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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Note to tables:
(1) The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum 

system gates.
(2) New EPF10K100B designs should use EPF10K100E devices.

...and More 
Features

– Fabricated on an advanced process and operate with a 2.5-V 
internal supply voltage

– In-circuit reconfigurability (ICR) via external configuration 
devices, intelligent controller, or JTAG port

– ClockLockTM and ClockBoostTM options for reduced clock 
delay/skew and clock multiplication

– Built-in low-skew clock distribution trees
– 100% functional testing of all devices; test vectors or scan chains 

are not required
– Pull-up on I/O pins before and during configuration

■ Flexible interconnect
– FastTrack® Interconnect continuous routing structure for fast, 

predictable interconnect delays
– Dedicated carry chain that implements arithmetic functions such 

as fast adders, counters, and comparators (automatically used by 
software tools and megafunctions)

– Dedicated cascade chain that implements high-speed, 
high-fan-in logic functions (automatically used by software tools 
and megafunctions)

– Tri-state emulation that implements internal tri-state buses
– Up to six global clock signals and four global clear signals

■ Powerful I/O pins
– Individual tri-state output enable control for each pin
– Open-drain option on each I/O pin
– Programmable output slew-rate control to reduce switching 

noise
– Clamp to VCCIO user-selectable on a pin-by-pin basis
– Supports hot-socketing

Table 2. FLEX 10KE Device Features

Feature EPF10K100E (2) EPF10K130E EPF10K200E
EPF10K200S

Typical gates (1) 100,000 130,000 200,000

Maximum system gates 257,000 342,000 513,000

Logic elements (LEs) 4,992 6,656 9,984

EABs 12 16 24

Total RAM bits 49,152 65,536 98,304

Maximum user I/O pins 338 413 470
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f For more information on FLEX device configuration, see the following 
documents:

■ Configuration Devices for APEX & FLEX Devices Data Sheet
■ BitBlaster Serial Download Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ MasterBlaster Download Cable Data Sheet
■ Application Note 116 (Configuring APEX 20K, FLEX 10K, & FLEX 6000 

Devices)

FLEX 10KE devices are supported by the Altera development systems, 
which are integrated packages that offer schematic, text (including 
AHDL), and waveform design entry, compilation and logic synthesis, full 
simulation and worst-case timing analysis, and device configuration. The 
Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, 
and other interfaces for additional design entry and simulation support 
from other industry-standard PC- and UNIX workstation-based EDA 
tools. 

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains, which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development system includes DesignWare 
functions that are optimized for the FLEX 10KE architecture. 

The Altera development system runs on Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800.

f See the MAX+PLUS II Programmable Logic Development System & Software 
Data Sheet and the Quartus Programmable Logic Development System & 
Software Data Sheet for more information.
Altera Corporation 7 
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Figure 1 shows a block diagram of the FLEX 10KE architecture. Each 
group of LEs is combined into an LAB; groups of LABs are arranged into 
rows and columns. Each row also contains a single EAB. The LABs and 
EABs are interconnected by the FastTrack Interconnect routing structure. 
IOEs are located at the end of each row and column of the FastTrack 
Interconnect routing structure.

Figure 1. FLEX 10KE Device Block Diagram

FLEX 10KE devices provide six dedicated inputs that drive the flipflops’ 
control inputs and ensure the efficient distribution of high-speed, low-
skew (less than 1.5 ns) control signals. These signals use dedicated routing 
channels that provide shorter delays and lower skews than the FastTrack 
Interconnect routing structure. Four of the dedicated inputs drive four 
global signals. These four global signals can also be driven by internal 
logic, providing an ideal solution for a clock divider or an internally 
generated asynchronous clear signal that clears many registers in the 
device. 
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The EAB can also use Altera megafunctions to implement dual-port RAM 
applications where both ports can read or write, as shown in Figure 3.

Figure 3. FLEX 10KE EAB in Dual-Port RAM Mode

The FLEX 10KE EAB can be used in a single-port mode, which is useful for 
backward-compatibility with FLEX 10K designs (see Figure 4).

Port A Port B

address_a[] address_b[]

data_a[] data_b[]

we_a we_b

clkena_a clkena_b

Clock A Clock B
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EABs provide flexible options for driving and controlling clock signals. 
Different clocks and clock enables can be used for reading and writing to 
the EAB. Registers can be independently inserted on the data input, EAB 
output, write address, write enable signals, read address, and read enable 
signals. The global signals and the EAB local interconnect can drive write 
enable, read enable, and clock enable signals. The global signals, 
dedicated clock pins, and EAB local interconnect can drive the EAB clock 
signals. Because the LEs drive the EAB local interconnect, the LEs can 
control write enable, read enable, clear, clock, and clock enable signals. 

