

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1142aga-hab-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

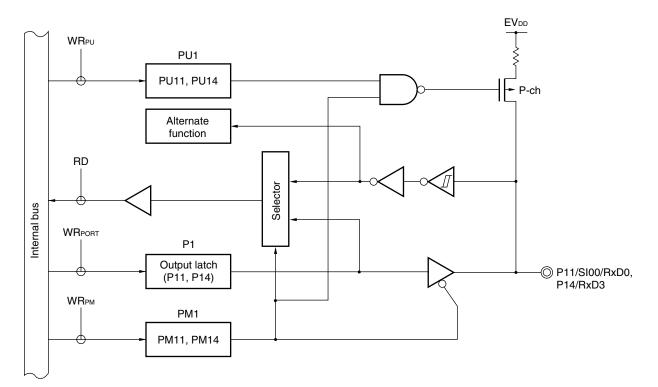


Figure 4-8. Block Diagram of P11 and P14

- P1: Port register 1
- PU1: Pull-up resistor option register 1
- PM1: Port mode register 1
- RD: Read signal
- WR××: Write signal

6.2 Configuration of Timer Array Unit

The timer array unit includes the following hardware.

Item	Configuration
Timer/counter	Timer counter register 0n (TCR0n)
Register	Timer data register 0n (TDR0n)
Timer input	TI00 to TI06 pins, RxD3 pin (for LIN-bus)
Timer output	TO00 to TO06 pins, output controller
Control registers	<registers block="" of="" setting="" unit=""> • Peripheral enable register 0 (PER0) • Timer clock select register 0 (TPS0) • Timer channel enable status register 0 (TE0) • Timer channel start register 0 (TS0) • Timer channel stop register 0 (TT0) • Timer input select register 0 (TIS0) • Timer output enable register 0 (TOE0) • Timer output register 0 (TO0) • Timer output level register 0 (TOL0) • Timer output mode register 0 (TOM0)</registers>
	<registers channel="" each="" of=""> Timer mode register 0n (TMR0n) Timer status register 0n (TSR0n) Input switch control register (ISC) (channel 7 only) Noise filter enable register 1 (NFEN1) Port mode registers 0, 1, 3, 4 (PM0, PM1, PM3, PM4) Port registers 0, 1, 3, 4 (P0, P1, P3, P4) </registers>

Remark n: Channel number (n = 0 to 7)

Figure 6-1 shows the block diagram.

6.5 Channel Input (TI0n Pin) Control

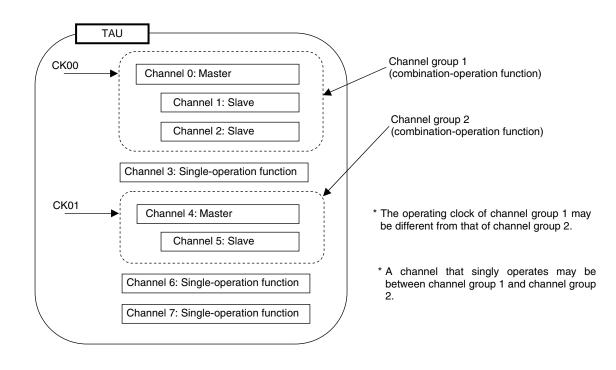
6.5.1 TIOn edge detection circuit

(1) Edge detection basic operation timing

Edge detection circuit sampling is done in accordance with the operation clock (MCK).

Figure 6-34. Edge Detection Basic Operation Timing

fclk	
Operation clock (MCK)	
Synchronized (noise filter) internal TI0n signal	
Rising edge detection internal trigger	
Falling edge detection internal trigger	


Remark n = 0 to 6

6.6.3 Applicable range of basic rules of combination-operation function

The rules of the combination-operation function are applied in a channel group (a master channel and slave channels forming one combination-operation function).

If two or more channel groups that do not operate in combination are specified, the basic rules of the combinationoperation function in **6.6.2 Basic rules of combination-operation function** do not apply to the channel groups.

Example

6.7 Operation of Timer Array Unit as Independent Channel

6.7.1 Operation as interval timer/square wave output

(1) Interval timer

The timer array unit can be used as a reference timer that generates INTTMOn (timer interrupt) at fixed intervals.

The interrupt generation period can be calculated by the following expression.

