 1.
							-	R — Function reserved.
							I	MCI1 — Motor control PWM channel 1, input.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							0	T0_MAT1 — Match output 1 of timer 0.
P8_2	K4	J4	-	-	[3]	N; PU	I/O	GPIO4[2] — General purpose digital input/output pin.
							0	USB0_IND0 — USB0 port indicator LED control output 0.
							-	R — Function reserved.
							Ι	MCI0 — Motor control PWM channel 0, input.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							0	T0_MAT2 — Match output 2 of timer 0.

Table 3. Pin description ... continued

ilahla a ~ // ~ Saa Tahla 2

32-bit ARM Cortex-M3 microcontroller

Symbol	2=0, u					0		Description
Symbol	BGA256	FBGA180	FBGA100	QFP144		eset state	/pe	Description
P8 3	_ 13	H3	-	-	[2]	N·PII	μ́.	GPI04[3] — General purpose digital input/output pip
10_5	55	115	-	-		N, 1 U	1/0	UISB1 UI PL D2 — UI PL link bidirectional data line 2
							-	B — Function reserved
							0	LCD VD12 — LCD data.
							0	LCD VD19 — LCD data.
							-	R — Function reserved.
							-	R — Function reserved.
							0	T0_MAT3 — Match output 3 of timer 0.
P8_4	J2	H2	-	-	[2]	N; PU	I/O	GPIO4[4] — General purpose digital input/output pin.
							I/O	USB1_ULPI_D1 — ULPI link bidirectional data line 1.
							-	R — Function reserved.
							0	LCD_VD7 — LCD data.
							0	LCD_VD16 — LCD data.
							-	R — Function reserved.
							-	R — Function reserved.
							I	T0_CAP0 — Capture input 0 of timer 0.
P8_5	J1	H1	-	-	[2]	N; PU	I/O	GPIO4[5] — General purpose digital input/output pin.
							I/O	USB1_ULPI_D0 — ULPI link bidirectional data line 0.
							-	R — Function reserved.
							0	LCD_VD6 — LCD data.
							0	LCD_VD8 — LCD data.
							-	R — Function reserved.
							-	R — Function reserved.
							I	T0_CAP1 — Capture input 1 of timer 0.
P8_6	K3	J3	-	-	[2]	N; PU	I/O	GPIO4[6] — General purpose digital input/output pin.
							I	USB1_ULPI_NXT — ULPI link NXT signal. Data flow control signal from the PHY.
							-	R — Function reserved.
							0	LCD_VD5 — LCD data.
							0	LCD_LP — Line synchronization pulse (STN). Horizontal synchronization pulse (TFT).
							-	R — Function reserved.
							-	R — Function reserved.
							I	T0_CAP2 — Capture input 2 of timer 0.

Table 3. Pin description ...continued

LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See <u>Table 2</u>.

32-bit ARM Cortex-M3 microcontroller

- Two AHB bus masters for transferring data. These interfaces transfer data when a DMA request goes active. Master 1 can access memories and peripherals, master 0 can access memories only.
- 32-bit AHB master bus width.
- Incrementing or non-incrementing addressing for source and destination.
- Programmable DMA burst size. The DMA burst size can be programmed to more efficiently transfer data.
- Internal four-word FIFO per channel.
- Supports 8, 16, and 32-bit wide transactions.
- Big-endian and little-endian support. The DMA Controller defaults to little-endian mode on reset.
- An interrupt to the processor can be generated on a DMA completion or when a DMA error has occurred.
- Raw interrupt status. The DMA error and DMA count raw interrupt status can be read prior to masking.

7.13.3 SPI Flash Interface (SPIFI)

The SPI Flash Interface allows low-cost serial flash memories to be connected to the ARM Cortex-M3 processor with little performance penalty compared to parallel flash devices with higher pin count.

After a few commands configure the interface at startup, the entire flash content is accessible as normal memory using byte, halfword, and word accesses by the processor and/or DMA channels. Simple sequences of commands handle erasing and programming.

Many serial flash devices use a half-duplex command-driven SPI protocol for device setup and initialization and then move to a half-duplex, command-driven 4-bit protocol for normal operation. Different serial flash vendors and devices accept or require different commands and command formats. SPIFI provides sufficient flexibility to be compatible with common flash devices and includes extensions to help insure compatibility with future devices.

7.13.3.1 Features

- Interfaces to serial flash memory in the main memory map.
- Supports classic and 4-bit bidirectional serial protocols.
- Half-duplex protocol compatible with various vendors and devices.
- Quad SPI Flash Interface (SPIFI) with 1-, 2-, or 4-bit data at rates of up to 52 MB per second.
- Supports DMA access.

