# E·X Renesas Electronics America Inc - <u>UPD78F1142AGK-GAJ-AX Datasheet</u>



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                                |
|----------------------------|---------------------------------------------------------------------------------------|
| Core Processor             | 78K/0R                                                                                |
| Core Size                  | 16-Bit                                                                                |
| Speed                      | 20MHz                                                                                 |
| Connectivity               | 3-Wire SIO, I <sup>2</sup> C, LINbus, UART/USART                                      |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                               |
| Number of I/O              | 50                                                                                    |
| Program Memory Size        | 64KB (64K x 8)                                                                        |
| Program Memory Type        | FLASH                                                                                 |
| EEPROM Size                | -                                                                                     |
| RAM Size                   | 4K x 8                                                                                |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                           |
| Data Converters            | A/D 8x10b                                                                             |
| Oscillator Type            | Internal                                                                              |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                     |
| Mounting Type              | Surface Mount                                                                         |
| Package / Case             | 64-LQFP                                                                               |
| Supplier Device Package    | -                                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1142agk-gaj-ax |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### **CHAPTER 4 PORT FUNCTIONS**

## 4.1 Port Functions

There are three types of pin I/O buffer power supplies: AVREF, EVDD, and VDD. The relationship between these power supplies and the pins is shown below.

| Power Supply | Corresponding Pins                                                                                    |
|--------------|-------------------------------------------------------------------------------------------------------|
| AVREF        | P20 to P27                                                                                            |
| EVdd         | <ul> <li>Port pins other than P20 to P27 and P121 to P124</li> <li>RESET pin and FLMD0 pin</li> </ul> |
| Vdd          | P121 to P124     Pins other than port pins (except RESET pin and FLMD0 pin )                          |

| Table 4-1. Pin I/O Buffer Power Sup |
|-------------------------------------|
|-------------------------------------|

78K0R/KE3 products are provided with the ports shown in Figure 4-1, which enable variety of control operations. The functions of each port are shown in Table 4-2.

In addition to the function as digital I/O ports, these ports have several alternate functions. For details of the alternate functions, see **CHAPTER 2 PIN FUNCTIONS**.



#### Figure 4-1. Port Types





- P2: Port register 2
- PM2: Port mode register 2

RD: Read signal

WR××: Write signal

#### Table 5-4. CPU Clock Transition and SFR Register Setting Examples (3/4)

#### (6) CPU clock changing from high-speed system clock (C) to internal high-speed oscillation clock (B)

| (Setting sequence of SFR registers) |              |                      |              |  |
|-------------------------------------|--------------|----------------------|--------------|--|
| Setting Flag of SFR Register        | CSC Register | Oscillation accuracy | CKC Register |  |
| Status Transition                   | HIOSTOP      | stabilization time   | MCM0         |  |
| $(C) \rightarrow (B)$               | 0            | 10 <i>μ</i> s        | 0            |  |
|                                     |              | 1                    |              |  |



#### (7) CPU clock changing from high-speed system clock (C) to subsystem clock (D)

| (Sett             | ing sequence of SFR registers) |                              |              |                              |              |
|-------------------|--------------------------------|------------------------------|--------------|------------------------------|--------------|
|                   | Setting Flag of SFR Register   | CMC Register <sup>Note</sup> | CSC Register | Waiting for                  | CKC Register |
| Status Transition |                                | OSCSELS                      | XTSTOP       | Oscillation<br>Stabilization | CSS          |
| $(C) \to (D)$     |                                | 1                            | 0            | Necessary                    | 1            |
|                   |                                |                              |              | ,                            |              |

Unnecessary if the CPU is operating with the subsystem clock

Note The CMC register can be written only once by an 8-bit memory manipulation instruction after reset release.

#### (8) CPU clock changing from subsystem clock (D) to internal high-speed oscillation clock (B)

#### (Setting sequence of SFR registers)

| Setting Flag of SFR Register | CSC Register | CKC R | legister |
|------------------------------|--------------|-------|----------|
| Status Transition            | HIOSTOP      | MCM0  | CSS      |
| $(D) \rightarrow (B)$        | 0            | 0     | 0        |
|                              | (            | (     |          |

Unnecessary if the CPU I is operating with the re internal high-speed oscillation clock

Unnecessary if this register is already set

**Remark** (A) to (I) in Table 5-4 correspond to (A) to (I) in Figure 5-15.

# Caution When TOE0n = 1, even if the output by timer interrupt of each timer (INTTM0n) contends with writing to TO0n, output is normally done to TO0n pin.

**Remark** n = 0 to 6

#### 6.4.5 Timer Interrupt and TO0n Pin Output at Operation Start

In the interval timer mode or capture mode, the MD0n0 bit in the TMR0n register sets whether or not to generate a timer interrupt at count start.

When MD0n0 is set to 1, the count operation start timing can be known by the timer interrupt (INTTM0n) generation.

In the other modes, neither timer interrupt at count operation start nor TO0n output is controlled.