Generation period of INTTM0n (timer interrupt) = Period of count clock \times (Set value of TDR0n + 1)

A subsystem clock divided by four ($f_{SUB}/4$) can be selected as the count clock, in addition to CK00 and CK01. Consequently, the interval timer can be operated with the count clock fixed to $f_{SUB}/4$, regardless of the f_{CLK} frequency (main system clock, subsystem clock). When changing the clock selected as f_{CLK} (changing the value of the system clock control register (CKC)), however, stop the timer array unit (TAU) (TT0 = 00FFH) first.

(2) Operation as square wave output

TO0k performs a toggle operation as soon as INTTM0n has been generated, and outputs a square wave with a duty factor of 50%.

The period and frequency for outputting a square wave from TO0k can be calculated by the following expressions.

• Period of square wave output from TO0k = Period of count clock \times (Set value of TDR0n + 1) \times 2	
• Frequency of square wave output from TO0k = Frequency of count clock/{(Set value of TDR0n + 1) × 2	2}

TCR0n operates as a down counter in the interval timer mode.

TCR0n loads the value of TDR0n at the first count clock after the channel start trigger bit (TS0n) is set to 1. If MD0n0 of TMR0n = 0 at this time, INTTM0n is not output and TO0k is not toggled. If MD0n0 of TMR0n = 1, INTTM0n is output and TO0k is toggled.

After that, TCR0n count down in synchronization with the count clock.

When TCR0n = 0000H, INTTM0n is output and TO0k is toggled at the next count clock. At the same time, TCR0n loads the value of TDR0n again. After that, the same operation is repeated.

TDR0n can be rewritten at any time. The new value of TDR0n becomes valid from the next period.

Remarks 1. n = 0 to 7, k = 0 to 6

2. fcLK: CPU/peripheral hardware clock frequency fsuB: Subsystem clock oscillation frequency

(3) 10-bit A/D conversion result register (ADCR)

Use the ADCR register in the same manner as during A/D converter basic operation (see **10.3 (3) 10-bit A/D** conversion result register (ADCR)).

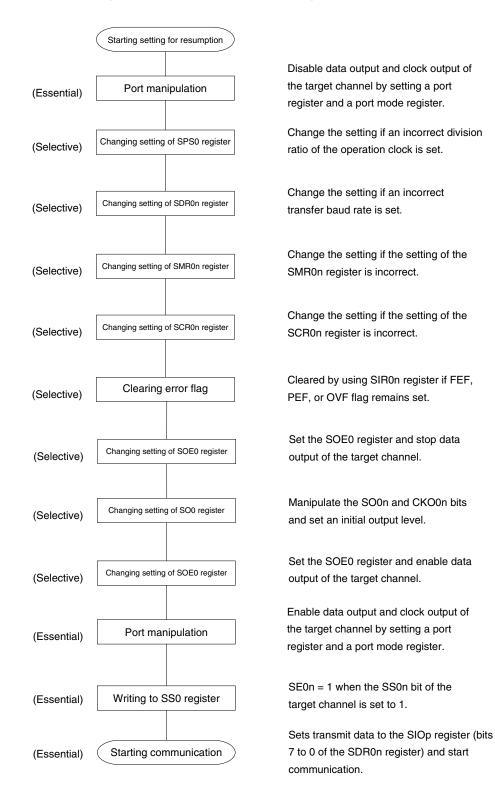
Caution When using a temperature sensor, use the result of the second or later A/D conversion for temperature sensor 0 (ANI0 side), and the result of the third or later A/D conversion for temperature sensor 1 (ANI1 side).

(4) Analog input channel specification register (ADS)

This register specifies the channel from which an analog voltage to be A/D-converted is input, in the same manner as during A/D converter basic operation. When a temperature sensor is used, however, some settings differ from those of A/D converter basic operation.

