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are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
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their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
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of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
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efficiency is paramount. Lastly, automotive-grade FPGAs
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offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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The EAB can also be used for bidirectional, dual-port memory 
applications where two ports read or write simultaneously. To implement 
this type of dual-port memory, two EABs are used to support two 
simultaneous read or writes.

Alternatively, one clock and clock enable can be used to control the input 
registers of the EAB, while a different clock and clock enable control the 
output registers (see Figure 2).

Figure 2. FLEX 10KE Device in Dual-Port RAM Mode       Notes (1)

Notes:
(1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
(2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, and 

EPF10K200E devices have 104 EAB local interconnect channels. 
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The EAB can also use Altera megafunctions to implement dual-port RAM 
applications where both ports can read or write, as shown in Figure 3.

Figure 3. FLEX 10KE EAB in Dual-Port RAM Mode

The FLEX 10KE EAB can be used in a single-port mode, which is useful for 
backward-compatibility with FLEX 10K designs (see Figure 4).
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The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock, clear, and preset control signals on the flipflop can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the flipflop is bypassed and the output 
of the LUT drives the output of the LE. 

The LE has two outputs that drive the interconnect: one drives the local 
interconnect and the other drives either the row or column FastTrack 
Interconnect routing structure. The two outputs can be controlled 
independently. For example, the LUT can drive one output while the 
register drives the other output. This feature, called register packing, can 
improve LE utilization because the register and the LUT can be used for 
unrelated functions.

The FLEX 10KE architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports 
high-speed counters and adders and the cascade chain implements 
wide-input functions with minimum delay. Carry and cascade chains 
connect all LEs in a LAB as well as all LABs in the same row. Intensive use 
of carry and cascade chains can reduce routing flexibility. Therefore, the 
use of these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
FLEX 10KE architecture to implement high-speed counters, adders, and 
comparators of arbitrary width efficiently. Carry chain logic can be 
created automatically by the Altera Compiler during design processing, 
or manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EPF10K50E device, the carry chain stops at the eighteenth LAB and 
a new one begins at the nineteenth LAB.
18 Altera Corporation
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Cascade Chain

With the cascade chain, the FLEX 10KE architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE 
provides four more inputs to the effective width of a function. Cascade 
chain logic can be created automatically by the Altera Compiler during 
design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EPF10K50E device, the 
cascade chain stops at the eighteenth LAB and a new one begins at the 
nineteenth LAB). This break is due to the EAB’s placement in the middle 
of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to 
form functions with a wide fan-in. These examples show functions of 
4n variables implemented with n LEs. The LE delay is 0.9 ns; the cascade 
chain delay is 0.6 ns. With the cascade chain, 2.7 ns are needed to decode 
a 16-bit address.

Figure 10. FLEX 10KE Cascade Chain Operation
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Figure 13. FLEX 10KE LAB Connections to Row & Column Interconnect     
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ClockLock & 
ClockBoost 
Features

To support high-speed designs, FLEX 10KE devices offer optional 
ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) 
used to increase design speed and reduce resource usage. The ClockLock 
circuitry uses a synchronizing PLL that reduces the clock delay and skew 
within a device. This reduction minimizes clock-to-output and setup 
times while maintaining zero hold times. The ClockBoost circuitry, which 
provides a clock multiplier, allows the designer to enhance device area 
efficiency by resource sharing within the device. The ClockBoost feature 
allows the designer to distribute a low-speed clock and multiply that clock 
on-device. Combined, the ClockLock and ClockBoost features provide 
significant improvements in system performance and bandwidth.

All FLEX 10KE devices, except EPF10K50E and EPF10K200E devices, 
support ClockLock and ClockBoost circuitry. EPF10K50S and 
EPF10K200S devices support this circuitry. Devices that support Clock-
Lock and ClockBoost circuitry are distinguished with an “X” suffix in the 
ordering code; for instance, the EPF10K200SFC672-1X device supports 
this circuit.

The ClockLock and ClockBoost features in FLEX 10KE devices are 
enabled through the Altera software. External devices are not required to 
use these features. The output of the ClockLock and ClockBoost circuits is 
not available at any of the device pins.