Figures 6-32 and 6-33 show operation examples when the interval timer mode (TOE0n = 1, TOM0n = 0) is set.



Figure 6-32. When MD0n0 is set to 1

When MD0n0 is set to 1, a timer interrupt (INTTM0n) is output at count operation start, and TO0n performs a toggle operation.

#### Figure 6-33. When MD0n0 is set to 0



When MD0n0 is set to 0, a timer interrupt (INTTM0n) is not output at count operation start, and TO0n does not change either. After counting one cycle, INTTM0n is output and TO0n performs a toggle operation.

**Remark** n = 0 to 6



#### Figure 6-49. Example of Set Contents of Registers to Measure Input Pulse Interval

#### (11) Month count register (MONTH)

The MONTH register is an 8-bit register that takes a value of 1 to 12 (decimal) and indicates the count value of months.

It counts up when the day counter overflows.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (32.768 kHz) later. Even if the day count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 01 to 12 to this register in BCD code. If a value outside the range is set, the register value returns to the normal value after 1 period.

MONTH can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 01H.

#### Figure 7-12. Format of Month Count Register (MONTH)

Address: FFF97H After reset: 01H R/W

| Symbol | 7 | 6 | 5 | 4       | 3      | 2      | 1      | 0      |
|--------|---|---|---|---------|--------|--------|--------|--------|
| MONTH  | 0 | 0 | 0 | MONTH10 | MONTH8 | MONTH4 | MONTH2 | MONTH1 |

#### (12) Year count register (YEAR)

The YEAR register is an 8-bit register that takes a value of 0 to 99 (decimal) and indicates the count value of years.

It counts up when the month counter overflows.

Values 00, 04, 08, ..., 92, and 96 indicate a leap year.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (32.768 kHz) later. Even if the month count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 00 to 99 to this register in BCD code. If a value outside the range is set, the register value returns to the normal value after 1 period.

YEAR can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

#### Figure 7-13. Format of Year Count Register (YEAR)

Address: FFF98H After reset: 00H R/W

| Symbol | 7      | 6      | 5      | 4      | 3     | 2     | 1     | 0     |
|--------|--------|--------|--------|--------|-------|-------|-------|-------|
| YEAR   | YEAR80 | YEAR40 | YEAR20 | YEAR10 | YEAR8 | YEAR4 | YEAR2 | YEAR1 |

#### (2) Port mode register 14 (PM14)

This register sets port 14 input/output in 1-bit units. When using the P140/INTP6/PCLBUZ0 and P141/INTP7/PCLBUZ1 pins for clock output/buzzer output, clear PM140 and PM141 and the output latches of P140 and P141 to 0. PM14 is set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets this register to FFH.

#### Figure 9-3. Format of Port Mode Register 14 (PM14)



| PM14n | P14n pin I/O mode selection (n = 0, 1) |
|-------|----------------------------------------|
| 0     | Output mode (output buffer on)         |
| 1     | Input mode (output buffer off)         |

## 9.4 Operations of Clock Output/Buzzer Output Controller

One pin can be used to output a clock or buzzer sound.

Two output pins, PCLBUZ0 and PCLBUZ1, are available.

PCLBUZ0 outputs a clock/buzzer selected by clock output select register 0 (CKS0).

PCLBUZ1 outputs a clock/buzzer selected by clock output select register 1 (CKS1).

#### 9.4.1 Operation as output pin

PCLBUZn is output as the following procedure.

- <1> Select the output frequency with bits 0 to 3 (CCSn0 to CCSn2, CSELn) of the clock output select register (CKSn) of the PCLBUZn pin (output in disabled status).
- <2> Set bit 7 (PCLOEn) of CKSn to 1 to enable clock/buzzer output.
- <R> Remarks 1. The controller used for outputting the clock starts or stops outputting the clock one clock after enabling or disabling clock output (PCLOEn) is switched. At this time, pulses with a narrow width are not output. Figure 9-4 shows enabling or stopping output using PCLOEn and the timing of outputting the clock.
  - **2.** n = 0, 1

<R>

#### Figure 9-4. Remote Control Output Application Example



#### 11.5.2 Master reception

Master reception is that the 78K0R/KE3 outputs a transfer clock and receives data from other device.

|         | 3-Wire Serial I/O    | CSI00                                                                                                                                                                                                                                     | CSI10             |  |  |  |
|---------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
|         | Target channel       | Channel 0 of SAU0                                                                                                                                                                                                                         | Channel 2 of SAU0 |  |  |  |
|         | Pins used            | SCK00, SI00                                                                                                                                                                                                                               | SCK10, SI10       |  |  |  |
|         | Interrupt            | INTCSI00                                                                                                                                                                                                                                  | INTCSI10          |  |  |  |
| <r></r> |                      | Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.                                                                                                                 |                   |  |  |  |
|         |                      |                                                                                                                                                                                                                                           |                   |  |  |  |
|         | Transfer data length | 7 or 8 bits                                                                                                                                                                                                                               |                   |  |  |  |
|         | Transfer rate        | Max. fclk/4 [Hz], Min. fclk/(2 × 2 <sup>11</sup> × 128) [Hz] <sup>Note</sup> fclk: System clock frequency                                                                                                                                 |                   |  |  |  |
|         | Data phase           | <ul> <li>Selectable by DAP0n bit</li> <li>DAP0n = 0: Data input starts from the start of the operation of the serial clock.</li> <li>DAP0n = 1: Data input starts half a clock before the start of the serial clock operation.</li> </ul> |                   |  |  |  |
|         | Clock phase          |                                                                                                                                                                                                                                           |                   |  |  |  |
|         | Data direction       | MSB or LSB first                                                                                                                                                                                                                          |                   |  |  |  |