7.13.4 SD/MMC card interface

The SD/MMC card interface supports the following modes:

- Secure Digital memory (SD version 3.0)
- Secure Digital I/O (SDIO version 2.0)
- Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1)

© NXP Semiconductors N.V. 2016. All rights reserved.

32-bit ARM Cortex-M3 microcontroller

7.14 Digital serial peripherals

7.14.1 UART

The LPC1850/30/20/10 contain one UART with standard transmit and receive data lines. UART1 also provides a full modem control handshake interface and support for RS-485/9-bit mode allowing both software address detection and automatic address detection using 9-bit mode.

UART1 includes a fractional baud rate generator. Standard baud rates such as 115200 Bd can be achieved with any crystal frequency above 2 MHz.

7.14.1.1 Features

- Maximum UART data bit rate of 8 MBit/s.
- 16 B Receive and Transmit FIFOs.
- Register locations conform to 16C550 industry standard.
- Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.
- Built-in fractional baud rate generator covering wide range of baud rates without a need for external crystals of particular values.
- Auto baud capabilities and FIFO control mechanism that enables software flow control implementation.
- Equipped with standard modem interface signals. This module also provides full support for hardware flow control (auto-CTS/RTS).
- Support for RS-485/9-bit/EIA-485 mode (UART1).
- DMA support.

7.14.2 USART

Remark: The LPC1850/30/20/10 contain three USARTs. In addition to standard transmit and receive data lines, the USARTs support a synchronous mode and a smart card mode.

The USARTs include a fractional baud rate generator. Standard baud rates such as 115200 Bd can be achieved with any crystal frequency above 2 MHz.

7.14.2.1 Features

- Maximum UART data bit rate of 8 MBit/s.
- 16 B Receive and Transmit FIFOs.
- Register locations conform to 16C550 industry standard.
- Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.
- Built-in fractional baud rate generator covering wide range of baud rates without a need for external crystals of particular values.
- Auto baud capabilities and FIFO control mechanism that enables software flow control implementation.
- Support for RS-485/9-bit/EIA-485 mode.
- USART3 includes an IrDA mode to support infrared communication.
- All USARTs have DMA support.
- Support for synchronous mode at a data bit rate of up to 8 Mbit/s.

32-bit ARM Cortex-M3 microcontroller

- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- The I²C-bus can be used for test and diagnostic purposes.
- All I²C-bus controllers support multiple address recognition and a bus monitor mode.

7.14.5 I²S interface

Remark: The LPC1850/30/20/10 contain two I²S interfaces.

The I²S-bus provides a standard communication interface for digital audio applications.

The l^2S -bus specification defines a 3-wire serial bus using one data line, one clock line, and one word select signal. The basic l^2S -bus connection has one master, which is always the master, and one slave. The l^2S -bus interface provides a separate transmit and receive channel, each of which can operate as either a master or a slave.

7.14.5.1 Features

- The interface has separate input/output channels each of which can operate in master or slave mode.
- Capable of handling 8-bit, 16-bit, and 32-bit word sizes.
- Mono and stereo audio data supported.
- The sampling frequency can range from 16 kHz to 192 kHz (16, 22.05, 32, 44.1, 48, 96, 192) kHz.
- Support for an audio master clock.
- Configurable word select period in master mode (separately for I²S-bus input and output).
- Two 8-word FIFO data buffers are provided, one for transmit and one for receive.
- Generates interrupt requests when buffer levels cross a programmable boundary.
- Two DMA requests, controlled by programmable buffer levels. The DMA requests are connected to the GPDMA block.
- Controls include reset, stop and mute options separately for I²S-bus input and I²S-bus output.

7.14.6 C_CAN

Remark: The LPC1850/30/20/10 contain two C_CAN controllers.

Controller Area Network (CAN) is the definition of a high performance communication protocol for serial data communication. The C_CAN controller is designed to provide a full implementation of the CAN protocol according to the CAN Specification Version 2.0B. The C_CAN controller can build powerful local networks with low-cost multiplex wiring by supporting distributed real-time control with a high level of reliability.

7.14.6.1 Features

- Conforms to protocol version 2.0 parts A and B.
- Supports bit rate of up to 1 Mbit/s.
- Supports 32 Message Objects.
- Each Message Object has its own identifier mask.

