

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1146agb-gah-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Windows and Windows NT are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

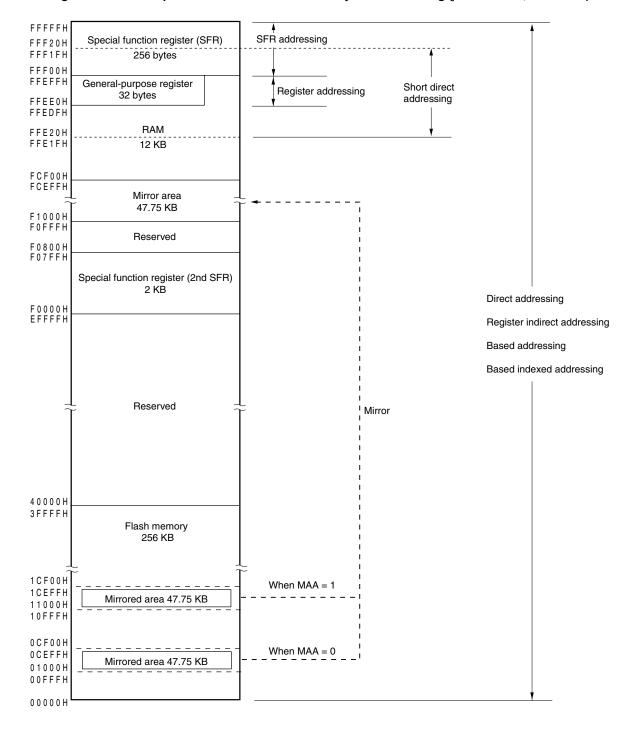
PC/AT is a trademark of International Business Machines Corporation.

EEPROM is a trademark of NEC Electronics Corporation.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.

- The information in this document is current as of September, 2009. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. In addition, NEC Electronics products are not taken measures to prevent radioactive rays in the product design. When customers use NEC Electronics products with their products, customers shall, on their own responsibility, incorporate sufficient safety measures such as redundancy, fire-containment and anti-failure features to their products in order to avoid risks of the damages to property (including public or social property) or injury (including death) to persons, as the result of defects of NEC Electronics products.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".


The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

<R> Figure 3-11. Correspondence Between Data Memory and Addressing (µPD78F1146, 78F1146A)

Note Use of the area FCF00H to FD6FFH is prohibited when using the self-programming function. Since this area is used for self-programming library.

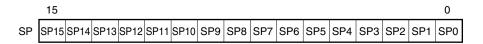
(d) Auxiliary carry flag (AC)

If the operation result has a carry from bit 3 or a borrow at bit 3, this flag is set (1). It is reset (0) in all other cases.

(e) In-service priority flags (ISP1, ISP0)

This flag manages the priority of acknowledgeable maskable vectored interrupts. Vectored interrupt requests specified lower than the value of ISP0 and ISP1 by a priority specification flag register (PRn0L, PRn0H, PRn1L, PRn1H, PRn2L, PRn2H) (see **15.3 (3)**) can not be acknowledged. Actual request acknowledgment is controlled by the interrupt enable flag (IE).

Remark n = 0, 1


(f) Carry flag (CY)

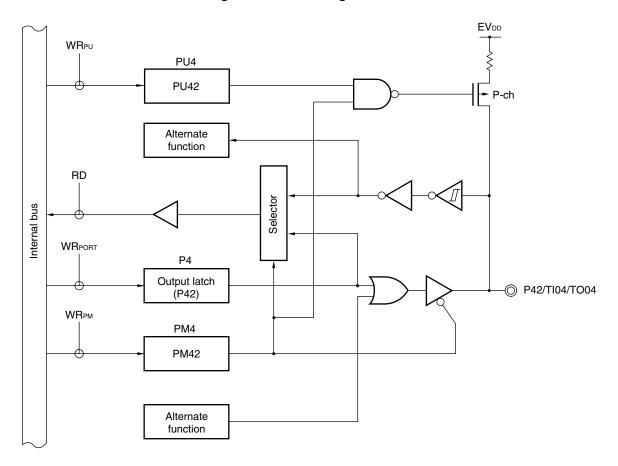
This flag stores overflow and underflow upon add/subtract instruction execution. It stores the shift-out value upon rotate instruction execution and functions as a bit accumulator during bit operation instruction execution.

(3) Stack pointer (SP)

This is a 16-bit register to hold the start address of the memory stack area. Only the internal RAM area can be set as the stack area.

Figure 3-14. Format of Stack Pointer

The SP is decremented ahead of write (save) to the stack memory and is incremented after read (restored) from the stack memory.