An EAB is fed by a row interconnect and can drive out to row and column 
interconnects. Each EAB output can drive up to two row channels and up 
to two column channels; the unused row channel can be driven by other 
LEs. This feature increases the routing resources available for EAB 
outputs (see Figures 2 and 4). The column interconnect, which is adjacent 
to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure to the FLEX 10KE architecture, facilitating 
efficient routing with optimum device utilization and high performance 
(see Figure 7). 
Altera Corporation 15 



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 

Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder)
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LE Operating Modes

The FLEX 10KE LE can operate in the following four modes:

■ Normal mode
■ Arithmetic mode
■ Up/down counter mode
■ Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven 
available inputs to the LE—the four data inputs from the LAB local 
interconnect, the feedback from the programmable register, and the 
carry-in and cascade-in from the previous LE—are directed to different 
destinations to implement the desired logic function. Three inputs to the 
LE provide clock, clear, and preset control for the register. The Altera 
software, in conjunction with parameterized functions such as LPM and 
DesignWare functions, automatically chooses the appropriate mode for 
common functions such as counters, adders, and multipliers. If required, 
the designer can also create special-purpose functions that use a specific 
LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all 
four modes. The Altera software can set DATA1 to enable the register 
synchronously, providing easy implementation of fully synchronous 
designs.
Altera Corporation 21 
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Altera Compiler automatically selects 
the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function; the other generates a carry output. As 
shown in Figure 11 on page 22, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Use 2 three-input LUTs: one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
Altera Corporation 23 
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Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but 
supports a synchronous clear instead of the up/down control. The clear 
function is substituted for the cascade-in signal in the up/down counter 
mode. Use 2 three-input LUTs: one generates the counter data, and the 
other generates the fast carry bit. Synchronous loading is provided by a 
2-to-1 multiplexer. The output of this multiplexer is AND ed with a 
synchronous clear signal. 

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer. 

Clear & Preset Logic Control

Logic for the programmable register’s clear and preset functions is 
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The 
clear and preset control structure of the LE asynchronously loads signals 
into a register. Either LABCTRL1 or LABCTRL2 can control the 
asynchronous clear. Alternatively, the register can be set up so that 
LABCTRL1 implements an asynchronous load. The data to be loaded is 
driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the 
register.

During compilation, the Altera Compiler automatically selects the best 
control signal implementation. Because the clear and preset functions are 
active-low, the Compiler automatically assigns a logic high to an unused 
clear or preset. 

The clear and preset logic is implemented in one of the following six 
modes chosen during design entry: 

■ Asynchronous clear
■ Asynchronous preset
■ Asynchronous clear and preset
■ Asynchronous load with clear
■ Asynchronous load with preset
■ Asynchronous load without clear or preset
24 Altera Corporation
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FastTrack Interconnect Routing Structure

In the FLEX 10KE architecture, connections between LEs, EABs, and 
device I/O pins are provided by the FastTrack Interconnect routing 
structure, which is a series of continuous horizontal and vertical routing 
channels that traverses the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the 
segmented routing in FPGAs requires switch matrices to connect a 
variable number of routing paths, increasing the delays between logic 
resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column 
interconnect channels that span the entire device. Each row of LABs is 
served by a dedicated row interconnect. The row interconnect can drive 
I/O pins and feed other LABs in the row. The column interconnect routes 
signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row 
signal is buffered at every LAB or EAB to reduce the effect of fan-out on 
delay. A row channel can be driven by an LE or by one of three column 
channels. These four signals feed dual 4-to-1 multiplexers that connect to 
two specific row channels. These multiplexers, which are connected to 
each LE, allow column channels to drive row channels even when all eight 
LEs in a LAB drive the row interconnect. 

Each column of LABs or EABs is served by a dedicated column 
interconnect. The column interconnect that serves the EABs has twice as 
many channels as other column interconnects. The column interconnect 
can then drive I/O pins or another row’s interconnect to route the signals 
to other LABs or EABs in the device. A signal from the column 
interconnect, which can be either the output of a LE or an input from an 
I/O pin, must be routed to the row interconnect before it can enter a LAB 
or EAB. Each row channel that is driven by an IOE or EAB can drive one 
specific column channel.

