E·XFL

Altera - EPF10K100EQC240-2X Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	624
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	189
Number of Gates	-
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	240-BQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf10k100eqc240-2x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous read or writes.

Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2).

Notes:

- (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
- (2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, and EPF10K200E devices have 104 EAB local interconnect channels.

The EAB can also use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3.

The FLEX 10KE EAB can be used in a single-port mode, which is useful for backward-compatibility with FLEX 10K designs (see Figure 4).

The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the output of the LUT drives the output of the LE.

The LE has two outputs that drive the interconnect: one drives the local interconnect and the other drives either the row or column FastTrack Interconnect routing structure. The two outputs can be controlled independently. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, can improve LE utilization because the register and the LUT can be used for unrelated functions.

The FLEX 10KE architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. The carry chain supports high-speed counters and adders and the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in a LAB as well as all LABs in the same row. Intensive use of carry and cascade chains can reduce routing flexibility. Therefore, the use of these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 10KE architecture to implement high-speed counters, adders, and comparators of arbitrary width efficiently. Carry chain logic can be created automatically by the Altera Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as LPM and DesignWare functions automatically take advantage of carry chains.

Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from oddnumbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EPF10K50E device, the carry chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB.

Cascade Chain

With the cascade chain, the FLEX 10KE architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE provides four more inputs to the effective width of a function. Cascade chain logic can be created automatically by the Altera Compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EPF10K50E device, the cascade chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. The LE delay is 0.9 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 2.7 ns are needed to decode a 16-bit address.

Figure 10. FLEX 10KE Cascade Chain Operation

Altera Corporation

Figure 13. FLEX 10KE LAB Connections to Row & Column Interconnect

ClockLock & ClockBoost Features

To support high-speed designs, FLEX 10KE devices offer optional ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by resource sharing within the device. The ClockBoost feature allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth.

All FLEX 10KE devices, except EPF10K50E and EPF10K200E devices, support ClockLock and ClockBoost circuitry. EPF10K50S and EPF10K200S devices support this circuitry. Devices that support Clock-Lock and ClockBoost circuitry are distinguished with an "X" suffix in the ordering code; for instance, the EPF10K200SFC672-1X device supports this circuit.

The ClockLock and ClockBoost features in FLEX 10KE devices are enabled through the Altera software. External devices are not required to use these features. The output of the ClockLock and ClockBoost circuits is not available at any of the device pins.

The ClockLock and ClockBoost circuitry locks onto the rising edge of the incoming clock. The circuit output can drive the clock inputs of registers only; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and ClockBoost circuitry. When the dedicated clock pin is driving the ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to the GCLK1 pin. In the Altera software, the GCLK1 pin can feed both the ClockLock and ClockBoost circuitry in the FLEX 10KE device. However, when both circuits are used, the other clock pin cannot be used.

The VCCINT pins must always be connected to a 2.5-V power supply. With a 2.5-V V_{CCINT} level, input voltages are compatible with 2.5-V, 3.3-V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V_{CCIO} levels higher than 3.0 V achieve a faster timing delay of t_{OD2} instead of t_{OD1} .

Table 14. FLEX 10KE MultiVolt I/O Support									
V _{CCIO} (V)	Inp	out Signal	(V)	Out	out Signal	(V)			
	2.5	3.3	5.0	2.5	3.3	5.0			
2.5	~	✓(1)	✓ (1)	~					
3.3	\checkmark	\checkmark	✓ (1)	✓(2)	\checkmark	~			

Table 14 summarizes FLEX 10KE MultiVolt I/O support.

Notes:

(1) The PCI clamping diode must be disabled to drive an input with voltages higher than $V_{\rm CCIO}$.

(2) When V_{CCIO} = 3.3 V, a FLEX 10KE device can drive a 2.5-V device that has 3.3-V tolerant inputs.

Open-drain output pins on FLEX 10KE devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

Power Sequencing & Hot-Socketing

Because FLEX 10KE devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order.