LPC1850 30 20 10

32-bit ARM Cortex-M3 microcontroller

Peripheral	Branch clock	I _{DD(REG)(3V3)} in mA					
		Branch clock frequency = 48 MHz	Branch clock frequency = 96 MHz				
ETHERNET	CLK_M3_ETHERNET	1.05	2.09				
UART0	CLK_M3_UART0, CLK_APB0_UART0	0.3	0.38				
UART1	CLK_M3_UART1, 0.27 CLK_APB0_UART1		0.48				
UART2	CLK_M3_UART2, CLK_APB2_UART2	0.27	0.47				
UART3	CLK_M3_USART3, CLK_APB2_UART3	0.29	0.49				
TIMER0	CLK_M3_TIMER0	0.07	0.14				
TIMER1	CLK_M3_TIMER1	0.07	0.14				
TIMER2	CLK_M3_TIMER2	0.07	0.15				
TIMER3	CLK_M3_TIMER3	0.06	0.11				
SDIO	CLK_M3_SDIO, CLK_SDIO	0.79	1.37				
SCTimer/PWM	CLK_M3_SCT	0.52	1.05				
SSP0	CLK_M3_SSP0, CLK_APB0_SSP0	0.12	0.21				
SSP1	CLK_M3_SSP1, CLK_APB2_SSP1	0.15	0.28				
DMA	CLK_M3_DMA	1.88	3.71				
WWDT	CLK_M3_WWDT	0.05	0.08				
QEI	CLK_M3_QEI	0.33	0.68				
USB0	CLK_M3_USB0, CLK_USB0	1.46	3.32				
USB1	CLK_M3_USB1, CLK_USB1	2.83	5.03				
RITIMER	CLK_M3_RITIMER	0.04	0.08				
EMC	CLK_M3_EMC, CLK_M3_EMC_DIV	3.6	6.97				
SCU	CLK_M3_SCU	0.09	0.23				
CREG	CLK_M3_CREG	0.37	0.72				

Table 11. Peripheral power consumption

32-bit ARM Cortex-M3 microcontroller

11.3 Crystal oscillator

Table 15. Dynamic characteristic: oscillator

 $T_{amb} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C}; V_{DD(IO)} \text{ over specified ranges; } 2.2 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V}.^{[1]}$

Symbol	Parameter	Conditions		Min	Typ <u>[2]</u>	Max	Unit	
Low-frequency mode (1 MHz to 20 MHz) ^[5]								
t _{jit(per)}	period jitter time	5 MHz crystal	[3][4]	-	13.2	-	ps	
		10 MHz crystal		-	6.6	-	ps	
		15 MHz crystal		-	4.8	-	ps	
High-freque	ency mode (20 MHz f	to 25 MHz) <u>^[6]</u>						
t _{jit(per)}	period jitter time	20 MHz crystal	[3][4]	-	4.3	-	ps	
		25 MHz crystal		-	3.7	-	ps	

[1] Parameters are valid over operating temperature range unless otherwise specified.

- [2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.
- [3] Indicates RMS period jitter.
- [4] PLL-induced jitter is not included.
- [5] Select HF = 0 in the XTAL_OSC_CTRL register.
- [6] Select HF = 1 in the XTAL_OSC_CTRL register.

11.4 IRC oscillator

Table 16. Dynamic characteristic: IRC oscillator

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 2.2 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V}.$ [1]

Symbol	Parameter	Conditions	Min	Typ <u>[2]</u>	Max	Unit
f _{osc(RC)}	internal RC oscillator frequency	-	11.82	12.0	12.18	MHz

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

11.5 RTC oscillator

Table 17. Dynamic characteristic: RTC oscillator

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 2.2 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V or } 2.2 \text{ V} \le V_{BAT} \le 3.6 \text{ V}_{\underline{11}}; \text{ typical } C_{RTCX1/2} = 20 \text{ pF}; \text{ also see } \underline{\text{Section } 13.3}$

Symbol	Parameter	Conditions	Min	Typ <u>[2]</u>	Max	Unit
f _{i(RTC)}	RTC input frequency	-	-	32.768	-	kHz
I _{DD(RTC)}	RTC supply current			280	800	nA

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

NXP Semiconductors

LPC1850/30/20/10

32-bit ARM Cortex-M3 microcontroller

[9] A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system but the requirement t_{SU;DAT} = 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{r(max)} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-mode I²C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.

