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traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
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FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
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offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Note to tables:
(1) The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum 

system gates.
(2) New EPF10K100B designs should use EPF10K100E devices.

...and More 
Features

– Fabricated on an advanced process and operate with a 2.5-V 
internal supply voltage

– In-circuit reconfigurability (ICR) via external configuration 
devices, intelligent controller, or JTAG port

– ClockLockTM and ClockBoostTM options for reduced clock 
delay/skew and clock multiplication

– Built-in low-skew clock distribution trees
– 100% functional testing of all devices; test vectors or scan chains 

are not required
– Pull-up on I/O pins before and during configuration

■ Flexible interconnect
– FastTrack® Interconnect continuous routing structure for fast, 

predictable interconnect delays
– Dedicated carry chain that implements arithmetic functions such 

as fast adders, counters, and comparators (automatically used by 
software tools and megafunctions)

– Dedicated cascade chain that implements high-speed, 
high-fan-in logic functions (automatically used by software tools 
and megafunctions)

– Tri-state emulation that implements internal tri-state buses
– Up to six global clock signals and four global clear signals

■ Powerful I/O pins
– Individual tri-state output enable control for each pin
– Open-drain option on each I/O pin
– Programmable output slew-rate control to reduce switching 

noise
– Clamp to VCCIO user-selectable on a pin-by-pin basis
– Supports hot-socketing

Table 2. FLEX 10KE Device Features

Feature EPF10K100E (2) EPF10K130E EPF10K200E
EPF10K200S

Typical gates (1) 100,000 130,000 200,000

Maximum system gates 257,000 342,000 513,000

Logic elements (LEs) 4,992 6,656 9,984

EABs 12 16 24

Total RAM bits 49,152 65,536 98,304

Maximum user I/O pins 338 413 470
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Functional 
Description

Each FLEX 10KE device contains an enhanced embedded array to 
implement memory and specialized logic functions, and a logic array to 
implement general logic.

The embedded array consists of a series of EABs. When implementing 
memory functions, each EAB provides 4,096 bits, which can be used to 
create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. 
When implementing logic, each EAB can contribute 100 to 600 gates 
towards complex logic functions, such as multipliers, microcontrollers, 
state machines, and DSP functions. EABs can be used independently, or 
multiple EABs can be combined to implement larger functions.

The logic array consists of logic array blocks (LABs). Each LAB contains 
eight LEs and a local interconnect. An LE consists of a four-input look-up 
table (LUT), a programmable flipflop, and dedicated signal paths for carry 
and cascade functions. The eight LEs can be used to create medium-sized 
blocks of logic—such as 8-bit counters, address decoders, or state 
machines—or combined across LABs to create larger logic blocks. Each 
LAB represents about 96 usable gates of logic.

Signal interconnections within FLEX 10KE devices (as well as to and from 
device pins) are provided by the FastTrack Interconnect routing structure, 
which is a series of fast, continuous row and column channels that run the 
entire length and width of the device. 

Each I/O pin is fed by an I/O element (IOE) located at the end of each row 
and column of the FastTrack Interconnect routing structure. Each IOE 
contains a bidirectional I/O buffer and a flipflop that can be used as either 
an output or input register to feed input, output, or bidirectional signals. 
When used with a dedicated clock pin, these registers provide exceptional 
performance. As inputs, they provide setup times as low as 0.9 ns and 
hold times of 0 ns. As outputs, these registers provide clock-to-output 
times as low as 3.0 ns. IOEs provide a variety of features, such as JTAG 
BST support, slew-rate control, tri-state buffers, and open-drain outputs. 
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The EAB can also be used for bidirectional, dual-port memory 
applications where two ports read or write simultaneously. To implement 
this type of dual-port memory, two EABs are used to support two 
simultaneous read or writes.

Alternatively, one clock and clock enable can be used to control the input 
registers of the EAB, while a different clock and clock enable control the 
output registers (see Figure 2).

Figure 2. FLEX 10KE Device in Dual-Port RAM Mode       Notes (1)

Notes:
(1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
(2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, and 

EPF10K200E devices have 104 EAB local interconnect channels. 