Each stack operation saves data as shown in Figure 3-15.

- Cautions 1. Since reset signal generation makes the SP contents undefined, be sure to initialize the SP before using the stack.
 - 2. The values of the stack pointer must be set to even numbers. If odd numbers are specified, the least significant bit is automatically cleared to 0.
 - 3. It is prohibited to use the general-purpose register (FFEE0H to FFEFFH) space as a stack area.
 - 4. While using the self-programming function, the area of FFE20H to FFEFFH cannot be used as a stack memory. Furthermore, the areas of FCF00H to FD6FFH cannot be used with the μ PD78F1146 and 78F1146A.

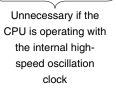
<R>

Address	Special Function Register (SFR) Name	Sym	bol	R/W	Manipu	ulable Bit	Range	After Reset
					1-bit	8-bit	16-bit	
F0017H	A/D port configuration register	ADPC		R/W	-		-	10H
F0030H	Pull-up resistor option register 0	PU0		R/W	\checkmark		_	00H
F0031H	Pull-up resistor option register 1	PU1		R/W			_	00H
F0033H	Pull-up resistor option register 3	PU3		R/W			_	00H
F0034H	Pull-up resistor option register 4	PU4		R/W	\checkmark		_	00H
F0035H	Pull-up resistor option register 5	PU5		R/W			_	00H
F0037H	Pull-up resistor option register 7	PU7		R/W			_	00H
F003CH	Pull-up resistor option register 12	PU12		R/W	\checkmark		_	00H
F003EH	Pull-up resistor option register 14	PU14		R/W	\checkmark		_	00H
F0040H	Port input mode register 0	PIM0		R/W	\checkmark		_	00H
F0050H	Port output mode register 0	POM0		R/W	\checkmark		_	00H
F0060H	Noise filter enable register 0	NFEN0		R/W	\checkmark		_	00H
F0061H	Noise filter enable register 1	NFEN1		R/W	\checkmark		_	00H
F00F0H	Peripheral enable register 0	PER0		R/W	\checkmark		_	00H
F00F2H	Internal high-speed oscillator trimming register	HIOTRM		R/W	_		_	10H
F00F3H	Operation speed mode control register	OSMC		R/W	_		_	00H
F00F4H	Regulator mode control register	RMC		R/W	_		_	00H
F00FEH	BCD adjust result register	BCDADJ		R	_	\checkmark	-	Undefined
F0100H	Serial status register 00	SSR00L	SSR00	R	_			0000H
F0101H		_			_	_		
F0102H	Serial status register 01	SSR01L	SSR01	R	_			0000H
F0103H		_			_	_		
F0104H	Serial status register 02	SSR02L	SSR02	R	_			0000H
F0105H		_			_	_		
F0106H	Serial status register 03	SSR03L	SSR03	R	_			0000H
F0107H		_			_	_		
F0108H	Serial flag clear trigger register 00	SIR00L	SIR00	R/W	-			0000H
F0109H		_			_	_		
F010AH	Serial flag clear trigger register 01	SIR01L	SIR01	R/W	_			0000H
F010BH		_	1		_	-		
F010CH	Serial flag clear trigger register 02	SIR02L	SIR02	R/W	_			0000H
F010DH		_	1		_	-		
F010EH	Serial flag clear trigger register 03	SIR03L	SIR03	R/W	_			0000H
F010FH		_	-		_	_		
F0110H	Serial mode register 00	SMR00	1	R/W	_	_		0020H
F0111H								
F0112H	Serial mode register 01	SMR01		R/W	-	-		0020H
F0113H	Ť							
F0114H	Serial mode register 02	SMR02		R/W	_	_		0020H
F0115H								
F0116H	Serial mode register 03	SMR03		R/W	_	_		0020H
F0117H								

Figure 4-16. Block Diagram of P42

- P4: Port register 4
- PU4: Pull-up resistor option register 4
- PM4: Port mode register 4
- RD: Read signal
- WR××: Write signal

