Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 624 | | Number of Logic Elements/Cells | 4992 | | Total RAM Bits | 49152 | | Number of I/O | 338 | | Number of Gates | 257000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 484-BBGA | | Supplier Device Package | 484-FBGA (23x23) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k100efc484-1 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong For more information on FLEX device configuration, see the following documents: - Configuration Devices for APEX & FLEX Devices Data Sheet - BitBlaster Serial Download Cable Data Sheet - ByteBlasterMV Parallel Port Download Cable Data Sheet - MasterBlaster Download Cable Data Sheet - Application Note 116 (Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices) FLEX 10KE devices are supported by the Altera development systems, which are integrated packages that offer schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use device-specific features such as carry chains, which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development system includes DesignWare functions that are optimized for the FLEX 10KE architecture. The Altera development system runs on Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800. See the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet for more information. The EAB can also use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3. Figure 3. FLEX 10KE EAB in Dual-Port RAM Mode The FLEX 10KE EAB can be used in a single-port mode, which is useful for backward-compatibility with FLEX 10K designs (see Figure 4). Figure 7. FLEX 10KE LAB #### Notes: - (1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26. - (2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 34. Each LAB provides four control signals with programmable inversion that can be used in all eight LEs. Two of these signals can be used as clocks, the other two can be used for clear/preset control. The LAB clocks can be driven by the dedicated clock input pins, global signals, I/O signals, or internal signals via the LAB local interconnect. The LAB preset and clear control signals can be driven by the global signals, I/O signals, or internal signals via the LAB local interconnect. The global control signals are typically used for global clock, clear, or preset signals because they provide asynchronous control with very low skew across the device. If logic is required on a control signal, it can be generated in one or more LE in any LAB and driven into the local interconnect of the target LAB. In addition, the global control signals can be generated from LE outputs. #### Logic Element The LE, the smallest unit of logic in the FLEX 10KE architecture, has a compact size that provides efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can quickly compute any function of four variables. In addition, each LE contains a programmable flipflop with a synchronous clock enable, a carry chain, and a cascade chain. Each LE drives both the local and the FastTrack Interconnect routing structure (see Figure 8). Altera Corporation 17 Cascade-Out Carry-Out Figure 9 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal. Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder) When dedicated inputs drive non-inverted and inverted peripheral clears, clock enables, and output enables, two signals on the peripheral control bus will be used. Tables 8 and 9 list the sources for each peripheral control signal, and show how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals. The tables also show the rows that can drive global signals. | Peripheral
Control Signal | EPF10K30E | EPF10K50E