ADS can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

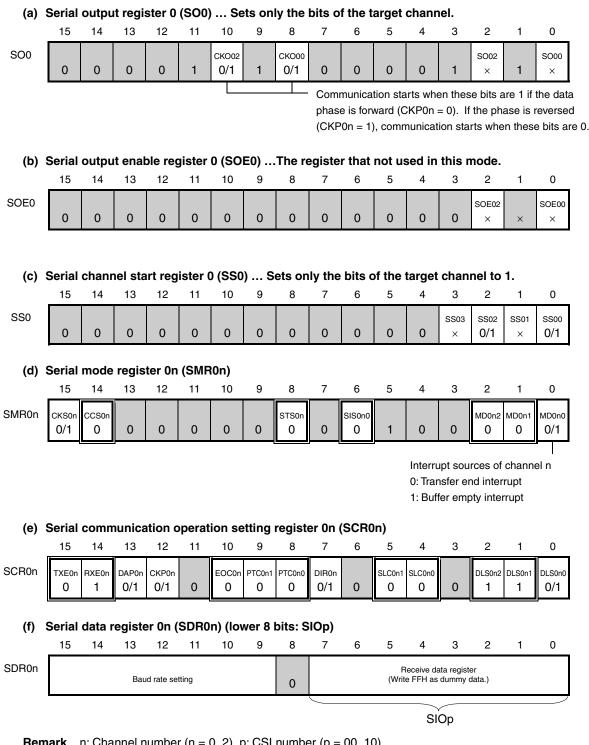

Figure 10-16. Format of Analog Input Channel Specification Register (ADS) When Using Temperature Sensor

Address: FFF31H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
ADS	ADISS	0	0	0	ADS3	ADS2	ADS1	ADS0

ADISS	ADS3	ADS2	ADS1	ADS0	Analog input channel	Input source
1	0	0	0	0	ANI0	Temperature sensor 0 output
1	0	0	0	1	ANI1	Temperature sensor 1 output
	C	ther than abov	Setting prohib	ited		

Caution Be sure to clear bits 4 to 6 to "0".


Figure 11-27. Procedure for Resuming Master Transmission

(1) Register setting

<R>

<R>

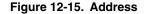
Figure 11-32. Example of Contents of Registers for Master Reception of 3-Wire Serial I/O (CSI00, CSI10)

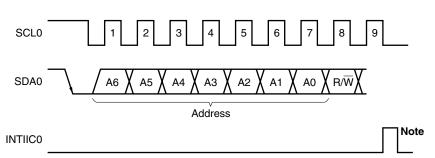
Remark n: Channel number (n = 0, 2), p: CSI number (p = 00, 10)

: Setting is fixed in the CSI master reception mode, : Setting disabled (set to the initial value) x: Bit that cannot be used in this mode (set to the initial value when not used in any mode) 0/1: Set to 0 or 1 depending on the usage of the user

(2) Processing flow

(a) When starting data reception


SS		
ST	$\square \square $	
SE	02	
SOE	О2 "H"	
TIAL0		
SDR	Dummy data (FFH)	Receive data
SCL10 outp		
SDA10 outp	ut	
SDA10 inp	ut D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0	_X
register		<u> </u>
INTIIC	10	ļL
TSF	02	
ST02 SE02 SOE02	Output is enabled by serial Output is stopped by serial communication operation]]
TXE02, · RXE02 ·	TXE02 = 0/RXE02 = 1	
SDR02	Dummy data (FFH) Receive data	Receive data
SCL10 output		
SDA10 output	ACK/ NACK	·····
SDA10 input	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Shift - register 02 -	X (Shift operation) X X X (Shift operation) X X X	
INTIIC10	<u> </u>	
TSF02		
	Reception of last byte	 △ △ SO02 bit SO02 bit manipulation manipulation
	IIC op	△ △ eration stop CKO02 bit manipulation

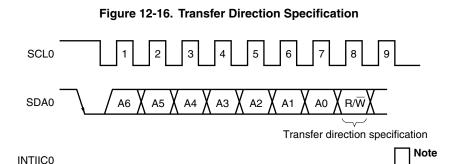

12.5.2 Addresses

The address is defined by the 7 bits of data that follow the start condition.

An address is a 7-bit data segment that is output in order to select one of the slave devices that are connected to the master device via the bus lines. Therefore, each slave device connected via the bus lines must have a unique address.

The slave devices include hardware that detects the start condition and checks whether or not the 7-bit address data matches the data values stored in slave address register 0 (SVA0). If the address data matches the SVA0 values, the slave device is selected and communicates with the master device until the master device generates a start condition or stop condition.

Note INTIIC0 is not issued if data other than a local address or extension code is received during slave device operation.