Note Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 27 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) and CHAPTER 28 ELECTRICAL SPECIFICATIONS ((A) GRADE PRODUCTS)).

**Remark** n: Channel number (n = 0, 2)

#### 11.7.3 Data reception

Data reception is an operation to receive data to the target for transfer (slave) after transmission of an address field. After all data are received to the slave, a stop condition is generated and the bus is released.

| Simplified I <sup>2</sup> C | IIC10                                                                                                                                                                                                                                                       |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Target channel              | Channel 2 of SAU0                                                                                                                                                                                                                                           |
| Pins used                   | SCL10, SDA10 <sup>Note</sup>                                                                                                                                                                                                                                |
| Interrupt                   | INTIIC10                                                                                                                                                                                                                                                    |
|                             | Transfer end interrupt only (Setting the buffer empty interrupt is prohibited.)                                                                                                                                                                             |
| Error detection flag        | Overrun error detection flag (OVF02) only                                                                                                                                                                                                                   |
| Transfer data length        | 8 bits                                                                                                                                                                                                                                                      |
| Transfer rate               | Max. fmck/4 [Hz] (SDR02[15:9] = 1 or more) fmck: Operation clock (MCK) frequency of target channel<br>However, the following condition must be satisfied in each mode of I <sup>2</sup> C.<br>• Max. 400 kHz (first mode)<br>• Max. 100 kHz (standard mode) |
| Data level                  | Forward output (default: high level)                                                                                                                                                                                                                        |
| Parity bit                  | No parity bit                                                                                                                                                                                                                                               |
| Stop bit                    | Appending 1 bit (ACK transmission)                                                                                                                                                                                                                          |
| Data direction              | MSB first                                                                                                                                                                                                                                                   |

Note To perform communication via simplified I<sup>2</sup>C, set the N-ch open-drain output (V<sub>DD</sub> tolerance) mode (POM03 = 1) for the port output mode registers (POM0) (see **4.3 Registers Controlling Port Function** for details). When communicating with an external device with a different potential, set the N-ch open-drain output (V<sub>DD</sub> tolerance) mode (POM04 = 1) also for the clock input/output pins (SCL10) (see **4.4.4 Connecting to external device with different potential (2.5 V, 3 V)** for details).

<R>

<R>

The main processing of the slave operation is explained next.

Start serial interface IIC0 and wait until communication is enabled. When communication is enabled, execute communication by using the communication mode flag and ready flag (processing of the stop condition and start condition is performed by an interrupt. Here, check the status by using the flags).

The transmission operation is repeated until the master no longer returns ACK. If ACK is not returned from the master, communication is completed.

For reception, the necessary amount of data is received. When communication is completed,  $\overline{ACK}$  is not returned as the next data. After that, the master generates a stop condition or restart condition. Exit from the communication status occurs in this way.





**Remark** Conform to the specifications of the product that is in communication, regarding the transmission and reception formats.

#### (2) DMA RAM address register n (DRAn)

This is a 16-bit register that is used to set a RAM address that is the transfer source or destination of DMA channel n.

Addresses of the internal RAM area other than the general-purpose registers (FEF00H to FFEDFH in the case of the  $\mu$ PD78F1142 and 78F1142A) can be set to this register.

Set the lower 16 bits of the RAM address.

This register is automatically incremented when DMA transfer has been started. It is incremented by +1 in the 8-bit transfer mode and by +2 in the 16-bit transfer mode. DMA transfer is started from the address set to this DRAn register. When the data of the last address has been transferred, DRAn stops with the value of the last address +1 in the 8-bit transfer mode, and the last address +2 in the 16-bit transfer mode.

In the 16-bit transfer mode, the least significant bit is ignored and is treated as an even address.

DRAn can be read or written in 8-bit or 16-bit units. However, it cannot be written during DMA transfer. Reset signal generation clears this register to 0000H.

