

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	624
Number of Logic Elements/Cells	4992
Total RAM Bits	49152
Number of I/O	274
Number of Gates	257000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	356-LBGA
Supplier Device Package	356-BGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k100ebc356-1b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800
- Flexible package options
 - Available in a variety of packages with 144 to 672 pins, including the innovative FineLine BGATM packages (see Tables 3 and 4)
 - SameFrame[™] pin-out compatibility between FLEX 10KA and FLEX 10KE devices across a range of device densities and pin counts
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic

Table 3. FLEX 10KE Package Options & I/O Pin CountNotes (1), (2)										
Device	144-Pin TQFP	208-Pin PQFP	240-Pin PQFP RQFP	256-Pin FineLine BGA	356-Pin BGA	484-Pin FineLine BGA	599-Pin PGA	600-Pin BGA	672-Pin FineLine BGA	
EPF10K30E	102	147		176		220			220 (3)	
EPF10K50E	102	147	189	191		254			254 (3)	
EPF10K50S	102	147	189	191	220	254			254 (3)	
EPF10K100E		147	189	191	274	338			338 (3)	
EPF10K130E			186		274	369		424	413	
EPF10K200E							470	470	470	
EPF10K200S			182		274	369	470	470	470	

Notes:

- (1) FLEX 10KE device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), pin-grid array (PGA), and ball-grid array (BGA) packages.
- (2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When planning device migration, use the I/O pins that are common to all devices.
- (3) This option is supported with a 484-pin FineLine BGA package. By using SameFrame pin migration, all FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin, 484-pin, and 672-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration is set.

Application	Resourc	es Used		Performance		Units
	LEs	EABs	-1 Speed Grade	-2 Speed Grade	-3 Speed Grade	
16-bit loadable counter	16	0	285	250	200	MHz
16-bit accumulator	16	0	285	250	200	MHz
16-to-1 multiplexer (1)	10	0	3.5	4.9	7.0	ns
16-bit multiplier with 3-stage pipeline (2)	592	0	156	131	93	MHz
256 × 16 RAM read cycle speed (2)	0	1	196	154	118	MHz
256 × 16 RAM write cycle	0	1	185	143	106	MHz

Notes:

- (1) This application uses combinatorial inputs and outputs.
- (2) This application uses registered inputs and outputs.

Table 6 shows FLEX 10KE performance for more complex designs. These designs are available as Altera MegaCore $^{\circ}$ functions.

Table 6. FLEX 10KE Performance for Complex Designs									
Application	LEs Used		Performance						
		-1 Speed Grade	-2 Speed Grade	-3 Speed Grade					
8-bit, 16-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS				
8-bit, 512-point fast Fourier	1,854	23.4	28.7	38.9	μ s (1)				
transform (FFT) function		113	92	68	MHz				
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz				

Note:

(1) These values are for calculation time. Calculation time = number of clocks required / f_{max} . Number of clocks required = ceiling [log 2 (points)/2] × [points +14 + ceiling]

Functional Description

Each FLEX 10KE device contains an enhanced embedded array to implement memory and specialized logic functions, and a logic array to implement general logic.

The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions, such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions.

The logic array consists of logic array blocks (LABs). Each LAB contains eight LEs and a local interconnect. An LE consists of a four-input look-up table (LUT), a programmable flipflop, and dedicated signal paths for carry and cascade functions. The eight LEs can be used to create medium-sized blocks of logic—such as 8-bit counters, address decoders, or state machines—or combined across LABs to create larger logic blocks. Each LAB represents about 96 usable gates of logic.

Signal interconnections within FLEX 10KE devices (as well as to and from device pins) are provided by the FastTrack Interconnect routing structure, which is a series of fast, continuous row and column channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect routing structure. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an output or input register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. As inputs, they provide setup times as low as 0.9 ns and hold times of 0 ns. As outputs, these registers provide clock-to-output times as low as 3.0 ns. IOEs provide a variety of features, such as JTAG BST support, slew-rate control, tri-state buffers, and open-drain outputs.