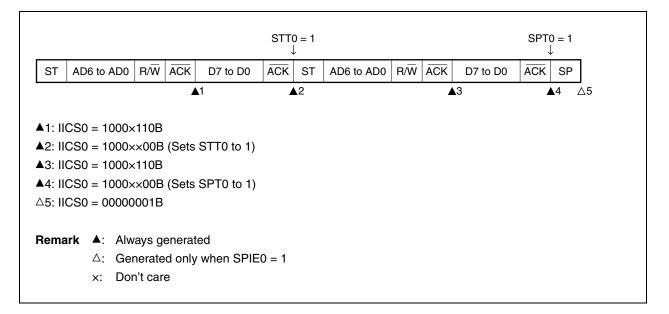

The slave address and the eighth bit, which specifies the transfer direction as described in **12.5.3** Transfer direction specification below, are together written to IIC shift register 0 (IIC0) and are then output. Received addresses are written to IIC0.

The slave address is assigned to the higher 7 bits of IIC0.

12.5.3 Transfer direction specification

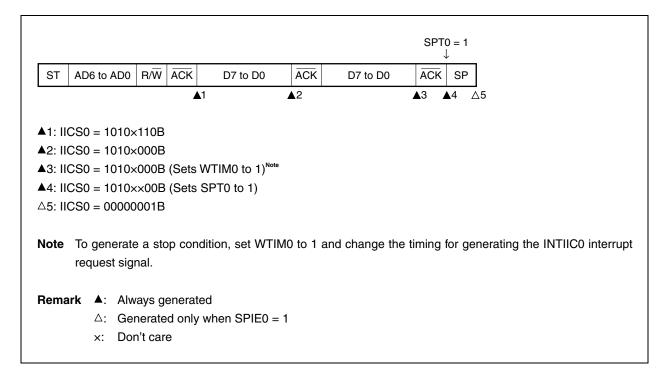
In addition to the 7-bit address data, the master device sends 1 bit that specifies the transfer direction.

When this transfer direction specification bit has a value of "0", it indicates that the master device is transmitting data to a slave device. When the transfer direction specification bit has a value of "1", it indicates that the master device is receiving data from a slave device.

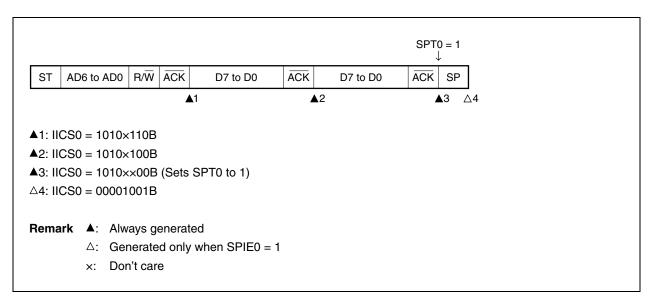

Note INTIIC0 is not issued if data other than a local address or extension code is received during slave device operation.

(b) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop (restart)

(i) When WTIM0 = 0


				STT0 = 1 ↓				SPT0 = ↓	1
ST	AD6 to AD0	R/W ACK	D7 to D0	ACK ST	AD6 to AD0	R/W ACK	D7 to D0	ACK S	Р
			▲1	▲2 ▲3			▲4	▲5 ▲6	
▲2: IIC ▲3: IIC ▲4: IIC ▲5: IIC ▲6: IIC	CS0 = 1000 CS0 = 1000 CS0 = 1000	×000B (Set ××00B (Cle ×110B ×000B (Set ××00B (Set	s WTIM0 to 1 ars WTIM0 to s WTIM0 to 1 s SPT0 to 1)	0 0 ^{Note 2} , sets	STT0 to 1)				
Notes	interrup 2. Clear V 3. To gen	ot request s VTIM0 to 0	ignal. to restore the op condition,	original se) to 1 and ch tting.) to 1 and ch	-		-	
Rema			ated ly when SPIE	0 = 1					

(ii) When WTIM0 = 1



(c) Start ~ Code ~ Data ~ Data ~ Stop (extension code transmission)

(i) When WTIM0 = 0

(ii) When WTIM0 = 1

14.3 Registers Controlling DMA Controller

DMA controller is controlled by the following registers.