Signals can be driven into FLEX 10KE devices before and during power up without damaging the device. Additionally, FLEX 10KE devices do not drive out during power up. Once operating conditions are reached, FLEX 10KE devices operate as specified by the user.

Table 20. 2.5-V EPF10K50E & EPF10K200E Device Recommended Operating Conditions									
Symbol	Parameter	Conditions	Min	Max	Unit				
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	2.30 (2.30)	2.70 (2.70)	V				
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V				
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.30 (2.30)	2.70 (2.70)	V				
VI	Input voltage	(5)	-0.5	5.75	V				
Vo	Output voltage		0	V _{CCIO}	V				
Τ _A	Ambient temperature	For commercial use	0	70	°C				
		For industrial use	-40	85	°C				
TJ	Operating temperature	For commercial use	0	85	°C				
		For industrial use	-40	100	°C				
t _R	Input rise time			40	ns				
t _F	Input fall time			40	ns				

Table 21. 2.5-V EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E & EPF10K200S Device Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	2.375 (2.375)	2.625 (2.625)	V
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V
VI	Input voltage	(5)	-0.5	5.75	V
Vo	Output voltage		0	V _{CCIO}	V
Τ _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
Τ _J	Operating temperature	For commercial use	0	85	°C
		For industrial use	-40	100	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Figure 23. Output Drive Characteristics of FLEX 10KE Devices Note (1)

Note:

(1) These are transient (AC) currents.

Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay (*t*_{CO})
- Interconnect delay (t_{SAMEROW})
- **LE** look-up table delay (t_{LUT})
- **LE** register setup time (t_{SU})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

Figure 25. FLEX 10KE Device LE Timing Model

Table 24. LE Timing Microparameters (Part 2 of 2) Note (1)							
Symbol	Parameter	Condition					
t _{CLR}	LE register clear delay						
t _{CH}	Minimum clock high time from clock pin						
t _{CL}	Minimum clock low time from clock pin						

Table 25. IOE	Timing Microparameters Note (1)	
Symbol	Parameter	Conditions
t _{IOD}	IOE data delay	
t _{IOC}	IOE register control signal delay	
t _{IOCO}	IOE register clock-to-output delay	
t _{IOCOMB}	IOE combinatorial delay	
t _{IOSU}	IOE register setup time for data and enable signals before clock; IOE register recovery time after asynchronous clear	
t _{IOH}	IOE register hold time for data and enable signals after clock	
t _{IOCLR}	IOE register clear time	
t _{OD1}	Output buffer and pad delay, slow slew rate = off, V_{CCIO} = 3.3 V	C1 = 35 pF (2)
t _{OD2}	Output buffer and pad delay, slow slew rate = off, V_{CCIO} = 2.5 V	C1 = 35 pF (3)
t _{OD3}	Output buffer and pad delay, slow slew rate = on	C1 = 35 pF (4)
t _{XZ}	IOE output buffer disable delay	
t _{ZX1}	IOE output buffer enable delay, slow slew rate = off, V_{CCIO} = 3.3 V	C1 = 35 pF (2)
t _{ZX2}	IOE output buffer enable delay, slow slew rate = off, V_{CCIO} = 2.5 V	C1 = 35 pF (3)
t _{ZX3}	IOE output buffer enable delay, slow slew rate = on	C1 = 35 pF (4)
t _{INREG}	IOE input pad and buffer to IOE register delay	
t _{IOFD}	IOE register feedback delay	
t _{INCOMB}	IOE input pad and buffer to FastTrack Interconnect delay	

Table 30. External Bidirectional Timing Parameters Note (9)								
Symbol	Parameter	Conditions						
^t INSUBIDIR	Setup time for bi-directional pins with global clock at same-row or same- column LE register							
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at same-row or same-column LE register							
t _{INH}	Hold time with global clock at IOE register							
t _{OUTCOBIDIR}	Clock-to-output delay for bidirectional pins with global clock at IOE register	C1 = 35 pF						
t _{XZBIDIR}	Synchronous IOE output buffer disable delay	C1 = 35 pF						
t _{ZXBIDIR}	Synchronous IOE output buffer enable delay, slow slew rate= off	C1 = 35 pF						