Figure 9 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal.

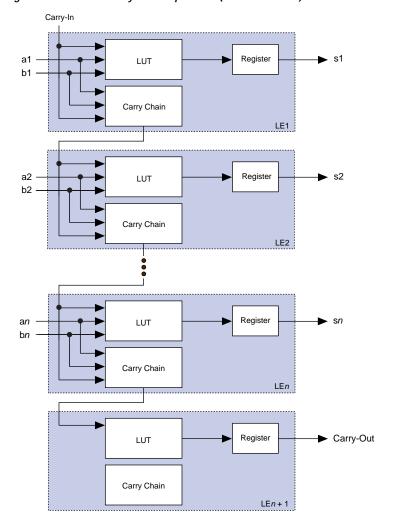


Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder)

Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

On all FLEX 10KE devices (except EPF10K50E and EPF10K200E devices), the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. EPF10K50S and EPF10K200S devices also support this feature. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time or turn it off to minimize setup time. This feature is used to reduce setup time for complex pin-to-register paths (e.g., PCI designs).

Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across the device and provides up to 12 peripheral control signals that can be allocated as follows:

- Up to eight output enable signals
- Up to six clock enable signals
- Up to two clock signals
- Up to two clear signals

If more than six clock enable or eight output enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, a LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chipwide reset signal resets all IOE registers, overriding any other control signals.

When a dedicated clock pin drives IOE registers, it can be inverted for all IOEs in the device. All IOEs must use the same sense of the clock. For example, if any IOE uses the inverted clock, all IOEs must use the inverted clock and no IOE can use the non-inverted clock. However, LEs can still use the true or complement of the clock on a LAB-by-LAB basis.

The incoming signal may be inverted at the dedicated clock pin and will drive all IOEs. For the true and complement of a clock to be used to drive IOEs, drive it into both global clock pins. One global clock pin will supply the true, and the other will supply the complement.

When the true and complement of a dedicated input drives IOE clocks, two signals on the peripheral control bus are consumed, one for each sense of the clock.

ClockLock & ClockBoost Features

To support high-speed designs, FLEX 10KE devices offer optional ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by resource sharing within the device. The ClockBoost feature allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth.

All FLEX 10KE devices, except EPF10K50E and EPF10K200E devices, support ClockLock and ClockBoost circuitry. EPF10K50S and EPF10K200S devices support this circuitry. Devices that support ClockLock and ClockBoost circuitry are distinguished with an "X" suffix in the ordering code; for instance, the EPF10K200SFC672-1X device supports this circuit.

The ClockLock and ClockBoost features in FLEX 10KE devices are enabled through the Altera software. External devices are not required to use these features. The output of the ClockLock and ClockBoost circuits is not available at any of the device pins.

The ClockLock and ClockBoost circuitry locks onto the rising edge of the incoming clock. The circuit output can drive the clock inputs of registers only; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and ClockBoost circuitry. When the dedicated clock pin is driving the ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to the GCLK1 pin. In the Altera software, the GCLK1 pin can feed both the ClockLock and ClockBoost circuitry in the FLEX 10KE device. However, when both circuits are used, the other clock pin cannot be used.

Tables 12 and 13 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively.

Table 12.	Table 12. ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices									
Symbol	Parameter	Condition	Min	Тур	Max	Unit				
t_R	Input rise time				5	ns				
t _F	Input fall time				5	ns				
t _{INDUTY}	Input duty cycle		40		60	%				
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		180	MHz				
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		90	MHz				
f _{CLKDEV}	Input deviation from user specification in the MAX+PLUS II software (1)				25,000 (2)	PPM				
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps				
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs				
t _{JITTER}	Jitter on ClockLock or ClockBoost-	$t_{INCLKSTB} < 100$			250	ps				
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps				
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost-generated clock		40	50	60	%				

to Be Driven

Figure 20. FLEX 10KE JTAG Waveforms TMS TDI t_{JPSU} TCK t_{JPZX} t _{JPXZ} $\mathbf{t}_{\mathsf{JPCO}}$ TDO t_{JSH} t_{JSSU} Signal to Be Captured t_{JSCO}t_{JSZX} t_{JSXZ} Signal

Figure 20 shows the timing requirements for the JTAG signals.