- DMA mode control register n (DMCn)
- DMA operation control register n (DRCn)

Remark n: DMA channel number (n = 0, 1)

HALT Mode Setting		When HALT Instruction Is Executed While CPU Is Operating on Subsystem Clock			
Item		When CPU Is Operating on XT1 Clock (fxr)			
System clock		Clock supply to the CPU is stopped			
Main system clock	fıн	Status before HALT mode was set is retained			
	fx				
	fex	Operates or stops by external clock input			
Subsystem clock	fхт	Operation continues (cannot be stopped)			
fiL		Set by bits 0 (WDSTBYON) and 4 (WTON) of option byte (000C0H) • WTON = 0: Stops • WTON = 1 and WDSTBYON = 1: Oscillates • WTON = 1 and WDSTBYON = 0: Stops			
CPU		Operation stopped			
Flash memory		Operable in low-current consumption mode			
RAM		Operation stopped. However, status before HALT mode was set is retained at voltage higher than POC detection voltage.			
Port (latch)		Status before HALT mode was set is retained			
Timer array unit (TAU)		Operable			
Real-time counter (RTC))				
Watchdog timer		Set by bits 0 (WDSTBYON) and 4 (WTON) of option byte (000C0H) • WTON = 0: Stops • WTON = 1 and WDSTBYON = 1: Operates • WTON = 1 and WDSTBYON = 0: Stops			
Clock output/buzzer out	tput	Operable			
A/D converter		Cannot operate			
Serial array unit (SAU)		Operable			
Serial interface (IIC0)		Cannot operate			
Multiplier		Operation stopped			
DMA controller		Operable			
Power-on-clear function					
Low-voltage detection function					
External interrupt					
Key interrupt function					

Table 17-1. Operating Statuses in HALT Mode (2/2)

Remark fin: Internal high-speed oscillation clock

- fx: X1 clock
- fex: External main system clock
- fxT: XT1 clock
- fiL: Internal low-speed oscillation clock

17.2.2 STOP mode

(1) STOP mode setting and operating statuses

The STOP mode is set by executing the STOP instruction, and it can be set only when the CPU clock before the setting was the main system clock.

Caution Because the interrupt request signal is used to clear the standby mode, if there is an interrupt source with the interrupt request flag set and the interrupt mask flag reset, the standby mode is immediately cleared if set. Thus, the STOP mode is reset to the HALT mode immediately after execution of the STOP instruction and the system returns to the operating mode as soon as the wait time set using the oscillation stabilization time select register (OSTS) has elapsed.

The operating statuses in the STOP mode are shown below.

STOP Mode Setting		When STOP Instruction Is	SExecuted While CPU Is Operat	ing on Main System Clock		
		When CPU Is Operating on Internal High-Speed Oscillation Clock (fiH) When CPU Is Operating on X1 Clock (fx) When CPU Is Operating on External Main System Clock (fEX)				
System clock		Clock supply to the CPU is stop	ped			
Main system clock	fін	Stopped				
	fx					
	fex					
Subsystem clock	fхт	Status before STOP mode was	set is retained			
fı∟		Set by bits 0 (WDSTBYON) and 4 (WTON) of option byte (000C0H) • WTON = 0: Stops • WTON = 1 and WDSTBYON = 1: Oscillates • WTON = 1 and WDSTBYON = 0: Stops				
CPU		Operation stopped				
Flash memory		Operation stopped				
RAM		Operation stopped. However, status before STOP mode was set is retained at voltage higher than POC detection voltage.				
Port (latch)		Status before STOP mode was set is retained				
Timer array unit (TAU)		Operation stopped				
Real-time counter (RTC)		Operable				
Watchdog timer		Set by bits 0 (WDSTBYON) and 4 (WTON) of option byte (000C0H) • WTON = 0: Stops • WTON = 1 and WDSTBYON = 1: Operates • WTON = 1 and WDSTBYON = 0: Stops				
Clock output/buzzer out	tput	Operable only when subsystem clock is selected as the count clock				
A/D converter		Operation stopped				
Serial array unit (SAU)						
Serial interface (IIC0)						
Multiplier						
DMA controller						
Power-on-clear function		Operable				
Low-voltage detection f	unction					
External interrupt						
Key interrupt function						

Table 17-2.	Operating Statuses in STOP Mode
-------------	--

Remark file: Internal high-speed oscillation clock

fx: X1 clock

- fex: External main system clock
- fxT: XT1 clock
- fil: Internal low-speed oscillation clock