Notes to tables:

- (1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly.
- (2) Operating conditions: VCCIO = $3.3 \text{ V} \pm 10\%$ for commercial or industrial use.
- (3) Operating conditions: VCCIO = 2.5 V ±5% for commercial or industrial use in EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E, and EPF10K200S devices.
- (4) Operating conditions: VCCIO = 3.3 V.
- (5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered.
- (6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters.
- (7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.
- (8) Contact Altera Applications for test circuit specifications and test conditions.
- (9) This timing parameter is sample-tested only.
- (10) This parameter is measured with the measurement and test conditions, including load, specified in the PCI Local Bus Specification, revision 2.2.

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)									
Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Мах	Min	Max	Min	Max			
t _{DRR}		8.5		10.0		13.5	ns		
t _{INSU}	2.7		3.2		4.3		ns		
t _{INH}	0.0		0.0		0.0		ns		
t _{оитсо}	2.0	4.5	2.0	5.2	2.0	7.3	ns		
t _{PCISU}	3.0		4.2		-		ns		
t _{PCIH}	0.0		0.0		-		ns		
t _{PCICO}	2.0	6.0	2.0	7.7	-	-	ns		

 Table 44. EPF10K50E External Bidirectional Timing Parameters
 Notes (1), (2)

	r				-		
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	2.7		3.2		4.3		ns
t _{INHBIDIR}	0.0		0.0		0.0		ns
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.2	2.0	7.3	ns
t _{XZBIDIR}		6.8		7.8		10.1	ns
tZXBIDIR		6.8		7.8		10.1	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external timing parameters.

Table 45. EPF10K100E Device LE Timing Microparameters Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{LUT}		0.7		1.0		1.5	ns		
t _{CLUT}		0.5		0.7		0.9	ns		
t _{RLUT}		0.6		0.8		1.1	ns		
t _{PACKED}		0.3		0.4		0.5	ns		
t _{EN}		0.2		0.3		0.3	ns		
t _{CICO}		0.1		0.1		0.2	ns		
t _{CGEN}		0.4		0.5		0.7	ns		

Table 50. EPF10K100E External Timing Parameters Notes (1), (2)									
Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		d Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{DRR}		9.0		12.0		16.0	ns		
t _{INSU} (3)	2.0		2.5		3.3		ns		
t _{INH} (3)	0.0		0.0		0.0		ns		
t _{оитсо} (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns		
t _{INSU} (4)	2.0		2.2		-		ns		
t _{INH} (4)	0.0		0.0		-		ns		
t _{оитсо} (4)	0.5	3.0	0.5	4.6	-	-	ns		
t _{PCISU}	3.0		6.2		-		ns		
t _{PCIH}	0.0		0.0		-		ns		
t _{PCICO}	2.0	6.0	2.0	6.9	_	_	ns		

 Table 51. EPF10K100E External Bidirectional Timing Parameters
 Notes (1), (2)

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	1.7		2.5		3.3		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	2.0		2.8		-		ns
t _{INHBIDIR} (4)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns
t _{XZBIDIR} (3)		5.6		7.5		10.1	ns
t _{ZXBIDIR} (3)		5.6		7.5		10.1	ns
t _{OUTCOBIDIR} (4)	0.5	3.0	0.5	4.6	-	-	ns
t _{XZBIDIR} (4)		4.6		6.5		-	ns
t _{ZXBIDIR} (4)		4.6		6.5		-	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Table 54. EPF10K130E Device EAB Internal Microparameters (Part 2 of 2) Note (1)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DD}		1.5		2.0		2.6	ns
t _{EABOUT}		0.2		0.3		0.3	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.7		3.5		4.7		ns