Column Interconnect

EAB Local
Interconnect (2)

Dedicated Clocks

2 4

D

ENA

Q

D

ENA

Q

D

ENA

Q

D

ENA

Q

D

ENA

Q

data[ ]

 
rdaddress[ ]

 wraddress[ ]

 RAM/ROM
256 × 16
512 × 8

1,024 × 4
2,048 × 2

Data In

Read Address

Write Address

Read Enable

Write Enable

Data Out

4, 8, 16, 32

4, 8, 16, 32

outclocken

inclocken

inclock

outclock

D

ENA

Q

Write
Pulse

Generator

rden

wren

Multiplexers allow read
address and read
enable registers to be
clocked by inclock or
outclock signals.

Row Interconnect

4, 8

Dedicated Inputs &
Global Signals
Altera Corporation 11 



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Figure 4. FLEX 10KE Device in Single-Port RAM Mode 

Note:
(1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 88 EAB local interconnect channels; EPF10K100E, 

EPF10K130E, EPF10K200E, and EPF10K200S devices have 104 EAB local interconnect channels. 

EABs can be used to implement synchronous RAM, which is easier to use 
than asynchronous RAM. A circuit using asynchronous RAM must 
generate the RAM write enable signal, while ensuring that its data and 
address signals meet setup and hold time specifications relative to the 
write enable signal. In contrast, the EAB’s synchronous RAM generates its 
own write enable signal and is self-timed with respect to the input or write 
clock. A circuit using the EAB’s self-timed RAM must only meet the setup 
and hold time specifications of the global clock.
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When used as RAM, each EAB can be configured in any of the following 
sizes: 256 × 16, 512 × 8, 1,024 × 4, or 2,048 × 2 (see Figure 5). 

Figure 5. FLEX 10KE EAB Memory Configurations

Larger blocks of RAM are created by combining multiple EABs. For 
example, two 256 × 16 RAM blocks can be combined to form a 256 × 32  
block; two 512 × 8 RAM blocks can be combined to form a 512 × 16 block 
(see Figure 6).

Figure 6. Examples of Combining FLEX 10KE EABs

If necessary, all EABs in a device can be cascaded to form a single RAM 
block. EABs can be cascaded to form RAM blocks of up to 2,048 words 
without impacting timing. The Altera software automatically combines 
EABs to meet a designer’s RAM specifications.
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EABs provide flexible options for driving and controlling clock signals. 
Different clocks and clock enables can be used for reading and writing to 
the EAB. Registers can be independently inserted on the data input, EAB 
output, write address, write enable signals, read address, and read enable 
signals. The global signals and the EAB local interconnect can drive write 
enable, read enable, and clock enable signals. The global signals, 
dedicated clock pins, and EAB local interconnect can drive the EAB clock 
signals. Because the LEs drive the EAB local interconnect, the LEs can 
control write enable, read enable, clear, clock, and clock enable signals. 

An EAB is fed by a row interconnect and can drive out to row and column 
interconnects. Each EAB output can drive up to two row channels and up 
to two column channels; the unused row channel can be driven by other 
LEs. This feature increases the routing resources available for EAB 
outputs (see Figures 2 and 4). The column interconnect, which is adjacent 
to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure to the FLEX 10KE architecture, facilitating 
efficient routing with optimum device utilization and high performance 
(see Figure 7). 
Altera Corporation 15 
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Each LAB provides four control signals with programmable inversion 
that can be used in all eight LEs. Two of these signals can be used as clocks, 
the other two can be used for clear/preset control. The LAB clocks can be 
driven by the dedicated clock input pins, global signals, I/O signals, or 
internal signals via the LAB local interconnect. The LAB preset and clear 
control signals can be driven by the global signals, I/O signals, or internal 
signals via the LAB local interconnect. The global control signals are 
typically used for global clock, clear, or preset signals because they 
provide asynchronous control with very low skew across the device. If 
logic is required on a control signal, it can be generated in one or more LE 
in any LAB and driven into the local interconnect of the target LAB. In 
addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the FLEX 10KE architecture, has a 
compact size that provides efficient logic utilization. Each LE contains a 
four-input LUT, which is a function generator that can quickly compute 
any function of four variables. In addition, each LE contains a 
programmable flipflop with a synchronous clock enable, a carry chain, 
and a cascade chain. Each LE drives both the local and the FastTrack 
Interconnect routing structure (see Figure 8).