11.9 I²S-bus interface

Table 21. Dynamic characteristics: I²S-bus interface pins

 T_{amb} = 25 °C; 2.2 V \leq V_{DD(REG)(3V3)} \leq 3.6 V; 2.7 V \leq V_{DD(10)} \leq 3.6 V; C_L = 20 pF. Conditions and data refer to I2S0 and I2S1 pins. Simulated values.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
common	to input and output	1	1		I	I	I
t _r	rise time			-	4	-	ns
t _f	fall time			-	4	-	ns
t _{WH}	pulse width HIGH	on pins I2Sx_TX_SCK and I2Sx_RX_SCK		36	-	-	ns
t _{WL}	pulse width LOW	on pins I2Sx_TX_SCK and I2Sx_RX_SCK		36	-	-	ns
output							
t _{v(Q)}	data output valid time	on pin I2Sx_TX_SDA	[1]	-	4.4	-	ns
		on pin I2Sx_TX_WS		-	4.3	-	ns
input							
t _{su(D)}	data input set-up time	on pin I2Sx_RX_SDA	[1]	-	0	-	ns
		on pin I2Sx_RX_WS			0.20		ns
t _{h(D)}	data input hold time	on pin I2Sx_RX_SDA	[1]	-	3.7	-	ns
		on pin I2Sx_RX_WS		-	3.9	-	ns

[1] Clock to the I²S-bus interface BASE_APB1_CLK = 150 MHz; peripheral clock to the I²S-bus interface PCLK = BASE_APB1_CLK / 12. I²S clock cycle time $T_{cy(clk)}$ = 79.2 ns; corresponds to the SCK signal in the I²S-bus specification.

32-bit ARM Cortex-M3 microcontroller

11.13 USB interface

Table 27. Dynamic characteristics: USB0 and USB1 pins (full-speed)

 $C_L = 50 \text{ pF}; R_{pu} = 1.5 \text{ k}\Omega \text{ on } D + \text{ to } V_{DD(IO)}; 3.0 \text{ V} \le V_{DD(IO)} \le 3.6 \text{ V}.$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _r	rise time	10 % to 90 %		4.0	-	20.0	ns
t _f	fall time	10 % to 90 %		4.0	-	20.0	ns
t _{FRFM}	differential rise and fall time matching	t _r / t _f		90	-	111.11	%
V _{CRS}	output signal crossover voltage			1.3	-	2.0	V
t _{FEOPT}	source SE0 interval of EOP	see Figure 35		160	-	175	ns
t _{FDEOP}	source jitter for differential transition to SE0 transition	see <u>Figure 35</u>		-2	-	+5	ns
t _{JR1}	receiver jitter to next transition			-18.5	-	+18.5	ns
t _{JR2}	receiver jitter for paired transitions	10 % to 90 %		-9	-	+9	ns
t _{EOPR1}	EOP width at receiver	must reject as EOP; see Figure 35	[1]	40	-	-	ns
t _{EOPR2}	EOP width at receiver	must accept as EOP; see Figure 35	[1]	82	-	-	ns

[1] Characterized but not implemented as production test. Guaranteed by design.

Remark: If only USB0 (HS USB) is used, VDDREG and VDDIO can be at different voltages within operating range but should have the same ramp up time. If USB1(FS USB) is used, VDDREG and VDDIO should be a minimum of 3.0 V and be tied together.

120 of 153

NXP Semiconductors

LPC1850/30/20/10

32-bit ARM Cortex-M3 microcontroller

External pin	TFT 12 bit (mode)	4:4:4	TFT 16 bit (5:6:5 mode)		TFT 16 bit (1:	5:5:5 mode)	TFT 24 bit	
	LPC18xx pin used	LCD function	LPC18xx pin used	LCD function	LPC18xx pin used	LCD function	LPC18xx pin used	LCD function
LCD_VD0	-	-	-	-	-	-	P4_1	RED0
LCD_LP	P7_6	LCDLP	P7_6	LCDLP	P7_6	LCDLP	P7_6	LCDLP
LCD_ENAB /LCDM	P4_6	LCDENAB/ LCDM	P4_6	LCDENAB/ LCDM	P4_6	LCDENAB/ LCDM	P4_6	LCDENAB/ LCDM
LCD_FP	P4_5	LCDFP	P4_5	LCDFP	P4_5	LCDFP	P4_5	LCDFP
LCD_DCLK	P4_7	LCDDCLK	P4_7	LCDDCLK	P4_7	LCDDCLK	P4_7	LCDDCLK
LCD_LE	P7_0	LCDLE	P7_0	LCDLE	P7_0	LCDLE	P7_0	LCDLE
LCD_PWR	P7_7	LCDPWR	P7_7	LCDPWR	P7_7	LCDPWR	P7_7	LCDPWR
GP_CLKIN	PF_4	LCDCLKIN	PF_4	LCDCLKIN	PF_4	LCDCLKIN	PF_4	LCDCLKIN

Table 37. LCD panel connections for TFT panels

13.2 Crystal oscillator

The crystal oscillator is controlled by the XTAL_OSC_CTRL register in the CGU (see *LPC18xx user manual*).