#### Figure 14-2. Format of DMA RAM Address Register n (DRAn)

Address: FFFB2H, FFFB3H (DRA0), FFFB4H, FFFB5H (DRA1) After reset: 0000H R/W DRA0H: FFFB3H DRA0L: FFFB2H DRA1H: FFFB5H DRA1L: FFFB4H 14 13 12 10 9 8 7 6 5 4 3 2 15 11 1 0 DRAn (n = 0, 1)

**Remark** n: DMA channel number (n = 0, 1)

# (3) Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H)

The priority specification flag registers are used to set the corresponding maskable interrupt priority level. A priority level is set by using the PR0xy and PR1xy registers in combination (xy = 0L, 0H, 1L, 1H, 2L, or 2H). PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, and PR12H can be set by a 1-bit or 8-bit memory manipulation instruction. If PR00L and PR00H, PR01L and PR01H, PR02L and PR02H, PR10L and PR10H, PR11L and PR11H, and PR12L and PR12H are combined to form 16-bit registers PR00, PR01, PR02, PR10, PR11, and PR12, they can be set by a 16-bit memory manipulation instruction. Reset signal generation sets these registers to FFH.

**Remark** If an instruction that writes data to this register is executed, the number of instruction execution clocks increases by 2 clocks.

## Figure 15-4. Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H) (1/2)

| Address: FFI                         | FE8H After        | reset: FFH        | R/W        |          |         |         |        |          |  |
|--------------------------------------|-------------------|-------------------|------------|----------|---------|---------|--------|----------|--|
| Symbol                               | <7>               | <6>               | <5>        | <4>      | <3>     | <2>     | <1>    | <0>      |  |
| PR00L                                | PPR05             | PPR04             | PPR03      | PPR02    | PPR01   | PPR00   | LVIPR0 | WDTIPR0  |  |
|                                      |                   |                   |            |          |         |         |        |          |  |
| Address: FFI                         | FECH After        | reset: FFH        | R/W        |          |         |         |        |          |  |
| Symbol                               | <7>               | <6>               | <5>        | <4>      | <3>     | <2>     | <1>    | <0>      |  |
| PR10L                                | PPR15             | PPR14             | PPR13      | PPR12    | PPR11   | PPR10   | LVIPR1 | WDTIPR1  |  |
|                                      |                   |                   |            |          |         |         |        |          |  |
| Address: FFFE9H After reset: FFH R/W |                   |                   |            |          |         |         |        |          |  |
| Symbol                               | <7>               | <6>               | <5>        | <4>      | <3>     | <2>     | <1>    | <0>      |  |
| PR00H                                | SREPR00           | SRPR00            | STPR00     | DMAPR01  | DMAPR00 | SREPR03 | SRPR03 | STPR03   |  |
|                                      |                   | L                 | CSIPR000   |          |         |         |        |          |  |
| <u> </u>                             |                   |                   |            |          |         |         |        |          |  |
| Address: FFI                         | -EDH After        | reset: FFH        | R/W        |          |         |         |        |          |  |
| Symbol                               | <7>               | <6>               | <5>        | <4>      | <3>     | <2>     | <1>    | <0>      |  |
| PR10H                                | SREPR10           | SRPR10            | STPR10     | DMAPR11  | DMAPR10 | SREPR13 | SRPR13 | STPR13   |  |
|                                      |                   | <u> </u>          | CSIPR100   | <u> </u> |         |         |        |          |  |
|                                      |                   |                   |            |          |         |         |        |          |  |
| Address: FFI                         | FEAH After        | reset: FFH        | R/W        |          |         |         |        |          |  |
| Symbol                               | <7>               | <6>               | <5>        | <4>      | <3>     | <2>     | <1>    | <0>      |  |
| PR01L                                | TMPR003           | TMPR002           | TMPR001    | TMPR000  | IICPR00 | SREPR01 | SRPR01 | STPR01   |  |
|                                      |                   |                   | 1          | , ,      |         | 1 1     |        | CSIPB010 |  |
|                                      |                   |                   |            |          | ļ       |         |        |          |  |
|                                      |                   |                   |            |          |         |         |        | IICPR010 |  |
| Address: FE                          | EEH After         | rocat: EEH        |            |          |         |         |        | IICPR010 |  |
| Address: FFF                         | FEEH After        | reset: FFH        | R/W        |          | -22     | -25     | -1     | IICPR010 |  |
| Address: FFf<br>Symbol               | FEEH After<br><7> | reset: FFH<br><6> | R/W<br><5> | <4>      | <3>     | <2>     | <1>    | <0>      |  |