Figure 8. FLEX 10KE Logic Element
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The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock, clear, and preset control signals on the flipflop can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the flipflop is bypassed and the output 
of the LUT drives the output of the LE. 

The LE has two outputs that drive the interconnect: one drives the local 
interconnect and the other drives either the row or column FastTrack 
Interconnect routing structure. The two outputs can be controlled 
independently. For example, the LUT can drive one output while the 
register drives the other output. This feature, called register packing, can 
improve LE utilization because the register and the LUT can be used for 
unrelated functions.

The FLEX 10KE architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports 
high-speed counters and adders and the cascade chain implements 
wide-input functions with minimum delay. Carry and cascade chains 
connect all LEs in a LAB as well as all LABs in the same row. Intensive use 
of carry and cascade chains can reduce routing flexibility. Therefore, the 
use of these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
FLEX 10KE architecture to implement high-speed counters, adders, and 
comparators of arbitrary width efficiently. Carry chain logic can be 
created automatically by the Altera Compiler during design processing, 
or manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EPF10K50E device, the carry chain stops at the eighteenth LAB and 
a new one begins at the nineteenth LAB.
18 Altera Corporation



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Cascade Chain

With the cascade chain, the FLEX 10KE architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE 
provides four more inputs to the effective width of a function. Cascade 
chain logic can be created automatically by the Altera Compiler during 
design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EPF10K50E device, the 
cascade chain stops at the eighteenth LAB and a new one begins at the 
nineteenth LAB). This break is due to the EAB’s placement in the middle 
of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to 
form functions with a wide fan-in. These examples show functions of 
4n variables implemented with n LEs. The LE delay is 0.9 ns; the cascade 
chain delay is 0.6 ns. With the cascade chain, 2.7 ns are needed to decode 
a 16-bit address.

Figure 10. FLEX 10KE Cascade Chain Operation
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In addition to the six clear and preset modes, FLEX 10KE devices provide 
a chip-wide reset pin that can reset all registers in the device. Use of this 
feature is set during design entry. In any of the clear and preset modes, the 
chip-wide reset overrides all other signals. Registers with asynchronous 
presets may be preset when the chip-wide reset is asserted. Inversion can 
be used to implement the asynchronous preset. Figure 12 shows examples 
of how to setup the preset and clear inputs for the desired functionality.

Figure 12. FLEX 10KE LE Clear & Preset Modes
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Figure 14. FLEX 10KE Interconnect Resources
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When dedicated inputs drive non-inverted and inverted peripheral clears, 
clock enables, and output enables, two signals on the peripheral control 
bus will be used.

Tables 8 and 9 list the sources for each peripheral control signal, and show 
how the output enable, clock enable, clock, and clear signals share 
12 peripheral control signals. The tables also show the rows that can drive 
global signals.

Table 8. Peripheral Bus Sources for EPF10K30E, EPF10K50E & EPF10K50S Devices

Peripheral 
Control Signal

EPF10K30E EPF10K50E
EPF10K50S

OE0 Row A Row A

OE1 Row B Row B

OE2 Row C Row D

OE3 Row D Row F

OE4 Row E Row H

OE5 Row F Row J

CLKENA0/CLK0/GLOBAL0 Row A Row A

CLKENA1/OE6/GLOBAL1 Row B Row C

CLKENA2/CLR0 Row C Row E

CLKENA3/OE7/GLOBAL2 Row D Row G

CLKENA4/CLR1 Row E Row I

CLKENA5/CLK1/GLOBAL3 Row F Row J
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Figure 20 shows the timing requirements for the JTAG signals.

Figure 20. FLEX 10KE JTAG Waveforms

Table 18 shows the timing parameters and values for FLEX 10KE devices.