ymbol	7	6	5	4	3	2	1	0
OTRM	0	0	0	TTRM4	TTRM3	TTRM2	TTRM1	TTRMC
	TTRM4	TTRM3	TTRM2	TTRM1	TTRM0	Cloc	k correction v	value
						(2.7	$7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.8$	5 V)
						MIN.	TYP.	MAX.
	0	0	0	0	0	-5.54%	-4.88%	-4.02%
	0	0	0	0	1	-5.28%	-4.62%	-3.76%
	0	0	0	1	0	-4.99%	-4.33%	-3.47%
	0	0	0	1	1	-4.69%	-4.03%	-3.17%
	0	0	1	0	0	-4.39%	-3.73%	-2.87%
	0	0	1	0	1	-4.09%	-3.43%	-2.57%
	0	0	1	1	0	-3.79%	-3.13%	-2.27%
	0	0	1	1	1	-3.49%	-2.83%	-1.97%
	0	1	0	0	0	-3.19%	-2.53%	-1.67%
	0	1	0	0	1	-2.88%	-2.22%	-1.36%
	0	1	0	1	0	-2.23%	-1.91%	-1.31%
	0	1	0	1	1	-1.92%	-1.60%	-1.28%
	0	1	1	0	0	-1.60%	-1.28%	-0.96.%
	0	1	1	0	1	-1.28%	-0.96%	-0.64%
	0	1	1	1	0	-0.96%	-0.64%	-0.32%
	0	1	1	1	1	-0.64%	-0.32%	±0%
	1	0	0	0	0		±0% (default)	
	1	0	0	0	1	+0%	+0.32%	+0.64%
	1	0	0	1	0	+0.33%	+0.65%	+0.97%
	1	0	0	1	1	+0.66%	+0.98%	+1.30%
	1	0	1	0	0	+0.99%	+1.31%	+1.63%
	1	0	1	0	1	+1.32%	+1.64%	+1.96%
	1	0	1	1	0	+1.38%	+1.98%	+2.30%
	1	0	1	1	1	+1.46%	+2.32%	+2.98%
	1	1	0	0	0	+1.80%	+2.66%	+3.32%
	1	1	0	0	1	+2.14%	+3.00%	+3.66%
	1	1	0	1	0	+2.48%	+3.34%	+4.00%
	1	1	0	1	1	+2.83%	+3.69%	+4.35%
	1	1	1	0	0	+3.18%	+4.04%	+4.70%
	1	1	1	0	1	+3.53%	+4.39%	+5.05%
	1	1	1	1	0	+3.88%	+4.74%	+5.40%
	1	1	1	1	1	+4.24%	+5.10%	+5.76%


Figure 5-9. Format of Internal High-Speed Oscillator Trimming Register (HIOTRM)

Caution The internal high-speed oscillation frequency becomes faster/slower by increasing/decreasing the HIOTRM value to a value larger/smaller than a certain value. A reversal, such as the frequency becoming slower/faster by increasing/decreasing the HIOTRM value does not occur.

Table 5-4. CPU Clock Transition and SFR Register Setting Examples (3/4)

(6) CPU clock changing from high-speed system clock (C) to internal high-speed oscillation clock (B)

(Setting sequence of SFR registers)			
Setting Flag of SFR Register	CSC Register	Oscillation accuracy	CKC Register
Status Transition	HIOSTOP	stabilization time	MCM0
$(C) \to (B)$	0	10 <i>μ</i> s	0
		,	

(7) CPU clock changing from high-speed system clock (C) to subsystem clock (D)

(Set	ting sequence of SFR registers)				
	Setting Flag of SFR Register	CMC Register ^{Note}	CSC Register	Waiting for	CKC Register
Status Transition		OSCSELS	XTSTOP	Oscillation Stabilization	CSS
$(C) \to (D)$		1	0	Necessary	1
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

Unnecessary if the CPU is operating with the subsystem clock

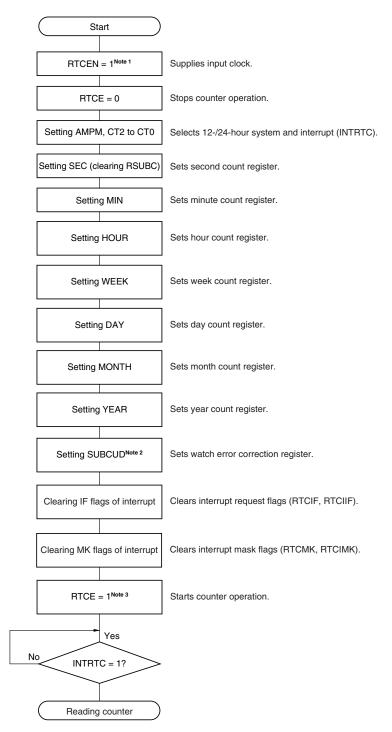
Note The CMC register can be written only once by an 8-bit memory manipulation instruction after reset release.

(8) CPU clock changing from subsystem clock (D) to internal high-speed oscillation clock (B)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CSC Register	CKC R	legister
Status Transition	HIOSTOP	MCM0	CSS
$(D)\to(B)$	0	0	0

Unnecessary if the CPU I is operating with the re internal high-speed oscillation clock


Unnecessary if this register is already set

Remark (A) to (I) in Table 5-4 correspond to (A) to (I) in Figure 5-15.