IICPR110

|                                       | Hardware                                                                                                              | Status After Reset<br>Acknowledgment <sup>Note 1</sup> |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Real-time counter                     | Subcount register (RSUBC)                                                                                             | 0000H                                                  |
|                                       | Second count register (SEC)                                                                                           | 00H                                                    |
|                                       | Minute count register (MIN)                                                                                           | 00H                                                    |
|                                       | Hour count register (HOUR)                                                                                            | 12H                                                    |
|                                       | Day count register (DAY)                                                                                              | 01H                                                    |
|                                       | Week count register (WEEK)                                                                                            | 00H                                                    |
|                                       | Month count register (MONTH)                                                                                          | 01H                                                    |
|                                       | Year count register (YEAR)                                                                                            | 00H                                                    |
|                                       | Watch error correction register (SUBCUD)                                                                              | 00H                                                    |
|                                       | Alarm minute register (ALARMWM)                                                                                       | 00H                                                    |
|                                       | Alarm hour register (ALARMWH)                                                                                         | 12H                                                    |
|                                       | Alarm week register ALARMWW)                                                                                          | 00H                                                    |
|                                       | Real-time counter control register 0 (RTCC0)                                                                          | 00H                                                    |
|                                       | Real-time counter control register 1 (RTCC1)                                                                          | 00H                                                    |
|                                       | Real-time counter control register 2 (RTCC2)                                                                          | 00H                                                    |
| Clock output/buzzer output controller | Clock output select registers 0, 1 (CKS0, CKS1)                                                                       | 00H                                                    |
| Watchdog timer                        | Enable register (WDTE)                                                                                                | 1AH/9AH <sup>Note 2</sup>                              |
| A/D converter                         | 10-bit A/D conversion result register (ADCR)                                                                          | 0000H                                                  |
|                                       | 8-bit A/D conversion result register (ADCRH)                                                                          | 00H                                                    |
|                                       | Mode register (ADM)                                                                                                   | 00H                                                    |
|                                       | Analog input channel specification register (ADS)                                                                     | 00H                                                    |
|                                       | A/D port configuration register (ADPC)                                                                                | 10H                                                    |
| Serial array unit (SAU)               | Serial data registers 00, 01, 02, 03, 12, 13 (SDR00, SDR01, SDR02, SDR03, SDR12, SDR13)                               | 0000H                                                  |
|                                       | Serial status registers 00, 01, 02, 03, 12, 13 (SSR00, SSR01, SSR02, SSR03, SSR12, SSR13)                             | 0000H                                                  |
|                                       | Serial flag clear trigger registers 00, 01, 02, 03, 12, 13 (SIR00, SIR01, SIR02, SIR03, SIR12, SIR13)                 | 0000H                                                  |
|                                       | Serial mode registers 00, 01, 02, 03, 12, 13 (SMR00, SMR01, SMR02, SMR03, SMR12, SMR13)                               | 0020H                                                  |
|                                       | Serial communication operation setting registers 00, 01, 02, 03, 12, 13<br>(SCR00, SCR01, SCR02, SCR03, SCR12, SCR13) | 0087H                                                  |
|                                       | Serial channel enable status registers 0, 1 (SE0, SE1)                                                                | 0000H                                                  |
|                                       | Serial channel start registers 0, 1 (SS0, SS1)                                                                        | 0000H                                                  |
|                                       | Serial channel stop registers 0, 1 (ST0, ST1)                                                                         | 0000H                                                  |
|                                       | Serial clock select registers 0, 1 (SPS0, SPS1)                                                                       | 0000H                                                  |
|                                       | Serial output registers 0, 1 (SO0, SO1)                                                                               | 0F0FH                                                  |
|                                       | Serial output enable registers 0, 1 (SOE0, SOE1)                                                                      | 0000H                                                  |
|                                       | Serial output level registers 0, 1 (SOL0, SOL1)                                                                       | 0000H                                                  |
|                                       | Input switch control register (ISC)                                                                                   | 00H                                                    |

| Table 18-2. | Hardware | Statuses | After Reset | Acknowledgment | (2/3) |
|-------------|----------|----------|-------------|----------------|-------|
|-------------|----------|----------|-------------|----------------|-------|

**Notes 1.** During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.

2. The reset value of WDTE is determined by the option byte setting.

#### 23.9.2 Flash shield window function

The flash shield window function is provided as one of the security functions for self programming. It disables writing to and erasing areas outside the range specified as a window only during self programming.

The window range can be set by specifying the start and end blocks. The window range can be set or changed during both on-board/off-board programming and self programming.

Writing to and erasing areas outside the window range are disabled during self programming. During on-board/offboard programming, however, areas outside the range specified as a window can be written and erased.

## Figure 23-13. Flash Shield Window Setting Example (Target Devices: μPD78F1142, 78F1142A, Start Block: 04H, End Block: 06H)



# Caution If the rewrite-prohibited area of the boot cluster 0 overlaps with the flash shield window range, prohibition to rewrite the boot cluster 0 takes priority.

Table 23-11. Relationship Between Flash Shield Window Function Setting/Change Methods and Commands

| Programming Conditions            | Window Range                                                                                      | Execution Commands                                           |                                                                 |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--|--|
|                                   | Setting/Change Methods                                                                            | Block Erase                                                  | Write                                                           |  |  |
| Self-programming                  | Specify the starting and<br>ending blocks by the set<br>information library.                      | Block erasing is enabled<br>only within the window<br>range. | Writing is enabled only<br>within the range of<br>window range. |  |  |
| On-board/off-board<br>programming | Specify the starting and<br>ending blocks on GUI of<br>dedicated flash memory<br>programmer, etc. | Block erasing is enabled also outside the window range.      | Writing is enabled also<br>outside the window<br>range.         |  |  |

Remark See 23.7 Security Settings to prohibit writing/erasing during on-board/off-board programming.