EPF10K50S | | |------------------------------|-----------|------------------------|--| | OE0 | Row A | Row A | | | OE1 | Row B | Row B | | | OE2 | Row C | Row D | | | OE3 | Row D | Row F | | | OE4 | Row E | Row H | | | OE5 | Row F | Row J | | | CLKENA0/CLK0/GLOBAL0 | Row A | Row A | | | CLKENA1/OE6/GLOBAL1 | Row B | Row C | | | CLKENA2/CLR0 | Row C | Row E | | | CLKENA3/OE7/GLOBAL2 | Row D | Row G | | | CLKENA4/CLR1 | Row E | Row I | | | CLKENA5/CLK1/GLOBAL3 | Row F | Row J | | ## SameFrame Pin-Outs FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K30E device in a 256-pin FineLine BGA package to an EPF10K200S device in a 672-pin FineLine BGA package. The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 18). Figure 18. SameFrame Pin-Out Example 256-Pin FineLine BGA Packag (Reduced I/O Count or Logic Reguirements) 672-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements) to Be Driven Figure 20. FLEX 10KE JTAG Waveforms TMS TDI t_{JPSU} TCK t_{JPZX} t _{JPXZ} $\mathbf{t}_{\mathsf{JPCO}}$ TDO t_{JSH} t_{JSSU} Signal to Be Captured t_{JSCO}t_{JSZX} t_{JSXZ} Signal Figure 20 shows the timing requirements for the JTAG signals. Table 18 shows the timing parameters and values for FLEX 10KE devices. | Table 1 | 8. FLEX 10KE JTAG Timing Parameters & Values | Table 18. FLEX 10KE JTAG Timing Parameters & Values | | | | | | | | |-------------------|--|---|-----|------|--|--|--|--|--| | Symbol | Parameter | Min | Max | Unit | | | | | | | t _{JCP} | TCK clock period | 100 | | ns | | | | | | | t _{JCH} | TCK clock high time | 50 | | ns | | | | | | | t _{JCL} | TCK clock low time | 50 | | ns | | | | | | | t _{JPSU} | JTAG port setup time | 20 | | ns | | | | | | | t _{JPH} | JTAG port hold time | 45 | | ns | | | | | | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | | | | | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | | | | | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | | | | | | t _{JSSU} | Capture register setup time | 20 | | ns | | | | | | | t _{JSH} | Capture register hold time | 45 | | ns | | | | | | | t _{JSCO} | Update register clock to output | | 35 | ns | | | | | | | t _{JSZX} | Update register high impedance to valid output | | 35 | ns | | | | | | | t _{JSXZ} | Update register valid output to high impedance | | 35 | ns | | | | | | ### **Generic Testing** Each FLEX 10KE device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10KE devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow. Figure 21. FLEX 10KE AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V. devices or outputs. ## Operating Conditions Tables 19 through 23 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V FLEX 10KE devices. | Symbol | Parameter | Conditions | Min | Max | Unit | |-------------------|----------------------------|-----------------------------------|--------|-------|-------| | | 1 di diffictor | Conditions | 141111 | IVIGA | Oiiit | | V_{CCINT} | Supply voltage | With respect to ground (2) | -0.5 | 3.6 | V | | V _{CCIO} | | | -0.5 | 4.6 | V | | V _I | DC input voltage | | -2.0 | 5.75 | V | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | °C | | T _J | Junction temperature | PQFP, TQFP, BGA, and FineLine BGA | | 135 | °C | | | | packages, under bias | | | | | | | Ceramic PGA packages, under bias | | 150 | °C | | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|---|--------------------|-------------|-------------------|------| | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 2.30 (2.30) | 2.70 (2.70) | V | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | | Supply voltage for output buffers, 2.5-V operation | (3), (4) | 2.30 (2.30) | 2.70 (2.70) | V | | VI | Input voltage | (5) | -0.5 | 5.75 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | For industrial use | -40 | 85 | ° C | | T _J | Operating temperature | For commercial use | 0 | 85 | ° C | | | | For industrial use | -40 | 100 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Table 21. 2.5-V EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E & EPF10K200S Device Recommended Operating Conditions | | | | | | | | | |---|---|--------------------|------------------|-------------------|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 2.375
(2.375) | 2.625
(2.625) | V | | | | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | | | | | Supply voltage for output buffers, 2.5-V operation | (3), (4) | 2.375
(2.375) | 2.625