Table 18 shows the timing parameters and values for FLEX 10KE devices.

Table 18. FLEX 10KE JTAG Timing Parameters & Values									
Symbol	Parameter	Min	Max	Unit					
t _{JCP}	TCK clock period	100		ns					
t _{JCH}	TCK clock high time	50		ns					
t _{JCL}	TCK clock low time	50		ns					
t _{JPSU}	JTAG port setup time	20		ns					
t _{JPH}	JTAG port hold time	45		ns					
t _{JPCO}	JTAG port clock to output		25	ns					
t _{JPZX}	JTAG port high impedance to valid output		25	ns					
t _{JPXZ}	JTAG port valid output to high impedance		25	ns					
t _{JSSU}	Capture register setup time	20		ns					
t _{JSH}	Capture register hold time	45		ns					
t _{JSCO}	Update register clock to output		35	ns					
t _{JSZX}	Update register high impedance to valid output		35	ns					
t _{JSXZ}	Update register valid output to high impedance		35	ns					

Figure 22 shows the required relationship between $V_{\rm CCIO}$ and $V_{\rm CCINT}$ for 3.3-V PCI compliance.

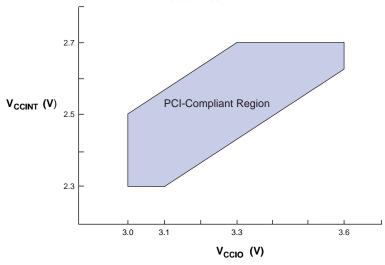


Figure 22. Relationship between V_{CCIO} & V_{CCINT} for 3.3-V PCI Compliance

Figure 23 shows the typical output drive characteristics of FLEX 10KE devices with 3.3-V and 2.5-V $V_{\rm CCIO}$. The output driver is compliant to the 3.3-V *PCI Local Bus Specification*, *Revision 2.2* (when VCCIO pins are connected to 3.3 V). FLEX 10KE devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification*, *Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems.

Table 24. LE Timing Microparameters (Part 2 of 2) Note (1)							
Symbol	Parameter Condition						
t _{CLR}	LE register clear delay						
t _{CH}	Minimum clock high time from clock pin						
t_{CL}	Minimum clock low time from clock pin						

Table 25. IOL	E Timing Microparameters Note (1)	
Symbol	Parameter	Conditions
t_{IOD}	IOE data delay	
t _{IOC}	IOE register control signal delay	
t _{IOCO}	IOE register clock-to-output delay	
t _{IOCOMB}	IOE combinatorial delay	
t _{IOSU}	IOE register setup time for data and enable signals before clock; IOE register recovery time after asynchronous clear	
t _{IOH}	IOE register hold time for data and enable signals after clock	
t _{IOCLR}	IOE register clear time	
t _{OD1}	Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 3.3 V	C1 = 35 pF (2)
t _{OD2}	Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 2.5 V	C1 = 35 pF (3)
t _{OD3}	Output buffer and pad delay, slow slew rate = on	C1 = 35 pF (4)
t_{XZ}	IOE output buffer disable delay	
t_{ZX1}	IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 3.3 V	C1 = 35 pF (2)
t_{ZX2}	IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 2.5 V	C1 = 35 pF (3)
t _{ZX3}	IOE output buffer enable delay, slow slew rate = on	C1 = 35 pF (4)
t _{INREG}	IOE input pad and buffer to IOE register delay	
t _{IOFD}	IOE register feedback delay	
t _{INCOMB}	IOE input pad and buffer to FastTrack Interconnect delay	