Access to row and column channels can be switched between LEs in 
adjacent pairs of LABs. For example, a LE in one LAB can drive the row 
and column channels normally driven by a particular LE in the adjacent 
LAB in the same row, and vice versa. This flexibility enables routing 
resources to be used more efficiently (see Figure 13).
Altera Corporation 27 
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On all FLEX 10KE devices (except EPF10K50E and EPF10K200E devices), 
the input path from the I/O pad to the FastTrack Interconnect has a 
programmable delay element that can be used to guarantee a zero hold 
time. EPF10K50S and EPF10K200S devices also support this feature. 
Depending on the placement of the IOE relative to what it is driving, the 
designer may choose to turn on the programmable delay to ensure a zero 
hold time or turn it off to minimize setup time. This feature is used to 
reduce setup time for complex pin-to-register paths (e.g., PCI designs).

Each IOE selects the clock, clear, clock enable, and output enable controls 
from a network of I/O control signals called the peripheral control bus. 
The peripheral control bus uses high-speed drivers to minimize signal 
skew across the device and provides up to 12 peripheral control signals 
that can be allocated as follows:

■ Up to eight output enable signals
■ Up to six clock enable signals
■ Up to two clock signals
■ Up to two clear signals

If more than six clock enable or eight output enable signals are required, 
each IOE on the device can be controlled by clock enable and output 
enable signals driven by specific LEs. In addition to the two clock signals 
available on the peripheral control bus, each IOE can use one of two 
dedicated clock pins. Each peripheral control signal can be driven by any 
of the dedicated input pins or the first LE of each LAB in a particular row. 
In addition, a LE in a different row can drive a column interconnect, which 
causes a row interconnect to drive the peripheral control signal. The chip-
wide reset signal resets all IOE registers, overriding any other control 
signals.

When a dedicated clock pin drives IOE registers, it can be inverted for all 
IOEs in the device. All IOEs must use the same sense of the clock. For 
example, if any IOE uses the inverted clock, all IOEs must use the inverted 
clock and no IOE can use the non-inverted clock. However, LEs can still 
use the true or complement of the clock on a LAB-by-LAB basis. 

The incoming signal may be inverted at the dedicated clock pin and will 
drive all IOEs. For the true and complement of a clock to be used to drive 
IOEs, drive it into both global clock pins. One global clock pin will supply 
the true, and the other will supply the complement. 

When the true and complement of a dedicated input drives IOE clocks, 
two signals on the peripheral control bus are consumed, one for each 
sense of the clock.
32 Altera Corporation
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IEEE Std. 
1149.1 (JTAG) 
Boundary-Scan 
Support

All FLEX 10KE devices provide JTAG BST circuitry that complies with the 
IEEE Std. 1149.1-1990 specification. FLEX 10KE devices can also be 
configured using the JTAG pins through the BitBlaster or ByteBlasterMV 
download cable, or via hardware that uses the JamTM STAPL 
programming and test language. JTAG boundary-scan testing can be 
performed before or after configuration, but not during configuration. 
FLEX 10KE devices support the JTAG instructions shown in Table 15.

The instruction register length of FLEX 10KE devices is 10 bits. The 
USERCODE register length in FLEX 10KE devices is 32 bits; 7 bits are 
determined by the user, and 25 bits are pre-determined. Tables 16 and 17 
show the boundary-scan register length and device IDCODE information 
for FLEX 10KE devices.

Table 15. FLEX 10KE JTAG Instructions

JTAG Instruction Description

SAMPLE/PRELOAD Allows a snapshot of signals at the device pins to be captured and examined during 
normal device operation, and permits an initial data pattern to be output at the device 
pins.

EXTEST Allows the external circuitry and board-level interconnections to be tested by forcing a 
test pattern at the output pins and capturing test results at the input pins.

BYPASS Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST 
data to pass synchronously through a selected device to adjacent devices during normal 
device operation.

USERCODE Selects the user electronic signature (USERCODE) register and places it between the 
TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.

IDCODE Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE 
to be serially shifted out of TDO.

ICR Instructions These instructions are used when configuring a FLEX 10KE device via JTAG ports with 
a BitBlaster or ByteBlasterMV download cable, or using a Jam File (.jam) or 
Jam Byte-Code File (.jbc) via an embedded processor.