The crystal oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be boosted to a higher frequency, up to the maximum CPU operating frequency, by the PLL.

The oscillator can operate in one of two modes: slave mode and oscillation mode.

- In slave mode, couple the input clock signal with a capacitor of 100 pF (C_C in <u>Figure 41</u>), with an amplitude of at least 200 mV (RMS). The XTAL2 pin in this configuration can be left unconnected.
- External components and models used in oscillation mode are shown in Figure 42, and in Table 38 and Table 39. Since the feedback resistance is integrated on chip, only a crystal and the capacitances CX1 and CX2 need to be connected externally in case of fundamental mode oscillation (L, CL and RS represent the fundamental frequency). Capacitance C_P in Figure 42 represents the parallel package capacitance and must not be larger than 7 pF. Parameters FC, CL, RS and CP are supplied by the crystal manufacturer.

Fundamental oscillation frequency	Maximum crystal series resistance R _S	External load capacitors C_{X1} , C_{X2}					
2 MHz	< 200 Ω	33 pF, 33 pF					
	< 200 Ω	39 pF, 39 pF					
	< 200 Ω	56 pF, 56 pF					
4 MHz	< 200 Ω	18 pF, 18 pF					
	< 200 Ω	39 pF, 39 pF					
	< 200 Ω	56 pF, 56 pF					
8 MHz	< 200 Ω	18 pF, 18 pF					
	< 200 Ω	39 pF, 39 pF					

Table 38.	Recommended values for C _{X1/X2} in oscillation mode (crystal and external
	components parameters) low frequency mode

32-bit ARM Cortex-M3 microcontroller

14. Package outline

Fig 49. Package outline of the LBGA256 package

All information provided in this document is subject to legal disclaimers.

LPC1850 30 20 10

NXP Semiconductors

LPC1850/30/20/10

32-bit ARM Cortex-M3 microcontroller

Document ID	Release date	Data sheet status	Change notice	Supersedes
Modifications:	 IEEE standard 802.3 compliance added to Section 11.13. Covers Ethernet dynamic characteristics of ENET_MDIO and ENET_MDC signals. 			
	 Parameter C₁ corrected for high-drive pins (changed from 2 pF to 5.2 pF). See Table 10. 			
	 Table 18 "Dynamic characteristic: I/O pins[1]" added. 			
	 IRC accuracy changed from 1 % to 1.5 % over the full temperature range. See Table 16 "Dynamic characteristic: IRC oscillator". 			
	 Description of internal pull-up resistor configuration added for RESET, WAKEUPn, and ALARM pins. See Table 3. 			
	Description of DEBUG pin updated.			
	• Input range for PLL1 corrected: 1 MHz to 25 MHz. See Section 7.18.7 "System PLL1".			
	 Section 13.7 "Suggested USB interface solutions" added. 			
	 Reset state of the RTC alarm pin RTC_ALARM added. See Table 3. 			
	 Signal polarity corrected for signals EMC_CKEOUT and EMC_DQMOUT. Both signals are active HIGH. 			
	 SPIFI output timing parameters in Table 31 corrected to apply to Mode 0: 			
	 t_{v(Q)} changed to 3.2 ns. 			
	 t_{h(Q)} ch 	anged to 0.2 ns,		
	 Parameter t_{CSLWEL} with condition PB = 1 corrected: (WAITWEN + 1) × T_{cy(clk)} added. See Table 23 "Dynamic characteristics: Static asynchronous external memory interface". 			
	 Parameter See Table interface". 	r t _{CSLBLSL} with condition PB = 23 "Dynamic characteristics:	0 corrected: (WAI Static asynchrono	TWEN + 1) \times T _{cy(clk)} added.
	 SSP mast 29 "SSP m 	er mode timing diagram upda naster timing in SPI mode".	ted with SSEL tim	ing parameters. See Figure
	 Parameter SPI mode² 	rs t _{lead} , t _{lag} , and t _d added in Ta ".	able 22 "Dynamic	characteristics: SSP pins in

Table 41. Revision history ... continued

32-bit ARM Cortex-M3 microcontroller

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b)

20. Contact information

whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. I²C-bus — logo is a trademark of NXP B.V.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com