Table 55. EPF10K130E Device EAB Internal Timing Macroparameters Note (1)							
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.9		7.5		9.9	ns
t _{EABRCOMB}	5.9		7.5		9.9		ns
t _{EABRCREG}	5.1		6.4		8.5		ns
t _{EABWP}	2.7		3.5		4.7		ns
t _{EABWCOMB}	5.9		7.7		10.3		ns
t _{EABWCREG}	5.4		7.0		9.4		ns
t _{EABDD}		3.4		4.5		5.9	ns
t _{EABDATACO}		0.5		0.7		0.8	ns
t _{EABDATASU}	0.8		1.0		1.4		ns
t _{EABDATAH}	0.1		0.1		0.2		ns
t _{EABWESU}	1.1		1.4		1.9		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.0		1.3		1.7		ns
t _{EABWDH}	0.2		0.2		0.3		ns
t _{EABWASU}	4.1		5.1		6.8		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		3.4		4.5		5.9	ns

Table 58. EPF10K130E External Bidirectional Timing Parameters Notes (1), (2)							
Symbol	-1 Spee	ed Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	2.2		2.4		3.2		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	2.8		3.0		-		ns
t _{INHBIDIR} (4)	0.0		0.0		-		ns
toutcobidir (3)	2.0	5.0	2.0	7.0	2.0	9.2	ns
t _{XZBIDIR} (3)		5.6		8.1		10.8	ns
t _{ZXBIDIR} (3)		5.6		8.1		10.8	ns
toutcobidir (4)	0.5	4.0	0.5	6.0	_	-	ns
t _{XZBIDIR} (4)		4.6		7.1		-	ns
t _{ZXBIDIR} (4)		4.6		7.1		-	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 59 through 65 show EPF10K200E device internal and external timing parameters.

Table 59. EPF10K200E Device LE Timing Microparameters (Part 1 of 2) Note (1)							
Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.7		0.8		1.2	ns
t _{CLUT}		0.4		0.5		0.6	ns
t _{RLUT}		0.6		0.7		0.9	ns
t _{PACKED}		0.3		0.5		0.7	ns
t _{EN}		0.4		0.5		0.6	ns
t _{CICO}		0.2		0.2		0.3	ns
t _{CGEN}		0.4		0.4		0.6	ns
t _{CGENR}		0.2		0.2		0.3	ns
t _{CASC}		0.7		0.8		1.2	ns
t _C		0.5		0.6		0.8	ns
t _{CO}		0.5		0.6		0.8	ns
t _{COMB}		0.4		0.6		0.8	ns
t _{SU}	0.4		0.6		0.7		ns

Table 62. EPF10K200E Device EAB Internal Timing Macroparameters (Part 2 of 2) Note (1)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABWCOMB}	6.7		8.1		10.7		ns
t _{EABWCREG}	6.6		8.0		10.6		ns
t _{EABDD}		4.0		5.1		6.7	ns
t _{EABDATACO}		0.8		1.0		1.3	ns
t _{EABDATASU}	1.3		1.6		2.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	0.9		1.1		1.5		ns
t _{EABWEH}	0.4		0.5		0.6		ns
t _{EABWDSU}	1.5		1.8		2.4		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.0		3.6		4.7		ns
t _{EABWAH}	0.4		0.5		0.7		ns
t _{EABWO}		3.4		4.4		5.8	ns

 Table 63. EPF10K200E Device Interconnect Timing Microparameters
 Note (1)

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		4.2		4.6		5.7	ns
t _{DIN2LE}		1.7		1.7		2.0	ns
t _{DIN2DATA}		1.9		2.1		3.0	ns
t _{DCLK2IOE}		2.5		2.9		4.0	ns
t _{DCLK2LE}		1.7		1.7		2.0	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		2.3		2.6		3.6	ns
t _{SAMECOLUMN}		2.5		2.7		4.1	ns
t _{DIFFROW}		4.8		5.3		7.7	ns
t _{TWOROWS}		7.1		7.9		11.3	ns
t _{LEPERIPH}		7.0		7.6		9.0	ns
t _{LABCARRY}		0.1		0.1		0.2	ns
t _{LABCASC}		0.9		1.0		1.4	ns