Table 16. FLEX 10KE Boundary-Scan Register Length

Device Boundary-Scan Register Length

EPF10K30E 690

EPF10K50E
EPF10K50S

798

EPF10K100E 1,050

EPF10K130E 1,308

EPF10K200E
EPF10K200S

1,446
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Generic Testing Each FLEX 10KE device is functionally tested. Complete testing of each 
configurable static random access memory (SRAM) bit and all logic 
functionality ensures 100% yield. AC test measurements for FLEX 10KE 
devices are made under conditions equivalent to those shown in 
Figure 21. Multiple test patterns can be used to configure devices during 
all stages of the production flow.

Figure 21. FLEX 10KE AC Test Conditions

Operating 
Conditions

Tables 19 through 23 provide information on absolute maximum ratings, 
recommended operating conditions, DC operating conditions, and 
capacitance for 2.5-V FLEX 10KE devices.

Test
System

C1 (includes
JIG capacitance)

Device input
rise and fall
times < 3 ns

Device
Output

703 Ω

8.06 kΩ
[481    ]Ω

[481    ]Ω
 

VCCIO
Power supply transients can affect AC
measurements. Simultaneous transitions of 
multiple outputs should be avoided for 
accurate measurement. Threshold tests 
must not be performed under AC 
conditions. Large-amplitude, fast-ground-
current transients normally occur as the 
device outputs discharge the load 
capacitances. When these transients flow 
through the parasitic inductance between 
the device ground pin and the test system 
ground, significant reductions in 
observable noise immunity can result. 
Numbers in brackets are for 2.5-V devices 
or outputs. Numbers without brackets are 
for 3.3-V. devices or outputs.

Table 19. FLEX 10KE 2.5-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage With respect to ground (2) –0.5 3.6 V

VCCIO –0.5 4.6 V

VI DC input voltage –2.0 5.75 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, TQFP, BGA, and FineLine BGA 
packages, under bias

135 ° C

Ceramic PGA packages, under bias 150 ° C
Altera Corporation 47 
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Timing simulation and delay prediction are available with the Altera 
Simulator and Timing Analyzer, or with industry-standard EDA tools. 
The Simulator offers both pre-synthesis functional simulation to evaluate 
logic design accuracy and post-synthesis timing simulation with 0.1-ns 
resolution. The Timing Analyzer provides point-to-point timing delay 
information, setup and hold time analysis, and device-wide performance 
analysis.

Figure 24 shows the overall timing model, which maps the possible paths 
to and from the various elements of the FLEX 10KE device.

Figure 24. FLEX 10KE Device Timing Model

Figures 25 through 28 show the delays that correspond to various paths 
and functions within the LE, IOE, EAB, and bidirectional timing models.
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Figure 26. FLEX 10KE Device IOE Timing Model

Figure 27. FLEX 10KE Device EAB Timing Model
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 38 through 44 show EPF10K50E device internal and external 
timing parameters.  

Table 37. EPF10K30E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (3) 2.8 3.9 5.2 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 3.8 4.9 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 4.9 2.0 5.9 2.0 7.6 ns

tXZBIDIR (3) 6.1 7.5 9.7 ns

tZXBIDIR (3) 6.1 7.5 9.7 ns

tOUTCOBIDIR (4)  0.5 3.9 0.5 4.9 – – ns

tXZBIDIR (4) 5.1  6.5 – ns

tZXBIDIR (4) 5.1  6.5 – ns

Table 38. EPF10K50E Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.6 0.9 1.3 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.7 0.8 1.1 ns

tPACKED 0.4 0.5 0.6 ns

tEN 0.6 0.7 0.9 ns

tCICO 0.2 0.2 0.3 ns

tCGEN 0.5 0.5 0.8 ns

tCGENR 0.2 0.2 0.3 ns

tCASC 0.8 1.0 1.4 ns

tC 0.5 0.6 0.8 ns

tCO 0.7 0.7 0.9 ns

tCOMB 0.5 0.6 0.8 ns

tSU 0.7 0.7 0.8 ns
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external 
timing parameters.  