The ClockLock and ClockBoost circuitry locks onto the rising edge of the 
incoming clock. The circuit output can drive the clock inputs of registers 
only; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and 
ClockBoost circuitry. When the dedicated clock pin is driving the 
ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

For designs that require both a multiplied and non-multiplied clock, the 
clock trace on the board can be connected to the GCLK1 pin. In the 
Altera software, the GCLK1 pin can feed both the ClockLock and 
ClockBoost circuitry in the FLEX 10KE device. However, when both 
circuits are used, the other clock pin cannot be used.
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The VCCINT pins must always be connected to a 2.5-V power supply. 
With a 2.5-V VCCINT level, input voltages are compatible with 2.5-V, 3.3-
V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 
3.3-V power supply, depending on the output requirements. When the 
VCCIO pins are connected to a 2.5-V power supply, the output levels are 
compatible with 2.5-V systems. When the VCCIO pins are connected to a 
3.3-V power supply, the output high is at 3.3 V and is therefore compatible 
with 3.3-V or 5.0-V systems. Devices operating with VCCIO levels higher 
than 3.0 V achieve a faster timing delay of tOD2 instead of tOD1.

Table 14 summarizes FLEX 10KE MultiVolt I/O support.

Notes:
(1) The PCI clamping diode must be disabled to drive an input with voltages higher 

than VCCIO.
(2) When VCCIO = 3.3 V, a FLEX 10KE device can drive a 2.5-V device that has 3.3-V 

tolerant inputs.

Open-drain output pins on FLEX 10KE devices (with a pull-up resistor to 
the 5.0-V supply) can drive 5.0-V CMOS input pins that require a VIH of 
3.5 V. When the open-drain pin is active, it will drive low. When the pin is 
inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain 
pin will only drive low or tri-state; it will never drive high. The rise time 
is dependent on the value of the pull-up resistor and load impedance. The 
IOL current specification should be considered when selecting a pull-up 
resistor.

Power Sequencing & Hot-Socketing
Because FLEX 10KE devices can be used in a mixed-voltage environment, 
they have been designed specifically to tolerate any possible power-up 
sequence. The VCCIO and VCCINT power planes can be powered in any 
order.

Signals can be driven into FLEX 10KE devices before and during power 
up without damaging the device. Additionally, FLEX 10KE devices do not 
drive out during power up. Once operating conditions are reached, 
FLEX 10KE devices operate as specified by the user.

Table 14. FLEX 10KE MultiVolt I/O Support

VCCIO (V) Input Signal (V) Output Signal (V)

2.5 3.3 5.0 2.5 3.3 5.0

2.5 v v(1) v(1) v

3.3 v v v(1) v(2) v v
Altera Corporation 43 
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Table 20. 2.5-V EPF10K50E & EPF10K200E Device Recommended Operating Conditions 

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage for internal logic 
and input buffers

(3), (4) 2.30 (2.30) 2.70 (2.70) V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.30 (2.30) 2.70 (2.70) V

VI Input voltage (5) –0.5 5.75 V

VO Output voltage 0 VCCIO V

TA Ambient temperature For commercial use 0 70 ° C

For industrial use –40 85 ° C

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns

Table 21. 2.5-V EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E & EPF10K200S Device 
Recommended Operating Conditions 

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage for internal logic 
and input buffers

(3), (4) 2.375 
(2.375)

2.625 
(2.625)

V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.375 
(2.375)

2.625 
(2.625)

V

VI Input voltage (5) –0.5 5.75 V

VO Output voltage 0 VCCIO V

TA Ambient temperature For commercial use 0 70 ° C

For industrial use –40 85 ° C

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
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Figure 23. Output Drive Characteristics of FLEX 10KE Devices Note (1)

Note:
(1) These are transient (AC) currents.

Timing Model The continuous, high-performance FastTrack Interconnect routing 
resources ensure predictable performance and accurate simulation and 
timing analysis. This predictable performance contrasts with that of 
FPGAs, which use a segmented connection scheme and therefore have 
unpredictable performance. 