Standard Products

#### DC Characteristics (8/10)

#### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, 1.8 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

| Parameter | Symbol                |      | (                                             | Conditions          |                         | MIN. | TYP. | MAX. | Unit |
|-----------|-----------------------|------|-----------------------------------------------|---------------------|-------------------------|------|------|------|------|
| Supply    | DD2 <sup>Note 1</sup> | HALT | $f_{MX} = 20 \text{ MHz}^{Note 2}$ ,          |                     | Square wave input       |      | 1.0  | 2.7  | mA   |
| current   |                       | mode | $V_{DD} = 5.0 V$                              |                     | Resonator connection    |      | 1.3  | 3.0  | mA   |
|           |                       |      | $f_{MX} = 20 \text{ MHz}^{Note 2}$ ,          |                     | Square wave input       |      | 1.0  | 2.7  | mA   |
|           |                       |      | $V_{DD} = 3.0 V$                              |                     | Resonator connection    |      | 1.3  | 3.0  | mA   |
|           |                       |      | $f_{MX} = 10 \text{ MHz}^{Notes 2, 3}$        | ,                   | Square wave input       |      | 0.52 | 1.4  | mA   |
|           |                       |      | $V_{DD} = 5.0 V$                              |                     | Resonator connection    |      | 0.62 | 1.5  | mA   |
|           |                       |      | $f_{MX} = 10 \text{ MHz}^{Notes 2, 3}$        |                     | Square wave input       |      | 0.52 | 1.4  | mA   |
|           |                       |      | $V_{\text{DD}} = 3.0 \text{ V}$               | Vdd = 3.0 V         |                         |      | 0.62 | 1.5  | mA   |
|           |                       |      | $f_{MX} = 5 \text{ MHz}^{\text{Notes 2, 3}},$ | Normal current      | Square wave input       |      | 0.36 | 0.75 | mA   |
|           |                       |      | V <sub>DD</sub> = 3.0 V mode                  | mode                | Resonator connection    |      | 0.41 | 0.8  | mA   |
|           |                       |      |                                               | Low consumption     | Square wave input       |      | 0.22 | 0.5  | mA   |
|           |                       |      |                                               | current mode Note 4 | Resonator connection    |      | 0.27 | 0.55 | mA   |
|           |                       |      | $f_{MX} = 5 \text{ MHz}^{Notes 2, 3},$        | Normal current      | Square wave input       |      | 0.22 | 0.5  | mA   |
|           |                       |      | $V_{DD} = 2.0 V$                              | DD = 2.0 V mode     |                         |      | 0.27 | 0.55 | mA   |
|           |                       |      |                                               | Low consumption     | Square wave input       |      | 0.22 | 0.5  | mA   |
|           |                       |      | current mode Note 4                           |                     | Resonator connection    |      | 0.27 | 0.55 | mA   |
|           |                       |      | $f_{IH} = 8 \text{ MHz}^{Note 5}$             |                     | $V_{DD} = 5.0 V$        |      | 0.45 | 1.2  | mA   |
|           |                       |      |                                               |                     | V <sub>DD</sub> = 3.0 V |      | 0.45 | 1.2  | mA   |

**Notes 1.** Total current flowing into V<sub>DD</sub>, EV<sub>DD</sub>, and AV<sub>REF</sub>, including the input leakage current flowing when the level of the input pin is fixed to V<sub>DD</sub> or V<sub>SS</sub>. The maximum value include the peripheral operation current. However, not including the current flowing into the A/D converter, LVI circuit, I/O port, and on-chip pull-up/pull-down resistors. During HALT instruction execution by flash memory.

- 2. When internal high-speed oscillator and subsystem clock are stopped.
- 3. When AMPH (bit 0 of clock operation mode control register (CMC)) = 0 and FSEL (bit 0 of operation speed mode control register (OSMC)) = 0.
- 4. When the RMC register is set to 5AH.
- 5. When high-speed system clock and subsystem clock are stopped. When FSEL (bit 0 of operation speed mode control register (OSMC)) = 0 is set.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - fin: Internal high-speed oscillation clock frequency
  - 2. For details on the normal current mode and low consumption current mode according to the regulator output voltage, refer to CHAPTER 21 REGULATOR.
  - **3.** Temperature condition of the TYP. value is  $T_A = 25^{\circ}C$