Table 18. FLEX 10KE JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time  50 ns

tJCL TCK clock low time  50 ns

tJPSU JTAG port setup time  20 ns

tJPH JTAG port hold time  45 ns

tJPCO JTAG port clock to output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock to output 35 ns

tJSZX Update register high impedance to valid output 35 ns

tJSXZ Update register valid output to high impedance 35 ns
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Table 28. Interconnect Timing Microparameters Note (1)

Symbol Parameter Conditions

tDIN2IOE Delay from dedicated input pin to IOE control input (7)

tDIN2LE Delay from dedicated input pin to LE or EAB control input (7)

tDCLK2IOE Delay from dedicated clock pin to IOE clock (7)

tDCLK2LE Delay from dedicated clock pin to LE or EAB clock (7)

tDIN2DATA Delay from dedicated input or clock to LE or EAB data (7)

tSAMELAB Routing delay for an LE driving another LE in the same LAB

tSAMEROW Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the 
same row

(7)

tSAMECOLUMN Routing delay for an LE driving an IOE in the same column (7)

tDIFFROW Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different 
row

(7)

tTWOROWS Routing delay for a row IOE or EAB driving an LE or EAB in a different row (7)

tLEPERIPH Routing delay for an LE driving a control signal of an IOE via the peripheral 
control bus

(7)

tLABCARRY Routing delay for the carry-out signal of an LE driving the carry-in signal of a 
different LE in a different LAB

tLABCASC Routing delay for the cascade-out signal of an LE driving the cascade-in 
signal of a different LE in a different LAB

Table 29. External Timing Parameters

Symbol Parameter Conditions

tDRR Register-to-register delay via four LEs, three row interconnects, and four local 
interconnects

(8)

tINSU Setup time with global clock at IOE register (9)

tINH Hold time with global clock at IOE register (9)

tOUTCO Clock-to-output delay with global clock at IOE register (9)

tPCISU Setup time with global clock for registers used in PCI designs (9),(10)

tPCIH Hold time with global clock for registers used in PCI designs (9),(10)

tPCICO Clock-to-output delay with global clock for registers used in PCI designs (9),(10)
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Table 35. EPF10K30E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 1.8 2.4 2.9 ns

tDIN2LE 1.5 1.8 2.4 ns

tDIN2DATA 1.5 1.8 2.2 ns

tDCLK2IOE 2.2 2.6 3.0 ns

tDCLK2LE 1.5 1.8 2.4 ns

tSAMELAB 0.1 0.2 0.3 ns

tSAMEROW 2.0 2.4 2.7 ns

tSAMECOLUMN 0.7 1.0 0.8 ns

tDIFFROW 2.7 3.4 3.5 ns

tTWOROWS 4.7 5.8 6.2 ns

tLEPERIPH 2.7 3.4 3.8 ns

tLABCARRY 0.3 0.4 0.5 ns

tLABCASC 0.8 0.8 1.1 ns

Table 36. EPF10K30E External Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (3) 2.1 2.5 3.9 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0  4.9 2.0 5.9 2.0 7.6 ns

tINSU (4) 1.1 1.5 – ns

tINH (4) 0.0 0.0 – ns

tOUTCO (4) 0.5 3.9 0.5 4.9 – – ns

tPCISU 3.0 4.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 7.5 – – ns
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Table 40. EPF10K50E Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.7 2.0 2.7 ns

tEABDATA1 0.6 0.7 0.9 ns

tEABWE1 1.1 1.3 1.8 ns

tEABWE2 0.4 0.4 0.6 ns

tEABRE1 0.8 0.9 1.2 ns

tEABRE2 0.4 0.4 0.6 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.3 0.5 ns

tEABBYPASS 0.5 0.6 0.8 ns

tEABSU 0.9 1.0 1.4 ns

tEABH 0.4 0.4 0.6 ns

tEABCLR 0.3 0.3 0.5 ns

tAA 3.2 3.8 5.1 ns

tWP 2.5 2.9 3.9 ns

tRP 0.9 1.1 1.5 ns

tWDSU 0.9 1.0 1.4 ns

tWDH 0.1 0.1 0.2 ns

tWASU 1.7 2.0 2.7 ns

tWAH 1.8 2.1 2.9 ns

tRASU 3.1 3.7 5.0 ns

tRAH 0.2 0.2 0.3 ns

tWO 2.5 2.9 3.9 ns

tDD 2.5 2.9 3.9 ns

tEABOUT 0.5 0.6 0.8 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.5 2.9 3.9 ns
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tCGENR 0.1 0.1 0.1 ns