3 Timing Macroparameters Note (1), (6)	
Parameter	Conditions
EAB address access delay	
EAB asynchronous read cycle time	
EAB synchronous read cycle time	
EAB write pulse width	
EAB asynchronous write cycle time	
EAB synchronous write cycle time	
EAB data-in to data-out valid delay	
EAB clock-to-output delay when using output registers	
EAB data/address setup time before clock when using input register	
EAB data/address hold time after clock when using input register	
EAB WE setup time before clock when using input register	
EAB WE hold time after clock when using input register	
EAB data setup time before falling edge of write pulse when not using input registers	
EAB data hold time after falling edge of write pulse when not using input registers	
EAB address setup time before rising edge of write pulse when not using input registers	
EAB address hold time after falling edge of write pulse when not using input registers	
EAB write enable to data output valid delay	
	Parameter EAB address access delay EAB asynchronous read cycle time EAB synchronous read cycle time EAB write pulse width EAB asynchronous write cycle time EAB synchronous write cycle time EAB data-in to data-out valid delay EAB clock-to-output delay when using output registers EAB data/address setup time before clock when using input register EAB we setup time before clock when using input register EAB we hold time after clock when using input register EAB data setup time before falling edge of write pulse when not using input registers EAB data hold time after falling edge of write pulse when not using input registers EAB address setup time before rising edge of write pulse when not using input registers EAB address setup time before rising edge of write pulse when not using input registers EAB address hold time after falling edge of write pulse when not using input registers

Table 34. EPF10K30E Device EAB Internal Timing Macroparameters Note (1)								
Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{EABAA}		6.4		7.6		8.8	ns	
t _{EABRCOMB}	6.4		7.6		8.8		ns	
t _{EABRCREG}	4.4		5.1		6.0		ns	
t _{EABWP}	2.5		2.9		3.3		ns	
t _{EABWCOMB}	6.0		7.0		8.0		ns	
t _{EABWCREG}	6.8		7.8		9.0		ns	
t _{EABDD}		5.7		6.7		7.7	ns	
t _{EABDATA} CO		0.8		0.9		1.1	ns	
t _{EABDATASU}	1.5		1.7		2.0		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	1.3		1.4		1.7		ns	
t _{EABWEH}	0.0		0.0		0.0		ns	
t _{EABWDSU}	1.5		1.7		2.0		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	3.0		3.6		4.3		ns	
t _{EABWAH}	0.5		0.5		0.4		ns	
t _{EABWO}		5.1		6.0		6.8	ns	

Table 53. EPF10K130E Device IOE Timing Microparameters Note (1)									
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{OD3}		4.0		5.6		7.5	ns		
t_{XZ}		2.8		4.1		5.5	ns		
t_{ZX1}		2.8		4.1		5.5	ns		
t_{ZX2}		2.8		4.1		5.5	ns		
t_{ZX3}		4.0		5.6		7.5	ns		
t _{INREG}		2.5		3.0		4.1	ns		
t _{IOFD}		0.4		0.5		0.6	ns		
t _{INCOMB}		0.4		0.5		0.6	ns		

Table 54. EPF10K130E Device EAB Internal Microparameters (Part 1 of 2) Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{EABDATA1}		1.5		2.0		2.6	ns	
t _{EABDATA2}		0.0		0.0		0.0	ns	
t _{EABWE1}		1.5		2.0		2.6	ns	
t _{EABWE2}		0.3		0.4		0.5	ns	
t _{EABRE1}		0.3		0.4		0.5	ns	
t _{EABRE2}		0.0		0.0		0.0	ns	
t _{EABCLK}		0.0		0.0		0.0	ns	
t _{EABCO}		0.3		0.4		0.5	ns	
t _{EABBYPASS}		0.1		0.1		0.2	ns	
t _{EABSU}	0.8		1.0		1.4		ns	
t _{EABH}	0.1		0.2		0.2		ns	
t _{EABCLR}	0.3		0.4		0.5		ns	
t_{AA}		4.0		5.0		6.6	ns	
t_{WP}	2.7		3.5		4.7		ns	
t _{RP}	1.0		1.3		1.7		ns	
t _{WDSU}	1.0		1.3		1.7		ns	
t_{WDH}	0.2		0.2		0.3		ns	
t _{WASU}	1.6		2.1		2.8		ns	
t _{WAH}	1.6		2.1		2.8		ns	
t _{RASU}	3.0		3.9		5.2		ns	
t _{RAH}	0.1		0.1		0.2		ns	
t_{WO}		1.5		2.0		2.6	ns	