<R>

## (A) Grade Products

| Parameter                                                                                                                             | Symbols |                                                                                                       | Conditions                                                                                                        | Ratings     | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------|------|
| Output current, high Iонт Per pin P00 to P06, P10 to P17, P30,<br>P31, P40 to P43, P50 to P55,<br>P70 to P77, P120, P130, P14<br>P141 |         | P00 to P06, P10 to P17, P30,<br>P31, P40 to P43, P50 to P55,<br>P70 to P77, P120, P130, P140,<br>P141 | -10                                                                                                               | mA          |      |
|                                                                                                                                       |         | Total of all pins<br>–80 mA                                                                           | P00 to P04, P40 to P43, P120,<br>P130, P140, P141                                                                 | -25         | mA   |
|                                                                                                                                       |         |                                                                                                       | P05, P06, P10 to P17, P30, P31,<br>P50 to P55, P70 to P77                                                         | -55         | mA   |
|                                                                                                                                       | Іон2    | Per pin                                                                                               | P20 to P27                                                                                                        | -0.5        | mA   |
|                                                                                                                                       |         | Total of all pins                                                                                     |                                                                                                                   | -2          | mA   |
| Output current, low                                                                                                                   | lol1    | Per pin                                                                                               | P00 to P06, P10 to P17, P30,<br>P31, P40 to P43, P50 to P55,<br>P60 to P63, P70 to P77, P120,<br>P130, P140, P141 | 30          | mA   |
|                                                                                                                                       |         | Total of all pins<br>200 mA                                                                           | P00 to P04, P40 to P43, P120,<br>P130, P140, P141                                                                 | 60          | mA   |
|                                                                                                                                       |         |                                                                                                       | P05, P06, P10 to P17, P30, P31,<br>P50 to P55, P60 to P63,<br>P70 to P77                                          | 140         | mA   |
|                                                                                                                                       | IOL2    | Per pin                                                                                               | P20 to P27                                                                                                        | 1           | mA   |
|                                                                                                                                       |         | Total of all pins                                                                                     |                                                                                                                   | 5           | mA   |
| Operating ambient                                                                                                                     | Та      | In normal operation mode                                                                              |                                                                                                                   | -40 to +85  | °C   |
| temperature                                                                                                                           |         | In flash memory                                                                                       | programming mode                                                                                                  |             |      |
| Storage temperature                                                                                                                   | Tstg    |                                                                                                       |                                                                                                                   | -65 to +150 | °C   |

#### Absolute Maximum Ratings (T<sub>A</sub> = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

## **AC Characteristics**

## (1) Basic operation (1/6)

## $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, 1.8 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

| Parameter                                                   | Symbol          |                                                           | Conditions                                                   |                                       | MIN.        | TYP. | MAX. | Unit |
|-------------------------------------------------------------|-----------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|-------------|------|------|------|
| Instruction cycle                                           | Тсү             | Main system clock                                         | Normal                                                       | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 0.05        |      | 8    | μS   |
| (minimum instruction                                        |                 | (fmain) operation                                         | current mode                                                 | $1.8~V \leq V_{\text{DD}} < 2.7~V$    | 0.2         |      | 8    | μS   |
| execution time)                                             |                 |                                                           | Low consump                                                  | tion current mode                     | 0.2         |      | 8    | μs   |
|                                                             |                 | Subsystem clock (fsu                                      | в) operation                                                 |                                       | 57.2        | 61   | 62.5 | μs   |
|                                                             |                 | In the self programming mode                              | Normal<br>current mode                                       | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 0.05        |      | 0.5  | μS   |
| External main system                                        | fex             | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$                     | Normal currer                                                | it mode                               | 2.0         |      | 20.0 | MHz  |
| clock frequency                                             |                 |                                                           | Low consump                                                  | tion current mode                     | 2.0         |      | 5.0  | MHz  |
|                                                             |                 | $1.8~V \leq V_{\text{DD}} < 2.7~V$                        |                                                              |                                       | 2.0         |      | 5.0  | MHz  |
| External main system                                        | texh, texl      | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$                     | Normal currer                                                | nt mode                               | 24          |      |      | ns   |
| clock input high-level                                      |                 |                                                           | Low consumption current mode                                 |                                       | 96          |      |      | ns   |
| width, low-level width                                      |                 | $1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$ |                                                              | 96                                    |             |      | ns   |      |
| TI00 to TI06 input<br>high-level width, low-<br>level width | tтıн,<br>tтı∟   |                                                           |                                                              |                                       | 1/fмск + 10 |      |      | ns   |
| TO00 to TO06 output                                         | fтo             | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$                     | $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ |                                       |             |      | 10   | MHz  |
| frequency                                                   |                 | $1.8~V \leq V_{\text{DD}} < 2.7~V$                        |                                                              |                                       |             |      | 5    | MHz  |
| PCLBUZ0, PCLBUZ1                                            | fpcl            | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$                     |                                                              |                                       |             |      | 10   | MHz  |
| output frequency                                            |                 | $1.8~V \leq V_{\text{DD}} < 2.7~V$                        |                                                              |                                       |             |      | 5    | MHz  |
| Interrupt input high-<br>level width, low-level<br>width    | tinth,<br>tintl |                                                           |                                                              |                                       | 1           |      |      | μS   |
| Key interrupt input<br>low-level width                      | tкв             |                                                           |                                                              |                                       | 250         |      |      | ns   |
| RESET low-level width                                       | trsl            |                                                           |                                                              |                                       | 10          |      |      | μS   |

Remarks 1. fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of the TMR0n register. n: Channel number (n = 0 to 6))

2. For details on the normal current mode and low consumption current mode according to the regulator output voltage, refer to CHAPTER 21 REGULATOR.