7.4 Real-Time Counter Operation

7.4.1 Starting operation of real-time counter

Notes 1. First set RTCEN to 1, while oscillation of the subsystem clock (fsub) is stable.

<R>

<R>

- 2. Set up SUBCUD only if the watch error must be corrected. For details about how to calculate the correction value, see 7.4.8 Example of watch error correction of real-time counter.
- 3. Confirm the procedure described in 7.4.2 Shifting to STOP mode after starting operation when shifting to STOP mode without waiting for INTRTC = 1 after RTCE = 1.

(2) A/D converter mode register (ADM)

This register sets the conversion time for analog input to be A/D converted, and starts/stops conversion. ADM can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears this register to 00H.

Figure 10-4. Format of A/D Converter Mode Register (ADM)

Address: FFF30H After reset: 00H R/W

ADCS	A/D conversion operation control			
0	Stops conversion operation			
1	Enables conversion operation			

ADCE	A/D voltage comparator operation control ^{Note 2}			
0	Stops A/D voltage comparator operation			
1	Enables A/D voltage comparator operation			

Notes 1. For details of FR2 to FR0, LV1, LV0, and A/D conversion, see Table 10-3 A/D Conversion Time Selection.

2. The operation of the A/D voltage comparator is controlled by ADCS and ADCE, and it takes 1 µs from operation start to operation stabilization. Therefore, when ADCS is set to 1 after 1 µs or more has elapsed from the time ADCE is set to 1, the conversion result at that time has priority over the first conversion result. Otherwise, ignore data of the first conversion.

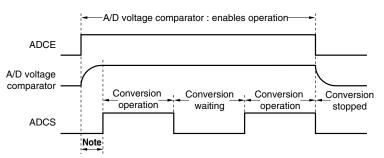
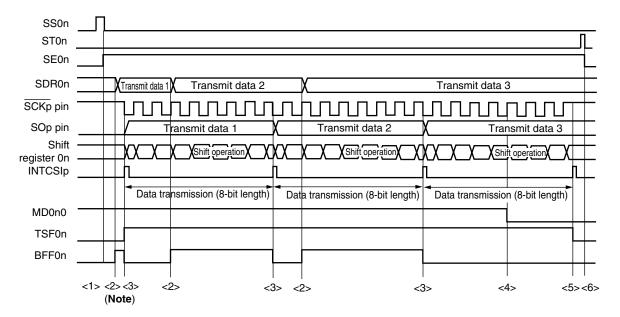
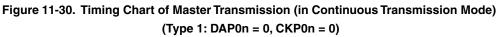

<R>

Table 10-2. Settings of ADCS and ADCE

ADCS	ADCE	A/D Conversion Operation			
0	0	Stop status (DC power consumption path does not exist)			
0	1	Conversion waiting mode (only A/D voltage comparator consumes power)			
1	0	Setting prohibited			
1	1	Conversion mode (A/D voltage comparator: enables operation)			


<R>


Figure 10-5. Timing Chart When A/D voltage Comparator Is Used

- Note To stabilize the internal circuit, the time from the rising of the ADCE bit to the falling of the ADCS bit must be 1 μ s or longer.
- Caution A/D conversion must be stopped before rewriting bits FR0 to FR2, LV1, and LV0 to values other than the identical data.

(4) Processing flow (in continuous transmission mode)

Note When transmit data is written to the SDR0n register while BFF0n = 1, the transmit data is overwritten.

- Caution The MD0n0 bit can be rewritten even during operation. However, rewrite it before transfer of the last bit is started, so that it will be rewritten before the transfer end interrupt of the last transmit data.
- **Remark** n: Channel number (n = 0, 2), p: CSI number (p = 00, 10)

11.6.3 LIN transmission

Of UART transmission, UART3 supports LIN communication. For LIN transmission, channel 2 of unit 1 (SAU1) is used.

UART	UART0	UART1	UART3			
Support of LIN communication	Not supported	Not supported	Supported			
Target channel	-	-	Channel 2 of SAU1			
Pins used	-	-	TxD3			
Interrupt	_	_	INTST3			
	Transfer end interrupt (in single mode) can be selected.	e-transfer mode) or buffer empty in	nterrupt (in continuous transfer			
Error detection flag	None					
Transfer data length	8 bits					
Transfer rate	Max. fмск/6 [bps] (SDR12 [15:9] = 2 or more), Min. fcLк/(2 × 2 ¹¹ × 128) [bps] ^{Note}					
Data phase	Forward output (default: high level) Reverse output (default: low level)					
Parity bit	The following selectable No parity bit Appending 0 parity Appending even parity Appending odd parity 					
Stop bit	The following selectable Appending 1 bit Appending 2 bits 					
Data direction	MSB or LSB first					

Note Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 27 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) and CHAPTER 28 ELECTRICAL SPECIFICATIONS ((A) GRADE PRODUCTS)).