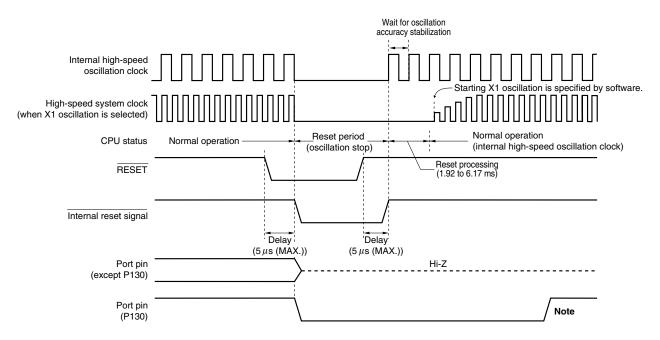
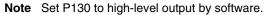
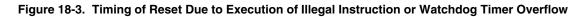




Figure 18-2. Timing of Reset by RESET Input

Remark When reset is effected, P130 outputs a low level. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal.

			Wait for oscillation ccuracy stabilization		
Internal high-speed oscillation clock				arting X1 oscillation is specified by softwar	iro
High-speed system clock (when X1 oscillation is selected)					10
CPU status	Normal operation	Reset period	Reset processing	_ Normal operation (internal high-speed oscillation clock)	
Execution of illegal instruction/ watchdog timer overflow		(100 ns (TYP.))	(61 to 162 µs)		
Internal reset signal		\	/		
Port pin (except P130)		······	Hi-Z		
Port pin (P130)		\		Note	

Note Set P130 to high-level output by software.

Caution A watchdog timer internal reset resets the watchdog timer.

Remark When reset is effected, P130 outputs a low level. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal.

Standard Products

DC Characteristics (3/10)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, 1.8 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage,	VIH1	P01, P02, P12, P13, P15, P41, P52 to P55, P121 to P124		0.7V _{DD}		VDD	V
high	VIH2	P00, P03 to P06, P10, P11, P14, P16, P17, P30, P31, P40, P42, P43, P50, P51, P70 to P77, P120, P140, P141, EXCLK, RESET	Normal input buffer	0.8Vdd		Vdd	V
	Vінз	P03, P04	TTL input buffer $4.0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	2.2		Vdd	V
			TTL input buffer 2.7 V \leq V _{DD} < 4.0 V	2.0		Vdd	V
			TTL input buffer $1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.6		Vdd	V
V _{IH4} V _{IH5}	VIH4	P20 to P27	$2.7~V \leq AV_{\text{REF}} \leq V_{\text{DD}}$	0.7AVREF		AVREF	V
			$AV_{REF} = V_{DD} < 2.7 V$				
	VIH5	P60 to P63		0.7V _{DD}		6.0	V
	VIH6	FLMD0		0.9VDD Note 1		VDD	V
Input voltage,	VIL1	P01, P02, P12, P13, P15, P41, P52 to P55, P121 to P124				0.3VDD	V
low	VIL2	P00, P03 to P06, P10, P11, P14, P16, P17, P30, P31, P40, P42, P43, P50, P51, P70 to P77, P120, P140, P141, EXCLK, RESET	Normal input buffer	0		0.2V _{DD}	V
	VIL3	P03, P04	TTL input buffer $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0		0.8	V
V1L4 V1L5 V1L6			TTL input buffer $2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.2	V
	VIL4	P20 to P27	$2.7~V \leq AV_{\text{REF}} \leq V_{\text{DD}}$	0		0.3AV _{REF}	V
			$AV_{REF} = V_{DD} < 2.7 V$				
	VIL5	P60 to P63		0		0.3V _{DD}	V
	VIL6	FLMD0 ^{Note 2}		0		0.1VDD	V

Notes 1. The high-level input voltage (VIH6) must be greater than 0.9VDD when using it in the flash memory programming mode.

2. When disabling writing of the flash memory, connect the FLMD0 pin processing directly to Vss, and maintain a voltage less than 0.1Vpb.

Cautions 1. The maximum value of V_{IH} of pins P02 to P04 is V_{DD}, even in the N-ch open-drain mode.