(A) Grade Products

#### (2) Serial interface: Serial array unit (12/18)

<R>

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$ 

(f) During Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCK10... internal clock output) (2/2)

| Parameter                                                   | Symbol | Conditions                                                                                       | MIN. | TYP. | MAX. | Unit |
|-------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------|------|------|------|------|
| SI10 setup time                                             | tsıĸı  | $4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$                       | 70   |      |      | ns   |
| (to SCK10↓) <sup>Note</sup>                                 |        | $C_{b}=30 \text{ pF},  \text{R}_{b}=1.4  \text{k}\Omega$                                         |      |      |      |      |
|                                                             |        | $2.7~V \leq V_{\text{DD}} \leq 4.0~V,~2.3~V \leq V_{\text{b}} < 2.7~V,$                          | 100  |      |      | ns   |
|                                                             |        | $C_b=30 \text{ pF},  \text{R}_b=2.7  \text{k}\Omega$                                             |      |      |      |      |
| SI10 hold time                                              | tksi1  | $4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$                       | 30   |      |      | ns   |
| (from $\overline{\text{SCK10}}\downarrow$ ) <sup>Note</sup> |        | $C_{b}=30 \text{ pF},  \text{R}_{b}=1.4  \text{k}\Omega$                                         |      |      |      |      |
|                                                             |        | $2.7~V \leq V_{\text{DD}} \leq 4.0~V,~2.3~V \leq V_{\text{b}} < 2.7~V,$                          | 30   |      |      | ns   |
|                                                             |        | $C_{b}=30 \text{ pF}, \text{ R}_{b}=2.7 \text{ k}\Omega$                                         |      |      |      |      |
| Delay time from $\overline{\text{SCK10}}$ to                | tkso1  | $4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{b} \leq 4.0~V,$                              |      |      | 40   | ns   |
| SO10 output Note                                            |        | $C_{\rm b}=30~pF,~R_{\rm b}=1.4~k\Omega$                                                         |      |      |      |      |
|                                                             |        | $\label{eq:VDD} 2.7 \ V \leq V_{\text{DD}} \leq 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} < 2.7 \ V,$ |      |      | 40   | ns   |
|                                                             |        | $C_{b}=30 \text{ pF}, \text{ R}_{b}=2.7 \text{ k}\Omega$                                         |      |      |      |      |

Note When DAP02 = 0 and CKP02 = 1, or DAP02 = 1 and CKP02 = 0.

#### CSI mode connection diagram (during communication at different potential)



# Caution Select the TTL input buffer for SI10 and the N-ch open drain output (VDD tolerance) mode for SO10 and SCK10 by using the PIM0 and POM0 registers.

**Remarks 1.**  $R_b[\Omega]$ :Communication line (SCK10, SO10) pull-up resistance,

Cb[F]: Communication line (SCK10, SO10) load capacitance, Vb[V]: Communication line voltage

2. V<sub>IH</sub> and V<sub>IL</sub> below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.

$$4.0 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_{\text{b}} \le 4.0 \text{ V}$$
: VIH = 2.2 V, VIL = 0.8 V

 $2.7~V \leq V_{\text{DD}} \leq 4.0~V,\, 2.3~V \leq V_{\text{b}} \leq 2.7~V;\, V_{\text{IH}} = 2.0~V,\, V_{\text{IL}} = 0.5~V$ 

3. CSI00 cannot communicate at different potential. Use CSI10 for communication at different potential.

(A) Grade Products

## (4) Serial interface: On-chip debug (UART)

(TA = -40 to +85°C, 1.8 V  $\leq$  VDD = EVDD  $\leq$  5.5 V, Vss = EVss = AVss = 0 V)

#### (a) On-chip debug (UART)

| Parameter              | Symbol | Conditions                                      | MIN.                 | TYP. | MAX.   | Unit |
|------------------------|--------|-------------------------------------------------|----------------------|------|--------|------|
| Transfer rate          |        |                                                 | fськ/2 <sup>12</sup> |      | fськ/6 | bps  |
|                        |        | Flash memory programming mode                   |                      |      | 2.66   | Mbps |
| TOOL1 output frequency | ftool1 | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$           |                      |      | 10     | MHz  |
|                        |        | $1.8 \text{ V} \leq \text{Vdd} < 2.7 \text{ V}$ |                      |      | 2.5    | MHz  |

## <R> 64-PIN PLASTIC FBGA (6x6)





|      | (UNIT:mm)         |
|------|-------------------|
| ITEM | DIMENSIONS        |
| D    | 6.00±0.10         |
| E    | 6.00±0.10         |
| w    | 0.20              |
| А    | 1.41±0.10         |
| A1   | 0.30±0.05         |
| A2   | 1.11              |
| е    | 0.65              |
| b    | $0.40 {\pm} 0.05$ |
| x    | 0.08              |
| У    | 0.10              |
| y1   | 0.20              |
| ZD   | 0.725             |
| ZE   | 0.725             |
|      | P64F1-65-BA4      |

© NEC Electronics Corporation 2008