Remark fMCK: Operation clock (MCK) frequency of target channel

fclk: System clock frequency

LIN stands for Local Interconnect Network and is a low-speed (1 to 20 kbps) serial communication protocol designed to reduce the cost of an automobile network.

Communication of LIN is single-master communication and up to 15 slaves can be connected to one master.

The slaves are used to control switches, actuators, and sensors, which are connected to the master via LIN.

Usually, the master is connected to a network such as CAN (Controller Area Network).

A LIN bus is a single-wire bus to which nodes are connected via transceiver conforming to ISO9141.

According to the protocol of LIN, the master transmits a frame by attaching baud rate information to it. A slave receives this frame and corrects a baud rate error from the master. If the baud rate error of a slave is within $\pm 15\%$, communication can be established.

Figure 11-85 outlines a transmission operation of LIN.

(2) Baud rate error during transmission

The baud rate error of UART (UART0, UART1, UART3) communication during transmission can be calculated by the following expression. Make sure that the baud rate at the transmission side is within the permissible baud rate range at the reception side.

(Baud rate error) = (Calculated baud rate value) \div (Target baud rate) \times 100 – 100 [%]

Here is an example of setting a UART baud rate at $f_{CLK} = 20$ MHz.

UART Baud Rate		fo	ськ = 20 MHz	
(Target Baud Rate)	Operation Clock (MCK)	SDRmn[15:9]	Calculated Baud Rate	Error from Target Baud Rate
300 bps	fclк/2 ⁹	64	300.48 bps	+0.16 %
600 bps	fc∟ĸ/2 ⁸	64	600.96 bps	+0.16 %
1200 bps	fclк/2 ⁷	64	1201.92 bps	+0.16 %
2400 bps	fclк/2 ⁶	64	2403.85 bps	+0.16 %
4800 bps	fc∟ĸ/2⁵	64	4807.69 bps	+0.16 %
9600 bps	fc∟ĸ/2⁴	64	9615.38 bps	+0.16 %
19200 bps	fclк/2³	64	19230.8 bps	+0.16 %
31250 bps	fclк/2³	39	31250.0 bps	±0.0 %
38400 bps	fclk/2²	64	38461.5 bps	+0.16 %
76800 bps	fclk/2	64	76923.1 bps	+0.16 %
153600 bps	fclк	64	153846 bps	+0.16 %
312500 bps	fclк	31	312500 bps	±0.0 %

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 02, 12

(1) Register setting

Figure 11-93. Example of Contents of Registers for Address Field Transmission of Simplified I²C (IIC10)

(a)	Serial	outpu	ut regi	ster 0	(SO0)) Se	ets on	ly the	bits o	f the t	arget	chanr	nel.			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SO0	0	0	0	0	1	скоо2 0/1	1	СКО00 ×	0	0	0	0	1	soo2 0/1	1	SO00 ×
		<u>.</u>				• •	Star	t conditi	on is g	enerat	ed by m	nanipul	ating th	ne SO0	2 bit.	
(b)	Serial	outpu	ıt enal	ole reg	gister	0 (SO	E0)	. Sets	only t	he bit	s of th	ne targ	get ch	annel.		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOE0	0	0	0	0	0	0	0	0	0	0	0	0	0	SOE02 0/1	0	SOE00 ×
								:02 = 0 genera		e start	conditio	on is ge	enerate	ed, and	SOE02	2 = 1
(c)	Serial	chanr	nel sta	rt reg	ister () (SSC)) S	ets on	ly the	bits o	of the	target	chan	nel is	1.	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SS0	0	0	0	0	0	0	0	0	0	0	0	0	SS03 ×	sso2 0/1	SS01 ×	SS00 ×
(d)	Serial	mode	regis	ter 02	(SMR	102)										
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMR02	скѕо2 0/1	CCS02 0	0	0	0	0	0	stso2 0	0	SIS020 0	1	0	0	MD022 1	MD021 0	MD020 0
														urces of nd inte		iel 2
(e)	Serial	comn	nunica	tion c	perat	ion se	ettina	reaist	er 02 (SCRO)2)					
()	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SCR02	тхео2 1	RXE02 0	DAP02 0	скро2 0	0	EOC02 0	PTC021 0	ртсо20 О	DIR02 0	0	SLC021 O	SLC020 1	0	DLS022 1	DLS021 1	DLS020 1
	<u> </u>	•		etting o 0B: No		/ bit				<u> </u>				ng of si Appen		bit (ACK
(f)	Serial	data ı	registe	er 02 (SDR0	2) (lov	ver 8	bits: S	IO10)							
.,	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SDR02		Baud rate setting							0 Transmit data setting (address + R/W)							
												SI				
Rer	nark	🔲 : Se	etting i	s fixec	l in the	e IIC m	node,	: Se	tting d	lisable	d (set	to the	initial	value)		

x: Bit that cannot be used in this mode (set to the initial value when not used in any mode) 0/1: Set to 0 or 1 depending on the usage of the user