Device performance can be estimated by following the signal path from a 
source, through the interconnect, to the destination. For example, the 
registered performance between two LEs on the same row can be 
calculated by adding the following parameters: 

■ LE register clock-to-output delay (tCO)
■ Interconnect delay (tSAMEROW)
■ LE look-up table delay (tLUT)
■ LE register setup time (tSU)

The routing delay depends on the placement of the source and destination 
LEs. A more complex registered path may involve multiple combinatorial 
LEs between the source and destination LEs. 
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Figure 25. FLEX 10KE Device LE Timing Model
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tCLR LE register clear delay

tCH Minimum clock high time from clock pin

tCL Minimum clock low time from clock pin

Table 24. LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol Parameter Condition

Table 25. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tIOD IOE data delay

tIOC IOE register control signal delay

tIOCO IOE register clock-to-output delay

tIOCOMB IOE combinatorial delay

tIOSU IOE register setup time for data and enable signals before clock; IOE register 
recovery time after asynchronous clear

tIOH IOE register hold time for data and enable signals after clock

tIOCLR IOE register clear time

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ IOE output buffer disable delay

tZX1 IOE output buffer enable delay, slow slew rate = off, VCCIO = 3.3 V C1 = 35 pF (2)

tZX2 IOE output buffer enable delay, slow slew rate = off, VCCIO = 2.5 V C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tINREG IOE input pad and buffer to IOE register delay

tIOFD IOE register feedback delay

tINCOMB IOE input pad and buffer to FastTrack Interconnect delay
Altera Corporation 57 
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be 

measured explicitly.
(2) Operating conditions: VCCIO = 3.3 V ±10% for commercial or industrial use.
(3) Operating conditions: VCCIO = 2.5 V ±5% for commercial or industrial use in EPF10K30E, EPF10K50S, 

EPF10K100E, EPF10K130E, and EPF10K200S devices.
(4) Operating conditions: VCCIO = 3.3 V.
(5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. 
(6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; 

these parameters are calculated by summing selected microparameters. 
(7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 

analysis are required to determine actual worst-case performance.
(8) Contact Altera Applications for test circuit specifications and test conditions.
(9) This timing parameter is sample-tested only.
(10) This parameter is measured with the measurement and test conditions, including load, specified in the PCI Local 

Bus Specification, revision 2.2.

Table 30. External Bidirectional Timing Parameters Note (9)

Symbol Parameter Conditions

tINSUBIDIR Setup time for bi-directional pins with global clock at same-row or same-
column LE register

tINHBIDIR Hold time for bidirectional pins with global clock at same-row or same-column 
LE register

tINH Hold time with global clock at IOE register

tOUTCOBIDIR Clock-to-output delay for bidirectional pins with global clock at IOE register C1 = 35 pF

tXZBIDIR Synchronous IOE output buffer disable delay C1 = 35 pF

tZXBIDIR Synchronous IOE output buffer enable delay, slow slew rate= off C1 = 35 pF
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external 
timing parameters.  

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 8.5 10.0 13.5 ns

tINSU 2.7 3.2 4.3 ns

tINH 0.0 0.0 0.0 ns

tOUTCO 2.0 4.5 2.0 5.2 2.0 7.3 ns

tPCISU  3.0  4.2 - ns

tPCIH  0.0  0.0 - ns

tPCICO  2.0  6.0  2.0  7.7 -  - ns

Table 44. EPF10K50E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 2.7 3.2 4.3 ns

tINHBIDIR 0.0 0.0 0.0 ns

tOUTCOBIDIR 2.0 4.5 2.0 5.2 2.0 7.3 ns

tXZBIDIR 6.8 7.8 10.1 ns

tZXBIDIR  6.8  7.8 10.1 ns

Table 45. EPF10K100E Device LE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.7 1.0 1.5 ns

tCLUT 0.5 0.7 0.9 ns

tRLUT 0.6 0.8 1.1 ns

tPACKED 0.3 0.4 0.5 ns

tEN 0.2 0.3 0.3 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.5 0.7 ns
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Table 50. EPF10K100E External Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 9.0 12.0 16.0 ns

tINSU (3) 2.0 2.5 3.3 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0 5.2 2.0 6.9 2.0 9.1 ns

tINSU (4) 2.0 2.2 – ns

tINH (4) 0.0 0.0 – ns

tOUTCO (4) 0.5 3.0 0.5 4.6 – – ns

tPCISU 3.0 6.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 6.9 – – ns

Table 51. EPF10K100E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (3) 1.7 2.5 3.3 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 2.0 2.8 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 5.2 2.0 6.9 2.0 9.1 ns

tXZBIDIR (3) 5.6 7.5 10.1 ns

tZXBIDIR (3) 5.6 7.5  10.1 ns

tOUTCOBIDIR (4) 0.5 3.0 0.5 4.6 – – ns

tXZBIDIR (4) 4.6 6.5 – ns

tZXBIDIR (4) 4.6  6.5 – ns
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tDD 1.5 2.0 2.6 ns

tEABOUT 0.2 0.3 0.3 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.7 3.5 4.7 ns