2. For P122/EXCLK, the value of V_{IH} and V_{IL} differs according to the input port mode or external clock mode.

Make sure to satisfy the DC characteristics of EXCLK in external clock input mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Standard Products

- (2) Serial interface: Serial array unit (15/18)
- Caution Select the TTL input buffer for SI10 and SCK10 and the N-ch open drain output (VDD tolerance) mode for SO10 by using the PIM0 and POM0 registers.
- **Remarks 1.** $R_b[\Omega]$:Communication line (SO10) pull-up resistance,

 $C_b[F]$: Communication line (SO10) load capacitance, $V_b[V]$: Communication line voltage

- fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKS02 bit of the SMR02 register.)
- **3.** V_{IH} and V_{IL} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.

 $4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V;~V_{\text{IH}}$ = 2.2 V, V_{IL} = 0.8 V

 $2.7~V \leq V_{\text{DD}} \leq 4.0~V,\, 2.3~V \leq V_{\text{b}} \leq 2.7~V;\, V_{\text{IH}} = 2.0~V,\, V_{\text{IL}} = 0.5~V$

4. CSI00 cannot communicate at different potential. Use CSI10 for communication at different potential.

C.1 Major Revisions in This Edition

		(1/
Page	Description	Classification
Throughout		
-	Change of status of (A) grade products of the expanded-specification products and 64-pin plastic FBGA (6 × 6) package from under development to mass production	(b), (d)
CHAPTER 1	OUTLINE	
p.17	Change of 1.1 Differences Between Conventional-Specification Products (μ PD78F114x) and Expanded-Specification Products (μ PD78F114xA)	(c)
CHAPTER 3	CPU ARCHITECTURE	
pp.58 to 62	Change of Figure 3-7 to Figure 3-11 Correspondence Between Data Memory and Addressing	(c)
p.64	Addition of Caution to 3.2.1 (3) Stack pointer (SP)	(c)
CHAPTER 5	CLOCK GENERATOR	
pp.141, 142	Addition of fMAINC to Figure 5-1. Block Diagram of Clock Generator and Remark	(c)
p.143	Change of description of AMPH bit in Figure 5-2. Format of Clock Operation Mode Control Register (CMC)	(c)
p.151	Change of description of RTCEN bit in Figure 5-7. Format of Peripheral Enable Register (1/2)	(c)
p.153	Change of Caution 5 in Figure 5-8. Format of Operation Speed Mode Control Register (OSMC)	(c)
p.173	Change of description of AMPH bit in Table 5-4. CPU Clock Transition and SFR Register Setting Examples (1/4) (2) and addition of Remark	(c)
p.174	Change of description of AMPH bit in Table 5-4. CPU Clock Transition and SFR Register Setting Examples (2/4) (4) and addition of Remark	(c)
p.176	Change of (9) CPU clock changing from subsystem clock (D) to high-speed system clock (C) in Table 5-4. CPU Clock Transition and SFR Register Setting Examples (4/4)	(c)
p.176	Change of (11) • STOP mode (H) set while CPU is operating with internal high-speed oscillation clock (B) • STOP mode (I) set while CPU is operating with high-speed system clock (C) in Table 5-4. CPU Clock Transition and SFR Register Setting Examples (4/4)	(c)
p.179	Change of Table 5-6. Maximum Time Required for Main System Clock Switchover	(c)
p.179	Change of Table 5-8. Maximum Number of Clocks Required in Type 2	(c)
p.180	Change of Table 5-9. Maximum Number of Clocks Required in Type 3 and addition of Remark	(c)
CHAPTER 6	TIMER ARRAY UNIT	
p.191	Change of CKS0n bit in Figure 6-6. Format of Timer Mode Register 0n (TMR0n) (1/3)	(c)
p.199	Change of Figure 6-13. Start Timing (In One-count Mode)	(a)
p.200	Change of Figure 6-14. Start Timing (In Capture & One-count Mode)	(a)
p.206	Change of description of ISC1 and ISC0 bits in Figure 6-21. Format of Input Switch Control Register (ISC)	(a)
CHAPTER 7	REAL-TIME COUNTER	
p.261	Change of Table 7-1. Configuration of Real-Time Counter	(c)
p.263	Change of 7.3 Registers Controlling Real-Time Counter	(c)
p.265	Change of description of AMPM bit in Figure 7-3. Format of Real-Time Counter Control Register 0 (RTCC0)	(c)

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,
 (d): Addition/change of package, part number, or management division, (e): Addition/change of related documents