(3) Processing flow

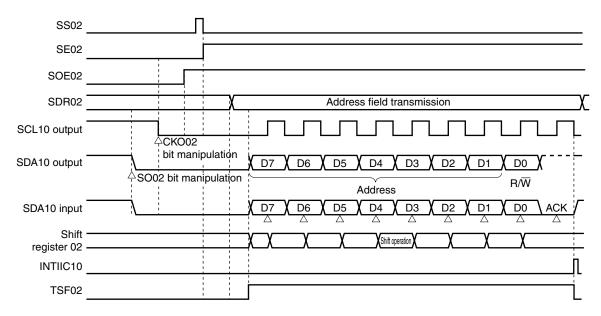
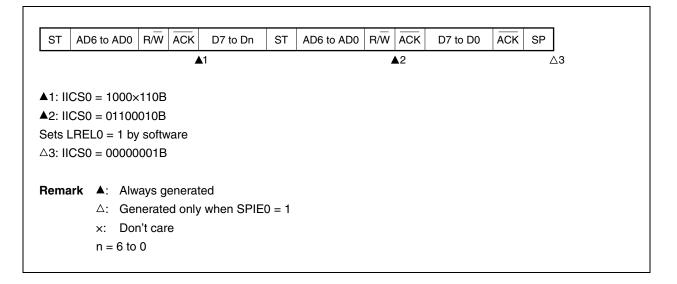



Figure 11-95. Timing Chart of Address Field Transmission

(ii) Extension code

(e) When loss occurs due to stop condition during data transfer

- (b) When LVI Default Start Function Enabled Is Set (Option Byte: LVIOFF = 0)
 - When starting operation
 - <1> Start in the following initial setting state.
 - Set bit 7 (LVION) of LVIM to 1 (enables LVI operation)
 - Clear bit 2 (LVISEL) of the low-voltage detection register (LVIM) to 0 (detects level of supply voltage (VDD))
 - Set the low-voltage detection level selection register (LVIS) to 0EH (default value: V_{LVI} = 2.07 V ± 0.1 V).
 - Set bit 1 (LVIMD) of LVIM to 1 (generates reset when the level is detected)
 - Set bit 0 (LVIF) of LVIM to 0 (Detects falling edge "Supply voltage (V_DD) \geq detection voltage (V_LVI)")
 - <2> Clear bit 1 (LVIMD) of LVIM to 0 (generates interrupt signal when the level is detected) (default value).
 - <3> Release the interrupt mask flag of LVI (LVIMK).
 - <4> Execute the El instruction (when vector interrupts are used).

Figure 20-9 shows the timing of the interrupt signal generated by the low-voltage detector. The numbers in this timing chart correspond to <1> to <3> above.

- When stopping operation Either of the following procedures must be executed.
 - When using 8-bit memory manipulation instruction: Write 00H to LVIM.
 - When using 1-bit memory manipulation instruction: Clear LVION to 0.
- Cautions 1. Even when the LVI default start function is used, if it is set to LVI operation prohibition by the software, it operates as follows:
 - Does not perform low-voltage detection during LVION = 0.
 - If a reset is generated while LVION = 0, LVION will be re-set to 1 when the CPU starts after reset release. There is a period when low-voltage detection cannot be performed normally, however, when a reset occurs due to WDT and illegal instruction execution. This is due to the fact that while the pulse width detected by LVI must be 200 µs max., LVION = 1 is set upon reset occurrence, and the CPU starts operating without waiting for the LVI stabilization time.
 - When the LVI default start function (bit 0 (LVIOFF) of 000C1H = 0) is used, the LVIRF flag may become 1 from the beginning due to the power-on waveform.
 For details of RESF, see CHAPTER 18 RESET FUNCTION.

23.9.1 Boot swap function

If rewriting the boot area failed by temporary power failure or other reasons, restarting a program by resetting or overwriting is disabled due to data destruction in the boot area.

The boot swap function is used to avoid this problem.