Table 54. EPF10K130E Device EAB Internal Microparameters (Part 2 of 2) Note (1)										
Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade										
	Min	Max	Min	Max	Min	Max				
t_{DD}		1.5		2.0		2.6	ns			
t _{EABOUT}		0.2		0.3		0.3	ns			
t _{EABCH}	1.5		2.0		2.5		ns			
t _{EABCL}	2.7		3.5		4.7		ns			

Table 55. EPF10K130E Device EAB Internal Timing Macroparameters Note (1)									
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{EABAA}		5.9		7.5		9.9	ns		
t _{EABRCOMB}	5.9		7.5		9.9		ns		
t _{EABRCREG}	5.1		6.4		8.5		ns		
t _{EABWP}	2.7		3.5		4.7		ns		
t _{EABWCOMB}	5.9		7.7		10.3		ns		
t _{EABWCREG}	5.4		7.0		9.4		ns		
t _{EABDD}		3.4		4.5		5.9	ns		
t _{EABDATACO}		0.5		0.7		0.8	ns		
t _{EABDATASU}	0.8		1.0		1.4		ns		
t _{EABDATAH}	0.1		0.1		0.2		ns		
t _{EABWESU}	1.1		1.4		1.9		ns		
t _{EABWEH}	0.0		0.0		0.0		ns		
t _{EABWDSU}	1.0		1.3		1.7		ns		
t _{EABWDH}	0.2		0.2		0.3		ns		
t _{EABWASU}	4.1		5.1		6.8		ns		
t _{EABWAH}	0.0		0.0		0.0		ns		
t _{EABWO}		3.4		4.5		5.9	ns		

Table 62. EPF10K200E Device EAB Internal Timing Macroparameters (Part 2 of 2) Note (1)									
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		ed Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{EABWCOMB}	6.7		8.1		10.7		ns		
t _{EABWCREG}	6.6		8.0		10.6		ns		
t _{EABDD}		4.0		5.1		6.7	ns		
t _{EABDATACO}		0.8		1.0		1.3	ns		
t _{EABDATASU}	1.3		1.6		2.1		ns		
t _{EABDATAH}	0.0		0.0		0.0		ns		
t _{EABWESU}	0.9		1.1		1.5		ns		
t _{EABWEH}	0.4		0.5		0.6		ns		
t _{EABWDSU}	1.5		1.8		2.4		ns		
t _{EABWDH}	0.0		0.0		0.0		ns		
t _{EABWASU}	3.0		3.6		4.7		ns		
t _{EABWAH}	0.4		0.5		0.7		ns		
t _{EABWO}		3.4		4.4		5.8	ns		

Table 63. EPF10K200E Device Interconnect Timing Microparameters Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{DIN2IOE}		4.2		4.6		5.7	ns		
t _{DIN2LE}		1.7		1.7		2.0	ns		
t _{DIN2DATA}		1.9		2.1		3.0	ns		
t _{DCLK2IOE}		2.5		2.9		4.0	ns		
t _{DCLK2LE}		1.7		1.7		2.0	ns		
t _{SAMELAB}		0.1		0.1		0.2	ns		
t _{SAMEROW}		2.3		2.6		3.6	ns		
t _{SAMECOLUMN}		2.5		2.7		4.1	ns		
t _{DIFFROW}		4.8		5.3		7.7	ns		
t _{TWOROWS}		7.1		7.9		11.3	ns		
t _{LEPERIPH}		7.0		7.6		9.0	ns		
t _{LABCARRY}		0.1		0.1		0.2	ns		
t _{LABCASC}		0.9		1.0		1.4	ns		