(2.625) | V | | | | | V _I | Input voltage | (5) | -0.5 | 5.75 | V | | | | | Vo | Output voltage | | 0 | V _{CCIO} | V | | | | | T _A | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | | | | For industrial use | -40 | 85 | ° C | | | | | TJ | Operating temperature | For commercial use | 0 | 85 | ° C | | | | | | | For industrial use | -40 | 100 | ° C | | | | | t _R | Input rise time | | | 40 | ns | | | | | t _F | Input fall time | | | 40 | ns | | | | Figure 22 shows the required relationship between $V_{\rm CCIO}$ and $V_{\rm CCINT}$ for 3.3-V PCI compliance. Figure 22. Relationship between V_{CCIO} & V_{CCINT} for 3.3-V PCI Compliance Figure 23 shows the typical output drive characteristics of FLEX 10KE devices with 3.3-V and 2.5-V $V_{\rm CCIO}$. The output driver is compliant to the 3.3-V *PCI Local Bus Specification*, *Revision 2.2* (when VCCIO pins are connected to 3.3 V). FLEX 10KE devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification*, *Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems. Figure 23. Output Drive Characteristics of FLEX 10KE Devices Note (1) #### Note: These are transient (AC) currents. ## **Timing Model** The continuous, high-performance FastTrack Interconnect routing resources ensure predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance. Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters: - LE register clock-to-output delay (t_{CO}) - Interconnect delay ($t_{SAMEROW}$) - LE look-up table delay (t_{LUT}) - LE register setup time (t_{SI}) The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs. | Table 26. EA | B Timing Microparameters Note (1) | | |------------------------|--|------------| | Symbol | Parameter | Conditions | | t _{EABDATA1} | Data or address delay to EAB for combinatorial input | | | t _{EABDATA2} | Data or address delay to EAB for registered input | | | t _{EABWE1} | Write enable delay to EAB for combinatorial input | | | t _{EABWE2} | Write enable delay to EAB for registered input | | | t _{EABRE1} | Read enable delay to EAB for combinatorial input | | | t _{EABRE2} | Read enable delay to EAB for registered input | | | t _{EABCLK} | EAB register clock delay | | | t _{EABCO} | EAB register clock-to-output delay | | | t _{EABBYPASS} | Bypass register delay | | | t _{EABSU} | EAB register setup time before clock | | | t _{EABH} | EAB register hold time after clock | | | t _{EABCLR} | EAB register asynchronous clear time to output delay | | | t_{AA} | Address access delay (including the read enable to output delay) | | | t_{WP} | Write pulse width | | | t_{RP} | Read pulse width | | | t _{WDSU} | Data setup time before falling edge of write pulse | (5) | | t_{WDH} | Data hold time after falling edge of write pulse | (5) | | t _{WASU} | Address setup time before rising edge of write pulse | (5) | | t_{WAH} | Address hold time after falling edge of write pulse | (5) | | t _{RASU} | Address setup time with respect to the falling edge of the read enable | | | t _{RAH} | Address hold time with respect to the falling edge of the read enable | | | t_{WO} | Write enable to data output valid delay | | | t_{DD} | Data-in to data-out valid delay | | | t _{EABOUT} | Data-out delay | | | t _{EABCH} | Clock high time | | | t _{EABCL} | Clock low time | | Figure 30. EAB Synchronous Timing Waveforms #### **EAB Synchronous Read** #### EAB Synchronous Write (EAB Output Registers Used) Tables 31 through 37 show EPF10K30E device internal and external timing parameters. | Table 31. EPF10K30E Device LE Timing Microparameters (Part 1 of 2) Note (1) | | | | | | | | | | |---|---------|----------------|-----|----------------|-----|---------|------|--|--| | Symbol | -1 Spec | -1 Speed Grade | | -2 Speed Grade | | d Grade | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t_{LUT} | | 0.7 | | 0.8 | | 1.1 | ns | | | | t _{CLUT} | | 0.5 | | 0.6 | | 0.8 | ns | | | | t _{RLUT} | | 0.6 | | 0.7 | | 1.0 | ns | | | | t _{PACKED} | | 0.3 | | 0.4 | | 0.5 | ns | | | | t_{EN} | | 0.6 | | 0.8 | | 1.0 | ns | | | | t _{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | | | t _{CGEN} | | 0.4 | | 0.5 | | 0.7 | ns | | | Tables 52 through 58 show EPF10K130E device internal and external timing