Before erasing boot cluster 0^{Note}, which is a boot program area, by self-programming, write a new boot program to boot cluster 1 in advance. When the program has been correctly written to boot cluster 1, swap this boot cluster 1 and boot cluster 0 by using the set information function of the firmware of the 78K0R/KE3, so that boot cluster 1 is used as a boot area. After that, erase or write the original boot program area, boot cluster 0.

As a result, even if a power failure occurs while the boot programming area is being rewritten, the program is executed correctly because it is booted from boot cluster 1 to be swapped when the program is reset and started next.

Note A boot cluster is a 4 KB area and boot clusters 0 and 1 are swapped by the boot swap function.

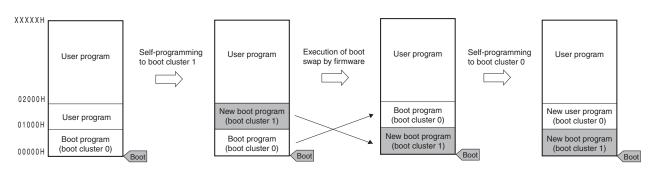


Figure 23-11. Boot Swap Function

In an example of above figure, it is as follows.

Boot cluster 0: Boot program area before boot swap Boot cluster 1: Boot program area after boot swap

(A) Grade Products

Manufacturer	Part	SMD/	Frequency	Load Capacitance	Recomme	ended Circuit	Oscillation Voltage Range		
	Number	Lead	(kHz)	CL (pF)	C3 (pF)	C4 (pF)	Rd (kΩ)	MIN. (V)	MAX. (V)
Seiko	SP-T2A	SMD	32.768	6.0	5	5	0	1.8	5.5
Instruments				12.5	18	18	0		
Inc.	SSP-T7	Small		7.0	7	7	0		
		SMD	-	12.5	18	18	0		
	VT-200	Lead		6.0	5	5	0		
				12.5	18	18	0		
CITIZEN	CM200S	SMD	32.768	9.0	12	15	0	1.8	5.5
FINETECH					12	15	100	-	
MIYOTA CO., LTD.	CM315	M315 SMD		9.0	15	15	0		
					15	15	100		
	CM519	SMD		9.0	15	12	0		
					15	12	100		

(5) XT1 oscillation: Crystal resonator ($T_A = -40$ to +85°C)

- Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit.
 - When doing so, check the conditions for using the RMC register, and whether to enter or exit the STOP mode.

The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the 78K0R/KE3 so that the internal operation conditions are within the specifications of the DC and AC characteristics.

Manufacturer	Part	SMD/	Frequency	Load Capacitance CL (pF)	Recomme	ended Circuit	Oscillation Voltage Range		
	Number	Lead	(kHz)		C3 (pF)	C4 (pF)	Rd (kΩ)	MIN. (V)	MAX. (V)
CITIZEN	CFS-206 Le	Lead	32.768	9.0	22	18	0	0 1.8	
FINETECH					22	18	100		
MIYOTA CO., LTD.					12	15	0		
						12	15	100	

(6) XT1 oscillation: Crystal resonator ($T_A = -20$ to $+70^{\circ}$ C)

Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit.

When doing so, check the conditions for using the RMC register, and whether to enter or exit the STOP mode.

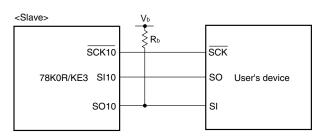
The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the 78K0R/KE3 so that the internal operation conditions are within the specifications of the DC and AC characteristics.

<R>

<R>

(2) Serial interface: Serial array unit (14/18)

<R>


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	(Conditions	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	13.6 MHz < fмск	10/f мск			ns
		$2.7~V \leq V_b \leq 4.0~V$	6.8 MHz < fмск ≤ 13.6 MHz	8/fмск			ns
			fмск ≤ 6.8 MHz	6/fмск			ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	18.5 MHz < fмск	16/f мск			ns
			14.8 MHz < fмск \leq 18.5 MHz	14/f мск			ns
			11.1 MHz < fмск ≤ 14.8 MHz	12/f мск			ns
			7.4 MHz < fмск ≤ 11.1 MHz	10/f мск			ns
			3.7 MHz < fмск ≤ 7.4 MHz	8/fмск			ns
			fмск \leq 3.7 MHz	6/fмск			ns
SCK10 high-/low-level	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	fксү2/2 – 20			ns
width	tkl2	$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_b \leq 2.7~V$	fксү2/2 – 35			ns
SI10 setup time (to SCK10↑) ^{Note 1}	tsik2			90			ns
SI10 hold time (from SCK10↑) ^{Note 2}	tksi2			1/fмск + 50			ns
Delay time from SCK10↓ to SO10	tkso2	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 30 \ p\text{F}, \ R_{\text{b}} = 1.4 \end{array}$			2/fмск + 120	ns	
output ^{Note 3}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ V}$				2/fмск + 230	ns