Table 55. EPF10K130E Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 5.9 7.5 9.9 ns

tEABRCOMB 5.9 7.5 9.9 ns

tEABRCREG 5.1 6.4 8.5 ns

tEABWP 2.7 3.5 4.7 ns

tEABWCOMB 5.9 7.7 10.3 ns

tEABWCREG 5.4 7.0 9.4 ns

tEABDD 3.4 4.5 5.9 ns

tEABDATACO 0.5 0.7 0.8 ns

tEABDATASU 0.8 1.0 1.4 ns

tEABDATAH 0.1 0.1 0.2 ns

tEABWESU 1.1 1.4 1.9 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.0 1.3 1.7 ns

tEABWDH 0.2 0.2 0.3 ns

tEABWASU 4.1 5.1 6.8 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 3.4 4.5 5.9 ns

Table 54. EPF10K130E Device EAB Internal Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 59 through 65 show EPF10K200E device internal and external 
timing parameters.   

Table 58. EPF10K130E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (3) 2.2 2.4 3.2 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 2.8 3.0 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 5.0 2.0 7.0 2.0 9.2 ns

tXZBIDIR (3) 5.6 8.1 10.8 ns

tZXBIDIR (3) 5.6 8.1  10.8 ns

tOUTCOBIDIR (4) 0.5 4.0 0.5 6.0 – – ns

tXZBIDIR (4) 4.6 7.1 – ns

tZXBIDIR (4) 4.6 7.1 – ns

Table 59. EPF10K200E Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.7 0.8 1.2 ns

tCLUT 0.4 0.5 0.6 ns

tRLUT 0.6 0.7 0.9 ns

tPACKED 0.3 0.5 0.7 ns

tEN 0.4 0.5 0.6 ns

tCICO 0.2 0.2 0.3 ns

tCGEN 0.4 0.4 0.6 ns

tCGENR 0.2 0.2 0.3 ns

tCASC 0.7 0.8 1.2 ns

tC 0.5 0.6 0.8 ns

tCO 0.5 0.6 0.8 ns

tCOMB 0.4 0.6 0.8 ns

tSU 0.4 0.6 0.7 ns
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tEABWCOMB 6.7 8.1 10.7 ns

tEABWCREG 6.6 8.0 10.6 ns

tEABDD 4.0 5.1 6.7 ns

tEABDATACO 0.8 1.0 1.3 ns

tEABDATASU 1.3 1.6 2.1 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 0.9 1.1 1.5 ns

tEABWEH 0.4 0.5 0.6 ns

tEABWDSU 1.5 1.8 2.4 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.7 ns

tEABWAH 0.4 0.5 0.7 ns

tEABWO 3.4 4.4 5.8 ns

Table 63. EPF10K200E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 4.2 4.6 5.7 ns

tDIN2LE 1.7 1.7 2.0 ns

tDIN2DATA 1.9 2.1 3.0 ns

tDCLK2IOE 2.5 2.9 4.0 ns

tDCLK2LE 1.7 1.7 2.0 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 2.3 2.6 3.6 ns

tSAMECOLUMN 2.5 2.7 4.1 ns

tDIFFROW 4.8 5.3 7.7 ns

tTWOROWS 7.1 7.9 11.3 ns

tLEPERIPH 7.0 7.6 9.0 ns

tLABCARRY 0.1 0.1 0.2 ns

tLABCASC 0.9 1.0 1.4 ns

Table 62. EPF10K200E Device EAB Internal Timing Macroparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Power 
Consumption

The supply power (P) for FLEX 10KE devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the 
application logic. This value is calculated based on the amount of current 
that each LE typically consumes. The PIO value, which depends on the 
device output load characteristics and switching frequency, can be 
calculated using the guidelines given in Application Note 74 (Evaluating 
Power for Altera Devices).