parameters. | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | ed Grade | Unit | |---------------------|----------------|-----|---------|----------------|-----|----------|------| | | Min | Max | Min | Max | Min | Max | | | t_{LUT} | | 0.6 | | 0.9 | | 1.3 | ns | | t _{CLUT} | | 0.6 | | 0.8 | | 1.0 | ns | | t _{RLUT} | | 0.7 | | 0.9 | | 0.2 | ns | | t _{PACKED} | | 0.3 | | 0.5 | | 0.6 | ns | | t _{EN} | | 0.2 | | 0.3 | | 0.4 | ns | | t _{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CGEN} | | 0.4 | | 0.6 | | 0.8 | ns | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CASC} | | 0.6 | | 0.9 | | 1.2 | ns | | t _C | | 0.3 | | 0.5 | | 0.6 | ns | | t _{CO} | | 0.5 | | 0.7 | | 0.8 | ns | | t _{COMB} | | 0.3 | | 0.5 | | 0.6 | ns | | t _{SU} | 0.5 | | 0.7 | | 0.8 | | ns | | t_H | 0.6 | | 0.7 | | 1.0 | | ns | | t _{PRE} | | 0.9 | | 1.2 | | 1.6 | ns | | t _{CLR} | | 0.9 | | 1.2 | | 1.6 | ns | | t _{CH} | 1.5 | | 1.5 | | 2.5 | | ns | | t_{CL} | 1.5 | | 1.5 | | 2.5 | | ns | | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | ed Grade | Unit | | |----------------------|----------------|-----|---------|----------------|-----|----------|------|--| | | Min | Max | Min | Max | Min | Max | | | | t_{IOD} | | 1.3 | | 1.5 | | 2.0 | ns | | | t _{IOC} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{ioco} | | 0.6 | | 0.8 | | 1.0 | ns | | | t _I OCOMB | | 0.6 | | 0.8 | | 1.0 | ns | | | iosu | 1.0 | | 1.2 | | 1.6 | | ns | | | t _{IOH} | 0.9 | | 0.9 | | 1.4 | | ns | | | t _{IOCLR} | | 0.6 | | 0.8 | | 1.0 | ns | | | OD1 | | 2.8 | | 4.1 | | 5.5 | ns | | | t_{OD2} | | 2.8 | | 4.1 | | 5.5 | ns | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |-----------------------------|----------------|-----|----------------|-----|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (3) | 2.2 | | 2.4 | | 3.2 | | ns | | t _{INHBIDIR} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{INSUBIDIR} (4) | 2.8 | | 3.0 | | - | | ns | | t _{INHBIDIR} (4) | 0.0 | | 0.0 | | - | | ns | | t _{OUTCOBIDIR} (3) | 2.0 | 5.0 | 2.0 | 7.0 | 2.0 | 9.2 | ns | | t _{XZBIDIR} (3) | | 5.6 | | 8.1 | | 10.8 | ns | | t _{ZXBIDIR} (3) | | 5.6 | | 8.1 | | 10.8 | ns | | toutcobidir (4) | 0.5 | 4.0 | 0.5 | 6.0 | - | - | ns | | t _{XZBIDIR} (4) | | 4.6 | | 7.1 | | - | ns | | t _{ZXBIDIR} (4) | | 4.6 | | 7.1 | | - | ns | #### Notes to tables: - (1) All timing parameters are described in Tables 24 through 30 in this data sheet. - (2) These parameters are specified by characterization. - (3) This parameter is measured without the use of the ClockLock or ClockBoost circuits. - (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits. Tables 59 through 65 show EPF10K200E device internal and external timing parameters. | Symbol | -1 Spee | -1 Speed Grade | | -2 Speed Grade | | ed Grade | Unit | |---------------------|---------|----------------|-----|----------------|-----|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{LUT} | | 0.7 | | 0.8 | | 1.2 | ns | | t _{CLUT} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{RLUT} | | 0.6 | | 0.7 | | 0.9 | ns | | t _{PACKED} | | 0.3 | | 0.5 | | 0.7 | ns | | t _{EN} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{CICO} | | 0.2 | | 0.2 | | 0.3 | ns | | t _{CGEN} | | 0.4 | | 0.4 | | 0.6 | ns | | t _{CGENR} | | 0.2 | | 0.2 | | 0.3 | ns | | t _{CASC} | | 0.7 | | 0.8 | | 1.2 | ns | | t_{C} | | 0.5 | | 0.6 | | 0.8 | ns | | t_{CO} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{СОМВ} | | 0.4 | | 0.6 | | 0.8 | ns | | t_{SU} | 0.4 | | 0.6 | | 0.7 | | ns | | Table 69. EPF10K50S Device EAB Internal Timing Macroparameters Note (1) | | | | | | | | |---|----------------|-----|----------------|-----|----------------|-----|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{EABAA} | | 3.7 | | 5.2 | | 7.0 | ns | | t _{EABRCCOMB} | 3.7 | | 5.2 | | 7.0 | | ns | | t _{EABRCREG} | 3.5 | | 4.9 | | 6.6 | | ns | | t _{EABWP} | 2.0 | | 2.8 | | 3.8 | | ns | | t _{EABWCCOMB} | 4.5 | | 6.3 | | 8.6 | | ns | | t _{EABWCREG} | 5.6 | | 7.8 | | 10.6 | | ns | | t_{EABDD} | | 3.8 | | 5.3 | | 7.2 | ns | | t _{EABDATACO} | | 0.8 | | 1.1 | | 1.5 | ns | | t _{EABDATASU} | 1.1 | | 1.6 | | 2.1 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 0.7 | | 1.0 | | 1.3 | | ns | | t _{EABWEH} | 0.4 | | 0.6 | | 0.8 | | ns | | t _{EABWDSU} | 1.2 | | 1.7 | | 2.2 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 1.6 | | 2.3 | | 3.0 | | ns | | t _{EABWAH} | 0.9 | | 1.2 | | 1.8 | | ns | | t_{EABWO} | | 3.1 | | 4.3 | | 5.9 | ns | | Table 70. EPF10 | K50S Device | Interconnec | t Timing Mi | croparamete | e rs Note | (1) | | |--------------------------|----------------|-------------|----------------|-------------|------------------|-----|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 3.1 | | 3.7 | | 4.6 | ns | | t _{DIN2LE} | | 1.7 | | 2.1 | | 2.7 | ns | | t _{DIN2DATA} | | 2.7 | | 3.1 | | 5.1 | ns | | t _{DCLK2IOE} | | 1.6 | | 1.9 | | 2.6 | ns | | t _{DCLK2LE} | | 1.7 | | 2.1 | | 2.7 | ns | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{SAMEROW} | | 1.5 | | 1.7 | | 2.4 | ns | | t _{SAME} COLUMN | | 1.0 | | 1.3 | | 2.1 | ns | | t _{DIFFROW} | | 2.5 | | 3.0 | | 4.5 | ns | | t _{TWOROWS} | | 4.0 | | 4.7 | | 6.9 | ns | | t _{LEPERIPH} | | 2.6 | | 2.9 | | 3.4 | ns | | t _{LABCARRY} | | 0.1 | | 0.2 | | 0.2 | ns | | t _{LABCASC} | | 0.8 | | 1.0 | | 1.3 | ns | | Table 74. EPF10k | 200S Device | e IOE Timing | Microparar | neters (Par | t 2 of 2) | Note (1) | | |---------------------|-------------|--------------|------------|-------------|----------------|----------|------| | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t_{ZX2} | | 4.5 | | 4.8 | | 6.6 | ns | | t_{ZX3} | | 6.6 | | 7.6 | | 10.1 | ns | | t _{INREG} | | 3.7 | | 5.7 | | 7.7 | ns | | t _{IOFD} | | 1.8 | | 3.4 | | 4.0 | ns | | t _{INCOMB} | | 1.8 | | 3.4 | | 4.0 | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |------------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.8 | | 2.4 | | 3.2 | ns | | t _{EABDATA1} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{EABWE1} | | 1.1 | | 1.7 | | 2.3 | ns | | t _{EABWE2} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABRE1} | | 0 | | 0 | | 0 | ns | | t _{EABRE2} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 0.8 | | 0.9 | | 1.2 | ns | | t _{EABBYPASS} | | 0.0 | | 0.1 | | 0.1 | ns | | t _{EABSU} | 0.7 | | 1.1 | | 1.5 | | ns | | t _{EABH} | 0.4 | | 0.5 | | 0.6 | | ns | | t _{EABCLR} | 0.8 | | 0.9 | | 1.2 | | ns | | t _{AA} | | 2.1 | | 3.7 | | 4.9 | ns | | t _{WP} | 2.1 | | 4.0 | | 5.3 | | ns | | t _{RP} | 1.1 | | 1.1 | | 1.5 | | ns | | t _{WDSU} | 0.5 | | 1.1 | | 1.5 | | ns | | t _{WDH} | 0.1 | | 0.1 | | 0.1 | | ns | | t _{WASU} | 1.1 | | 1.6 | | 2.1 | | ns | | t _{WAH} | 1.6 | | 2.5 | | 3.3 | | ns | | t _{RASU} | 1.6 | | 2.6 | | 3.5 | | ns | | t _{RAH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{wo} | | 2.0 | | 2.4 | | 3.2 | ns | | t _{DD} | | 2.0 | | 2.4 | | 3.2 | ns | | t _{EABOUT} | | 0.0 | | 0.1 | | 0.1 | ns | | t _{EABCH} | 1.5 | | 2.0 | | 2.5 | | ns | | t _{EABCL} | 2.1 | | 2.8 | | 3.8 | | ns | To better reflect actual designs, the power model (and the constant K in the power calculation equations) for continuous interconnect FLEX devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results when compared to measured power consumption for actual designs in segmented FPGAs. Figure 31 shows the relationship between the current and operating frequency of FLEX 10KE devices. Figure 31. FLEX 10KE I_{CCACTIVE} vs. Operating Frequency (Part 1 of 2) Figure 31. FLEX 10KE I_{CCACTIVE} vs. Operating Frequency (Part 2 of 2) # Configuration & Operation The FLEX 10KE architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes. ### **Operating Modes** The FLEX 10KE architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. The process of physically loading the SRAM data into the device is called *configuration*. Before configuration, as V_{CC} rises, the device initiates a Power-On Reset (POR). This POR event clears the device and prepares it for configuration. The FLEX 10KE POR time does not exceed 50 μs . When configuring with a configuration device, refer to the respective configuration device data sheet for POR timing information.