Table 64. EPF10K200E External Timing Parameters Notes (1), (2)											
Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		d Grade	Unit				
	Min	Max	Min	Max	Min	Max					
t _{DRR}		10.0		12.0		16.0	ns				
t _{INSU}	2.8		3.4		4.4		ns				
t _{INH}	0.0		0.0		0.0		ns				
t _{OUTCO}	2.0	4.5	2.0	5.3	2.0	7.8	ns				
t _{PCISU}	3.0		6.2		-		ns				
t _{PCIH}	0.0		0.0		-		ns				
t _{PCICO}	2.0	6.0	2.0	8.9	-	-	ns				

Table 65. EPF10K200E External Bidirectional Timing Parameters Notes (1), (2)											
Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		d Grade	Unit				
	Min	Max	Min	Max	Min	Max					
t _{INSUBIDIR}	3.0		4.0		5.5		ns				
t _{INHBIDIR}	0.0		0.0		0.0		ns				
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.3	2.0	7.8	ns				
t _{XZBIDIR}		8.1		9.5		13.0	ns				
t _{ZXBIDIR}		8.1		9.5		13.0	ns				

Notes to tables:

- (1) All timing parameters are described in Tables 24 through 30 in this data sheet.
- (2) These parameters are specified by characterization.

Tables 66 through 79 show EPF10K50S and EPF10K200S device external timing parameters.

Table 66. EPF10K50S Device LE Timing Microparameters (Part 1 of 2) Note (1)											
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit				
	Min	Max	Min	Max	Min	Max					
t_{LUT}		0.6		0.8		1.1	ns				
t _{CLUT}		0.5		0.6		0.8	ns				
t _{RLUT}		0.6		0.7		0.9	ns				
t _{PACKED}		0.2		0.3		0.4	ns				
t_{EN}		0.6		0.7		0.9	ns				
t _{CICO}		0.1		0.1		0.1	ns				
t _{CGEN}		0.4		0.5		0.6	ns				

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.4		3.2	ns
t _{EABDATA2}		0.4		0.6		0.8	ns
t _{EABWE1}		1.0		1.4		1.9	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0.0		0.0		0.0	
t _{EABRE2}		0.4		0.6		0.8	
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		1.1		1.5	ns
t _{EABBYPASS}		0.0		0.0		0.0	ns
t _{EABSU}	0.7		1.0		1.3		ns
t _{EABH}	0.4		0.6		0.8		ns
t _{EABCLR}	0.8		1.1		1.5		
t_{AA}		2.0		2.8		3.8	ns
t_{WP}	2.0		2.8		3.8		ns
t_{RP}	1.0		1.4		1.9		
t _{WDSU}	0.5		0.7		0.9		ns
t_{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.0		1.4		1.9		ns
t _{WAH}	1.5		2.1		2.9		ns
t _{RASU}	1.5		2.1		2.8		
t _{RAH}	0.1		0.1		0.2		
t_{WO}		2.1		2.9		4.0	ns
t_{DD}		2.1		2.9		4.0	ns
t _{EABOUT}		0.0		0.0		0.0	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	1.5		2.0		2.5		ns