Power Consumption	The supply power (P) for FLEX 10KE devices can be calculated with the following equation:						
	$\mathbf{P} = \mathbf{P}_{\text{INT}} + \mathbf{P}_{\text{IO}} = (\mathbf{I}_{\text{CCSTANDBY}} + \mathbf{I}_{\text{CCACTIVE}}) \times \mathbf{V}_{\text{CC}} + \mathbf{P}_{\text{IO}}$						
	The $I_{CCACTIVE}$ value depends on the sw application logic. This value is calculated that each LE typically consumes. The P_{IC} device output load characteristics and so calculated using the guidelines given in <i>Power for Altera Devices</i>).	itching frequency and the d based on the amount of current o value, which depends on the witching frequency, can be <i>Application Note 74 (Evaluating</i>					
	Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current.						
	The $I_{CCACTIVE}$ value can be calculated with the following equation:						
	$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$						
	Where:						
	 f_{MAX} = Maximum operating frequency in MHz N = Total number of LEs used in the device tog_{LC} = Average percent of LEs toggling at each clock (typically 12.5%) K = Constant 						
	Table of provides the constant (K) values for FLEX TOKE devices.						
	Table 80. FLEX 10KE K Constant Values						
	Device	K Value					
	EPF10K30E	4.5					
	EPF10K50E	4.8					
	EPF10K50S	4.5					
	EPF10K100E	4.5					
	EPF10K130E	4.6					
	EPF10K200E	4.8					

EPF10K200S

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

4.6

During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

SRAM configuration elements allow FLEX 10KE devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 85 ms and can be used to reconfigure an entire system dynamically. In-field upgrades can be performed by distributing new configuration files.

Before and during configuration, all I/O pins (except dedicated inputs, clock, or configuration pins) are pulled high by a weak pull-up resistor.

Programming Files

Despite being function- and pin-compatible, FLEX 10KE devices are not programming- or configuration file-compatible with FLEX 10K or FLEX 10KA devices. A design therefore must be recompiled before it is transferred from a FLEX 10K or FLEX 10KA device to an equivalent FLEX 10KE device. This recompilation should be performed both to create a new programming or configuration file and to check design timing in FLEX 10KE devices, which has different timing characteristics than FLEX 10K or FLEX 10KA devices.

FLEX 10KE devices are generally pin-compatible with equivalent FLEX 10KA devices. In some cases, FLEX 10KE devices have fewer I/O pins than the equivalent FLEX 10KA devices. Table 81 shows which FLEX 10KE devices have fewer I/O pins than equivalent FLEX 10KA devices. However, power, ground, JTAG, and configuration pins are the same on FLEX 10KA and FLEX 10KE devices, enabling migration from a FLEX 10KA design to a FLEX 10KE design. Additionally, the Altera software offers several features that help plan for future device migration by preventing the use of conflicting I/O pins.

Table 81. I/O Counts for FLEX 10KA & FLEX 10KE Devices						
FLEX 10	KA	FLEX 10	KE			
Device	I/O Count	Device	I/O Count			
EPF10K30AF256	191	EPF10K30EF256	176			
EPF10K30AF484	246	EPF10K30EF484	220			
EPF10K50VB356	274	EPF10K50SB356	220			
EPF10K50VF484	291	EPF10K50EF484	254			
EPF10K50VF484	291	EPF10K50SF484	254			
EPF10K100AF484	369	EPF10K100EF484	338			

Configuration Schemes

The configuration data for a FLEX 10KE device can be loaded with one of five configuration schemes (see Table 82), chosen on the basis of the target application. An EPC1, EPC2, or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of a FLEX 10KE device, allowing automatic configuration on system power-up.

Multiple FLEX 10KE devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Additional FLEX 10K, FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be configured in the same serial chain.

Table 82. Data Sources for FLEX 10KE Configuration					
Configuration Scheme	Data Source				
Configuration device	EPC1, EPC2, or EPC16 configuration device				
Passive serial (PS)	BitBlaster, ByteBlasterMV, or MasterBlaster download cables, or serial data source				
Passive parallel asynchronous (PPA)	Parallel data source				
Passive parallel synchronous (PPS)	Parallel data source				
JTAG	BitBlaster or ByteBlasterMV download cables, or microprocessor with a Jam STAPL file or JBC file				