Compared to the rest of the device, the embedded array consumes a 
negligible amount of power. Therefore, the embedded array can be 
ignored when calculating supply current.

The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K × fMAX × N × togLC × 

Where:

fMAX = Maximum operating frequency in MHz
N = Total number of LEs used in the device
togLC = Average percent of LEs toggling at each clock 

(typically 12.5%)
K = Constant

Table 80 provides the constant (K) values for FLEX 10KE devices.

This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions.

Table 80. FLEX 10KE K Constant Values

Device K Value

EPF10K30E 4.5

EPF10K50E 4.8

EPF10K50S 4.5

EPF10K100E 4.5

EPF10K130E 4.6

EPF10K200E 4.8

EPF10K200S 4.6

µA
MHz LE×
---------------------------
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During initialization, which occurs immediately after configuration, the 
device resets registers, enables I/O pins, and begins to operate as a logic 
device. The I/O pins are tri-stated during power-up, and before and 
during configuration. Together, the configuration and initialization 
processes are called command mode; normal device operation is called user 
mode.

SRAM configuration elements allow FLEX 10KE devices to be 
reconfigured in-circuit by loading new configuration data into the device. 
Real-time reconfiguration is performed by forcing the device into 
command mode with a device pin, loading different configuration data, 
reinitializing the device, and resuming user-mode operation. The entire 
reconfiguration process requires less than 85 ms and can be used to 
reconfigure an entire system dynamically. In-field upgrades can be 
performed by distributing new configuration files.

Before and during configuration, all I/O pins (except dedicated inputs, 
clock, or configuration pins) are pulled high by a weak pull-up resistor.

Programming Files

Despite being function- and pin-compatible, FLEX 10KE devices are not 
programming- or configuration file-compatible with FLEX 10K or 
FLEX 10KA devices. A design therefore must be recompiled before it is 
transferred from a FLEX 10K or FLEX 10KA device to an equivalent 
FLEX 10KE device. This recompilation should be performed both to create 
a new programming or configuration file and to check design timing in 
FLEX 10KE devices, which has different timing characteristics than 
FLEX 10K or FLEX 10KA devices.

FLEX 10KE devices are generally pin-compatible with equivalent 
FLEX 10KA devices. In some cases, FLEX 10KE devices have fewer I/O 
pins than the equivalent FLEX 10KA devices. Table 81 shows which 
FLEX 10KE devices have fewer I/O pins than equivalent FLEX 10KA 
devices. However, power, ground, JTAG, and configuration pins are the 
same on FLEX 10KA and FLEX 10KE devices, enabling migration from a 
FLEX 10KA design to a FLEX 10KE design.
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Additionally, the Altera software offers several features that help plan for 
future device migration by preventing the use of conflicting I/O pins.

Configuration Schemes

The configuration data for a FLEX 10KE device can be loaded with one of 
five configuration schemes (see Table 82), chosen on the basis of the target 
application. An EPC1, EPC2, or EPC16 configuration device, intelligent 
controller, or the JTAG port can be used to control the configuration of a 
FLEX 10KE device, allowing automatic configuration on system 
power-up.

Multiple FLEX 10KE devices can be configured in any of the five 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device. Additional 
FLEX 10K, FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be 
configured in the same serial chain.

Table 81. I/O Counts for FLEX 10KA & FLEX 10KE Devices

FLEX 10KA FLEX 10KE

Device I/O Count Device I/O Count

EPF10K30AF256 191 EPF10K30EF256 176

EPF10K30AF484 246 EPF10K30EF484 220

EPF10K50VB356 274 EPF10K50SB356 220

EPF10K50VF484 291 EPF10K50EF484 254

EPF10K50VF484 291 EPF10K50SF484 254

EPF10K100AF484 369 EPF10K100EF484 338

Table 82. Data Sources for FLEX 10KE Configuration

Configuration Scheme Data Source

Configuration device EPC1, EPC2, or EPC16 configuration device

Passive serial (PS) BitBlaster, ByteBlasterMV, or MasterBlaster download cables, 
or serial data source

Passive parallel asynchronous (PPA) Parallel data source

Passive parallel synchronous (PPS) Parallel data source

JTAG BitBlaster or ByteBlasterMV download cables, or 
microprocessor with a Jam STAPL file or JBC file
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