(g) During communication at different potential (2.5 V, 3 V) (CSI mode) (slave mode, SCK10... external clock input)

- Notes 1. When DAP02 = 0 and CKP02 = 0, or DAP02 = 1 and CKP02 = 1. The SI10 setup time becomes "to $\overline{SCK10}\downarrow$ " when DAP02 = 0 and CKP02 = 1, or DAP02 = 1 and CKP02 = 0.
 - **2.** When DAP02 = 0 and CKP02 = 0, or DAP02 = 1 and CKP02 = 1. The SI10 hold time becomes "from $\overline{SCK10}\downarrow$ " when DAP02 = 0 and CKP02 = 1, or DAP02 = 1 and CKP02 = 0.
 - **3.** When DAP02 = 0 and CKP02 = 0, or DAP02 = 1 and CKP02 = 1. The delay time to SO10 output becomes "from $\overline{SCK10}$ [↑]" when DAP02 = 0 and CKP02 = 1, or DAP02 = 1 and CKP02 = 0.

CSI mode connection diagram (during communication at different potential)

(Caution and Remark are given on the next page.)

					(2/3	33)			
Chapter	Classification	Function	Details of Function	Cautions					
Chapter 3	Soft	Memory space	Internal data memory space	It is prohibited to use the general-purpose register (FFEE0H to FFEFFH) space for fetching instructions or as a stack area.	p.56				
Chal				While using the self-programming function, the area of FFE20H to FFEFFH cannot be used as a stack memory. Furthermore, the areas of FCF00H to FD6FFH cannot be used with the μ PD78F1146 and 78F1146A.	p.56				
			SFR: Special function register area	Do not access addresses to which SFRs are not assigned.	pp.57, 68				
			2nd SFR: Extended special function register	Do not access addresses to which extended SFR is not assigned.	pp.57, 74				
		Processor registers	SP: Stack pointer	Since reset signal generation makes the SP contents undefined, be sure to initialize the SP before using the stack.	p.64				
				The values of the stack pointer must be set to even numbers. If odd numbers are specified, the least significant bit is automatically cleared to 0.	p.64				
			It is prohibited to use the general-purpose register (FFEE0H to FFEFFH) space as a stack area.	p.64					
				While using the self-programming function, the area of FFE20H to FFEFFH cannot be used as a stack memory. Furthermore, the areas of FCF00H to FD6FFH cannot be used with the μ PD78F1146 and 78F1146A.	p.64				
			General-purpose registers	It is prohibited to use the general-purpose register (FFEE0H to FFEFFH) space for fetching instructions or as a stack area.	p.65				
Chapter 4	Fort functions		P01/TO00, P05/TI05/TO05, P06/TI06/TO06	To use P01/TO00, P05/TI05/TO05, or P06/TI06/TO06 as a general-purpose port, set bits 0, 5,and 6 (TO00, TO05, TO06) of timer output register 0 (TO0) and bits 0, 5, and 6 (TOE00, TOE05,TOE06) of timer output enable register 0 (TOE0) to "0", which is the same as their default status setting.	p.96				
			P02/SO10/TxD1, P03/SI10/RxD1/ SDA10, P04/SCK10/ SCL10	 To use P02/SO10/TxD1, P03/SI10/RxD1/SDA10, or P04/SCK10/SCL10 as a general-purpose port, note the serial array unit 0 setting. For details, refer to the following tables. Table 11-7 Relationship Between Register Settings and Pins (Channel 2 of Unit 0: CSI10, UART1 Transmission, IIC10) Table 11-8 Relationship Between Register Settings and Pins (Channel 3 of Unit 0: UART1 Reception) 	p.96				
			P10/SCK00/, P11/SI00/RxD0, P12/SO00/TxD0 P13/TxD3, P14/RxD3	 To use P10/SCK00, P11/SI00/RxD0, P12/SO00/TxD0, P13/TxD3, or P14/RxD3 as a general-purpose port, note the serial array unit setting. For details, refer to the following tables. Table 11-5 Relationship Between Register Settings and Pins (Channel 0 of Unit 0: CSI00, UART0 Transmission) Table 11-6 Relationship Between Register Settings and Pins (Channel 1 of Unit 0:, UART0 Reception) Table 11-9 Relationship Between Register Settings and Pins (Channel 2 of Unit 1: UART3 Transmission) Table 11-10 Relationship Between Register Settings and Pins (Channel 2 of Unit 1: UART3 Transmission) 	p.101				