Table 73. EPF10I	K200S Devic	e Internal &	External Tii	ming Parame	eters N	ote (1)	
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t_{LUT}		0.7		0.8		1.2	ns
t _{CLUT}		0.4		0.5		0.6	ns
t_{RLUT}		0.5		0.7		0.9	ns
t _{PACKED}		0.4		0.5		0.7	ns
t_{EN}		0.6		0.5		0.6	ns
t_{CICO}		0.1		0.2		0.3	ns
t _{CGEN}		0.3		0.4		0.6	ns
t _{CGENR}		0.1		0.2		0.3	ns
t_{CASC}		0.7		0.8		1.2	ns
$t_{\mathbb{C}}$		0.5		0.6		0.8	ns
$t_{\rm CO}$		0.5		0.6		0.8	ns
t _{COMB}		0.3		0.6		0.8	ns
t_{SU}	0.4		0.6		0.7		ns
t _H	1.0		1.1		1.5		ns
t _{PRE}		0.4		0.6		0.8	ns
t_{CLR}		0.5		0.6		0.8	ns
t _{CH}	2.0		2.5		3.0		ns
t_{CL}	2.0		2.5		3.0		ns

Table 74. EPF10K200S Device IOE Timing Microparameters (Part 1 of 2) Note (1)									
Symbol	-1 Spee	ed Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t_{IOD}		1.8		1.9		2.6	ns		
t _{IOC}		0.3		0.3		0.5	ns		
t _{IOCO}		1.7		1.9		2.6	ns		
t _{IOCOMB}		0.5		0.6		0.8	ns		
t _{IOSU}	0.8		0.9		1.2		ns		
t _{IOH}	0.4		0.8		1.1		ns		
t _{IOCLR}		0.2		0.2		0.3	ns		
t _{OD1}		1.3		0.7		0.9	ns		
t _{OD2}		0.8		0.2		0.4	ns		
t _{OD3}		2.9		3.0		3.9	ns		
t_{XZ}		5.0		5.3		7.1	ns		
t _{ZX1}		5.0		5.3		7.1	ns		

Table 76. EPF10K200S Device EAB Internal Timing Macroparameters Note (1)									
Symbol	-1 Speed Grade		-2 Spee	ed Grade	-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{EABAA}		3.9		6.4		8.4	ns		
t _{EABRCOMB}	3.9		6.4		8.4		ns		
t _{EABRCREG}	3.6		5.7		7.6		ns		
t _{EABWP}	2.1		4.0		5.3		ns		
t _{EABWCOMB}	4.8		8.1		10.7		ns		
t _{EABWCREG}	5.4		8.0		10.6		ns		
t _{EABDD}		3.8		5.1		6.7	ns		
t _{EABDATA} CO		0.8		1.0		1.3	ns		
t _{EABDATASU}	1.1		1.6		2.1		ns		
t _{EABDATAH}	0.0		0.0		0.0		ns		
t _{EABWESU}	0.7		1.1		1.5		ns		
t _{EABWEH}	0.4		0.5		0.6		ns		
t _{EABWDSU}	1.2		1.8		2.4		ns		
t _{EABWDH}	0.0		0.0		0.0		ns		
t _{EABWASU}	1.9		3.6		4.7		ns		
t _{EABWAH}	0.8		0.5		0.7		ns		
t _{EABWO}		3.1		4.4		5.8	ns		

Table 77. EPF10K200S Device Interconnect Timing Microparameters (Part 1 of 2) Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{DIN2IOE}		4.4		4.8		5.5	ns		
t _{DIN2LE}		0.6		0.6		0.9	ns		
t _{DIN2DATA}		1.8		2.1		2.8	ns		
t _{DCLK2IOE}		1.7		2.0		2.8	ns		
t _{DCLK2LE}		0.6		0.6		0.9	ns		
t _{SAMELAB}		0.1		0.1		0.2	ns		
t _{SAMEROW}		3.0		4.6		5.7	ns		
t _{SAME} COLUMN		3.5		4.9		6.4	ns		
t _{DIFFROW}		6.5		9.5		12.1	ns		
t _{TWOROWS}		9.5		14.1		17.8	ns		
t _{LEPERIPH}		5.5		6.2		7.2	ns		
t _{LABCARRY}		0.3		0.1		0.2	ns		