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 8.5 10.0 13.5 ns

tINSU 2.7 3.2 4.3 ns

tINH 0.0 0.0 0.0 ns

tOUTCO 2.0 4.5 2.0 5.2 2.0 7.3 ns

tPCISU  3.0  4.2 - ns

tPCIH  0.0  0.0 - ns

tPCICO  2.0  6.0  2.0  7.7 -  - ns

Table 44. EPF10K50E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 2.7 3.2 4.3 ns

tINHBIDIR 0.0 0.0 0.0 ns

tOUTCOBIDIR 2.0 4.5 2.0 5.2 2.0 7.3 ns

tXZBIDIR 6.8 7.8 10.1 ns

tZXBIDIR  6.8  7.8 10.1 ns

Table 45. EPF10K100E Device LE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.7 1.0 1.5 ns

tCLUT 0.5 0.7 0.9 ns

tRLUT 0.6 0.8 1.1 ns

tPACKED 0.3 0.4 0.5 ns

tEN 0.2 0.3 0.3 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.5 0.7 ns
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Table 68. EPF10K50S Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.7 2.4 3.2 ns

tEABDATA2 0.4 0.6 0.8 ns

tEABWE1 1.0 1.4 1.9 ns

tEABWE2 0.0 0.0 0.0 ns

tEABRE1 0.0 0.0 0.0

tEABRE2 0.4 0.6 0.8

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.8 1.1 1.5 ns

tEABBYPASS 0.0 0.0 0.0 ns

tEABSU 0.7 1.0 1.3 ns

tEABH 0.4 0.6 0.8 ns

tEABCLR 0.8 1.1 1.5

tAA 2.0 2.8 3.8 ns

tWP 2.0 2.8 3.8 ns

tRP 1.0 1.4 1.9

tWDSU 0.5 0.7 0.9 ns

tWDH 0.1 0.1 0.2 ns

tWASU 1.0 1.4 1.9 ns

tWAH 1.5 2.1 2.9 ns

tRASU 1.5 2.1 2.8

tRAH 0.1 0.1 0.2

tWO 2.1 2.9 4.0 ns

tDD 2.1 2.9 4.0 ns

tEABOUT 0.0 0.0 0.0 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 1.5 2.0 2.5 ns
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30.
(2) This parameter is measured without use of the ClockLock or ClockBoost circuits.
(3) This parameter is measured with use of the ClockLock or ClockBoost circuits

Table 71. EPF10K50S External Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (2) 2.4 2.9 3.9 ns

tINH (2) 0.0 0.0 0.0 ns

tOUTCO (2) 2.0 4.3 2.0  5.2 2.0 7.3 ns

tINSU (3) 2.4 2.9 ns

tINH (3) 0.0 0.0 ns

tOUTCO (3) 0.5 3.3 0.5 4.1 ns

tPCISU  2.4 2.9 – ns

tPCIH  0.0  0.0 – ns

tPCICO  2.0  6.0  2.0 7.7 – – ns

Table 72. EPF10K50S External Bidirectional Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (2) 2.7 3.2 4.3 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tINHBIDIR (3) 0.0 0.0 – ns

tINSUBIDIR (3) 3.7 4.2 – ns

tOUTCOBIDIR (2) 2.0 4.5 2.0 5.2 2.0 7.3 ns

tXZBIDIR (2) 6.8 7.8 10.1 ns

tZXBIDIR (2) 6.8 7.8 10.1 ns

tOUTCOBIDIR (3) 0.5 3.5 0.5 4.2 – –

tXZBIDIR (3) 6.8 8.4 – ns

tZXBIDIR (3) 6.8 8.4 – ns
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Table 73. EPF10K200S Device Internal & External Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.7 0.8 1.2 ns

tCLUT 0.4 0.5 0.6 ns

tRLUT 0.5 0.7 0.9 ns

tPACKED 0.4 0.5 0.7 ns

tEN 0.6 0.5 0.6 ns

tCICO 0.1 0.2 0.3 ns

tCGEN 0.3 0.4 0.6 ns

tCGENR 0.1 0.2 0.3 ns

tCASC 0.7 0.8 1.2 ns

tC 0.5 0.6 0.8 ns

tCO 0.5 0.6 0.8 ns

tCOMB 0.3 0.6 0.8 ns

tSU 0.4 0.6 0.7 ns

tH 1.0 1.1 1.5 ns

tPRE 0.4 0.6 0.8 ns

tCLR 0.5 0.6 0.8 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 74. EPF10K200S Device IOE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 1.8 1.9 2.6 ns

tIOC 0.3 0.3 0.5 ns

tIOCO 1.7 1.9 2.6 ns

tIOCOMB 0.5 0.6 0.8 ns

tIOSU 0.8 0.9 1.2 ns

tIOH 0.4 0.8 1.1 ns

tIOCLR 0.2 0.2 0.3 ns

tOD1 1.3 0.7 0.9 ns

tOD2 0.8 0.2 0.4 ns

tOD3 2.9 3.0 3.9 ns

tXZ 5.0 5.3 7.1 ns

tZX1 5.0 5.3 7.1 ns
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