tCASC 0.5 0.8 1.0 ns

tC 0.5 0.6 0.8 ns

tCO 0.6 0.6 0.7 ns

tCOMB 0.3 0.4 0.5 ns

tSU 0.5 0.6 0.7 ns

tH 0.5 0.6 0.8 ns

tPRE 0.4 0.5 0.7 ns

tCLR 0.8 1.0 1.2 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 67. EPF10K50S Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 1.3 1.3 1.9 ns

tIOC 0.3 0.4 0.4 ns

tIOCO 1.7 2.1 2.6 ns

tIOCOMB 0.5 0.6 0.8 ns

tIOSU 0.8 1.0 1.3 ns

tIOH 0.4 0.5 0.6 ns

tIOCLR 0.2 0.2 0.4 ns

tOD1 1.2 1.2 1.9 ns

tOD2 0.7 0.8 1.7 ns

tOD3 2.7 3.0 4.3 ns

tXZ 4.7 5.7 7.5 ns

tZX1 4.7 5.7 7.5 ns

tZX2 4.2 5.3 7.3 ns

tZX3 6.2 7.5 9.9 ns

tINREG 3.5 4.2 5.6 ns

tIOFD 1.1 1.3 1.8 ns

tINCOMB 1.1 1.3 1.8 ns

Table 66. EPF10K50S Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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tZX2 4.5 4.8 6.6 ns

tZX3 6.6 7.6 10.1 ns

tINREG 3.7 5.7 7.7 ns

tIOFD 1.8 3.4 4.0 ns

tINCOMB 1.8 3.4 4.0 ns

Table 75. EPF10K200S Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.8 2.4 3.2 ns

tEABDATA1 0.4 0.5 0.6 ns

tEABWE1 1.1 1.7 2.3 ns

tEABWE2 0.0 0.0 0.0 ns

tEABRE1 0 0 0 ns

tEABRE2 0.4 0.5 0.6 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.8 0.9 1.2 ns

tEABBYPASS 0.0 0.1 0.1 ns

tEABSU 0.7 1.1 1.5 ns

tEABH 0.4 0.5 0.6 ns

tEABCLR 0.8 0.9 1.2 ns

tAA 2.1 3.7 4.9 ns

tWP 2.1 4.0 5.3 ns

tRP 1.1 1.1 1.5 ns

tWDSU 0.5 1.1 1.5 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.1 1.6 2.1 ns

tWAH 1.6 2.5 3.3 ns

tRASU 1.6 2.6 3.5 ns

tRAH 0.1 0.1 0.2 ns

tWO 2.0 2.4 3.2 ns

tDD 2.0 2.4 3.2 ns

tEABOUT 0.0 0.1 0.1 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.1 2.8 3.8 ns

Table 74. EPF10K200S Device IOE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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To better reflect actual designs, the power model (and the constant K in 
the power calculation equations) for continuous interconnect FLEX 
devices assumes that LEs drive FastTrack Interconnect channels. In 
contrast, the power model of segmented FPGAs assumes that all LEs drive 
only one short interconnect segment. This assumption may lead to 
inaccurate results when compared to measured power consumption for 
actual designs in segmented FPGAs.

Figure 31 shows the relationship between the current and operating 
frequency of FLEX 10KE devices. 

Figure 31. FLEX 10KE ICCACTIVE vs. Operating Frequency (Part 1 of 2)
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Device 
Pin-Outs 

See the Altera web site (http://www.altera.com) or the Altera Digital 
Library for pin-out information.

Revision 
History

The information contained in the FLEX 10KE Embedded Programmable Logic 
Data Sheet version 2.5 supersedes information published in previous 
versions.

Version 2.5

The following changes were made to the FLEX 10KE Embedded 
Programmable Logic Data Sheet version 2.5:

■ Note (1) added to Figure 23.
■ Text added to “I/O Element” section on page 34.
■ Updated Table 22.

Version 2.4

The following changes were made to the FLEX 10KE Embedded 
Programmable Logic Data Sheet version 2.4: updated text on page 34 and 
page 63.
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