Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 624 | | Number of Logic Elements/Cells | 4992 | | Total RAM Bits | 49152 | | Number of I/O | 189 | | Number of Gates | 257000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 240-BFQFP | | Supplier Device Package | 240-PQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k100eqc240-3n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 - Flexible package options - Available in a variety of packages with 144 to 672 pins, including the innovative FineLine BGATM packages (see Tables 3 and 4) - SameFrame[™] pin-out compatibility between FLEX 10KA and FLEX 10KE devices across a range of device densities and pin counts - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic | Table 3. FLEX | Table 3. FLEX 10KE Package Options & I/O Pin CountNotes (1), (2) | | | | | | | | | | | | |---------------|--|-----------------|-------------------------|----------------------------|----------------|----------------------------|----------------|----------------|----------------------------|--|--|--| | Device | 144-Pin
TQFP | 208-Pin
PQFP | 240-Pin
PQFP
RQFP | 256-Pin
FineLine
BGA | 356-Pin
BGA | 484-Pin
FineLine
BGA | 599-Pin
PGA | 600-Pin
BGA | 672-Pin
FineLine
BGA | | | | | EPF10K30E | 102 | 147 | | 176 | | 220 | | | 220 (3) | | | | | EPF10K50E | 102 | 147 | 189 | 191 | | 254 | | | 254 (3) | | | | | EPF10K50S | 102 | 147 | 189 | 191 | 220 | 254 | | | 254 (3) | | | | | EPF10K100E | | 147 | 189 | 191 | 274 | 338 | | | 338 (3) | | | | | EPF10K130E | | | 186 | | 274 | 369 | | 424 | 413 | | | | | EPF10K200E | | | | | | | 470 | 470 | 470 | | | | | EPF10K200S | | | 182 | | 274 | 369 | 470 | 470 | 470 | | | | #### Notes: - (1) FLEX 10KE device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), pin-grid array (PGA), and ball-grid array (BGA) packages. - (2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When planning device migration, use the I/O pins that are common to all devices. - (3) This option is supported with a 484-pin FineLine BGA package. By using SameFrame pin migration, all FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin, 484-pin, and 672-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration is set. | Application | Resourc | es Used | | Performance | | Units | |---------------------------------------------|---------|---------|----------------|----------------|----------------|-------| | | LEs | EABs | -1 Speed Grade | -2 Speed Grade | -3 Speed Grade | | | 16-bit loadable counter | 16 | 0 | 285 | 250 | 200 | MHz | | 16-bit accumulator | 16 | 0 | 285 | 250 | 200 | MHz | | 16-to-1 multiplexer (1) | 10 | 0 | 3.5 | 4.9 | 7.0 | ns | | 16-bit multiplier with 3-stage pipeline (2) | 592 | 0 | 156 | 131 | 93 | MHz | | 256 × 16 RAM read cycle speed (2) | 0 | 1 | 196 | 154 | 118 | MHz | | 256 × 16 RAM write cycle | 0 | 1 | 185 | 143 | 106 | MHz | #### Notes: - (1) This application uses combinatorial inputs and outputs. - (2) This application uses registered inputs and outputs. Table 6 shows FLEX 10KE performance for more complex designs. These designs are available as Altera MegaCore $^{\circ}$ functions. | Table 6. FLEX 10KE Performance for Complex Designs | | | | | | | | | | | | |-------------------------------------------------------------|----------|----------------|----------------|----------------|----------------|--|--|--|--|--|--| | Application | LEs Used | | Performance | | | | | | | | | | | | -1 Speed Grade | -2 Speed Grade | -3 Speed Grade | | | | | | | | | 8-bit, 16-tap parallel finite impulse response (FIR) filter | 597 | 192 | 156 | 116 | MSPS | | | | | | | | 8-bit, 512-point fast Fourier | 1,854 | 23.4 | 28.7 | 38.9 | μ s (1) | | | | | | | | transform (FFT) function | | 113 | 92 | 68 | MHz | | | | | | | | a16450 universal asynchronous receiver/transmitter (UART) | 342 | 36 | 28 | 20.5 | MHz | | | | | | | #### Note: (1) These values are for calculation time. Calculation time = number of clocks required / f_{max} . Number of clocks required = ceiling [log 2 (points)/2] × [points +14 + ceiling] The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous read or writes. Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2). Dedicated Inputs & Global Signals **Dedicated Clocks** Row Interconnect RAM/ROM 256 × 16 512 × 8 data[] 2.048 × 2 ENA FNA rdaddress[] EAB Local ENA Interconnect (2) wraddress[] 4, 8, 16, 32 FΝΔ rden wren outclocken Write Enable inclocken Multiplexers allow read address and read inclock enable registers to be clocked by inclock or outclock outclock signals. Figure 2. FLEX 10KE Device in Dual-Port RAM Mode Notes (1) #### Notes: (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset. Column Interconnect (2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, and EPF10K200E devices have 104 EAB local interconnect channels. The EAB can also use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3. Figure 3. FLEX 10KE EAB in Dual-Port RAM Mode The FLEX 10KE EAB can be used in a single-port mode, which is useful for backward-compatibility with FLEX 10K designs (see Figure 4). Each LAB provides four control signals with programmable inversion that can be used in all eight LEs. Two of these signals can be used as clocks, the other two can be used for clear/preset control. The LAB clocks can be driven by the dedicated clock input pins, global signals, I/O signals, or internal signals via the LAB local interconnect. The LAB preset and clear control signals can be driven by the global signals, I/O signals, or internal signals via the LAB local interconnect. The global control signals are typically used for global clock, clear, or preset signals because they provide asynchronous control with very low skew across the device. If logic is required on a control signal, it can be generated in one or more LE in any LAB and driven into the local interconnect of the target LAB. In addition, the global control signals can be generated from LE outputs. #### Logic Element The LE, the smallest unit of logic in the FLEX 10KE architecture, has a compact size that provides efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can quickly compute any function of four variables. In addition, each LE contains a programmable flipflop with a synchronous clock enable, a carry chain, and a cascade chain. Each LE drives both the local and the FastTrack Interconnect routing structure (see Figure 8). Altera Corporation 17 Cascade-Out Carry-Out #### Cascade Chain With the cascade chain, the FLEX 10KE architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE provides four more inputs to the effective width of a function. Cascade chain logic can be created automatically by the Altera Compiler during design processing, or manually by the designer during design entry. Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EPF10K50E device, the cascade chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row. Figure 10 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. The LE delay is 0.9 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 2.7 ns are needed to decode a 16-bit address. Figure 10. FLEX 10KE Cascade Chain Operation Figure 11 shows the LE operating modes. Figure 11. FLEX 10KE LE Operating Modes #### Normal Mode #### Arithmetic Mode #### **Up/Down Counter Mode** #### Clearable Counter Mode In addition to the six clear and preset modes, FLEX 10KE devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality. Figure 12. FLEX 10KE LE Clear & Preset Modes #### **Asynchronous Clear** The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to VCC to deactivate it. #### **Asynchronous Preset** An asynchronous preset is implemented as an asynchronous load, or with an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes. #### Asynchronous Preset & Clear When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register. #### **Asynchronous Load with Clear** When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits. #### **Asynchronous Load with Preset** When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output. #### **Asynchronous Load without Preset or Clear** When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LE 1 LE 2 LE 8 To LAB Local Interconnect Row Channels At each intersection, six row channels can drive column channels. Each LE can drive two row channels. Each LE can switch interconnect access with an LE in the adjacent LAB. From Adjacent LAB To Adjacent LAB Figure 13. FLEX 10KE LAB Connections to Row & Column Interconnect 28 Altera Corporation To Other Rows Interconnect Clock Inputs 4 Dedicated Peripheral Inputs Control Bus OE Register 12 D ENA CLRN Chip-Wide Reset Chip-Wide Output Enable OE[7..0] (1) Programmable Delay Output Register (2) D Q CLK[1..0] ENA Open-Drain CLK[3..2] CLRN Output Slew-Rate ENA[5..0] Control VCC CLRN[1..0] Chip-Wide Reset Input Register (2) Б <u>vçc</u> ENA CLRN Chip-Wide Reset Figure 15. FLEX 10KE Bidirectional I/O Registers Row and Column 2 Dedicated #### Note: (1) All FLEX 10KE devices (except the EPF10K50E and EPF10K200E devices) have a programmable input delay buffer on the input path. Tables 12 and 13 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively. | Table 12. | Table 12. ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices | | | | | | | | | | | | |-----------------------|-------------------------------------------------------------------------|----------------------|-----|-----|------------|------|--|--|--|--|--|--| | Symbol | Parameter | Condition | Min | Тур | Max | Unit | | | | | | | | t_R | Input rise time | | | | 5 | ns | | | | | | | | t _F | Input fall time | | | | 5 | ns | | | | | | | | t _{INDUTY} | Input duty cycle | | 40 | | 60 | % | | | | | | | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | | 25 | | 180 | MHz | | | | | | | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | | 16 | | 90 | MHz | | | | | | | | f _{CLKDEV} | Input deviation from user specification in the MAX+PLUS II software (1) | | | | 25,000 (2) | PPM | | | | | | | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | | 100 | ps | | | | | | | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (3) | | | | 10 | μs | | | | | | | | t _{JITTER} | Jitter on ClockLock or ClockBoost- | $t_{INCLKSTB} < 100$ | | | 250 | ps | | | | | | | | | generated clock (4) | $t_{INCLKSTB} < 50$ | | | 200 (4) | ps | | | | | | | | t _{OUTDUTY} | Duty cycle for ClockLock or ClockBoost-generated clock | | 40 | 50 | 60 | % | | | | | | | to Be Driven Figure 20. FLEX 10KE JTAG Waveforms TMS TDI t_{JPSU} TCK t_{JPZX} t _{JPXZ} $\mathbf{t}_{\mathsf{JPCO}}$ TDO t_{JSH} t_{JSSU} Signal to Be Captured t_{JSCO}t_{JSZX} t_{JSXZ} Signal Figure 20 shows the timing requirements for the JTAG signals. Table 18 shows the timing parameters and values for FLEX 10KE devices. | Table 18. FLEX 10KE JTAG Timing Parameters & Values | | | | | | | | | | | | |-----------------------------------------------------|------------------------------------------------|-----|-----|------|--|--|--|--|--|--|--| | Symbol | Parameter | Min | Max | Unit | | | | | | | | | t _{JCP} | TCK clock period | 100 | | ns | | | | | | | | | t _{JCH} | TCK clock high time | 50 | | ns | | | | | | | | | t _{JCL} | TCK clock low time | 50 | | ns | | | | | | | | | t _{JPSU} | JTAG port setup time | 20 | | ns | | | | | | | | | t _{JPH} | JTAG port hold time | 45 | | ns | | | | | | | | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | | | | | | | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | | | | | | | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | | | | | | | | t _{JSSU} | Capture register setup time | 20 | | ns | | | | | | | | | t _{JSH} | Capture register hold time | 45 | | ns | | | | | | | | | t _{JSCO} | Update register clock to output | | 35 | ns | | | | | | | | | t _{JSZX} | Update register high impedance to valid output | | 35 | ns | | | | | | | | | t _{JSXZ} | Update register valid output to high impedance | | 35 | ns | | | | | | | | | Table 23. FLEX 10KE Device Capacitance Note (14) | | | | | | | | | | | |--------------------------------------------------|------------------------------------------|-------------------------------------|-----|-----|------|--|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | | | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | | | | | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V. - (7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21. - (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22. - (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current. - (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (11) This value is specified for normal device operation. The value may vary during power-up. - (12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial temperature devices. - (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source. - (14) Capacitance is sample-tested only. | Table 28. Inte | rconnect Timing Microparameters Note (1) | | |--------------------------|----------------------------------------------------------------------------------------------------------------------|------------| | Symbol | Parameter | Conditions | | t _{DIN2IOE} | Delay from dedicated input pin to IOE control input | (7) | | t _{DIN2LE} | Delay from dedicated input pin to LE or EAB control input | (7) | | t _{DCLK2IOE} | Delay from dedicated clock pin to IOE clock | (7) | | t _{DCLK2LE} | Delay from dedicated clock pin to LE or EAB clock | (7) | | t _{DIN2DATA} | Delay from dedicated input or clock to LE or EAB data | (7) | | t _{SAMELAB} | Routing delay for an LE driving another LE in the same LAB | | | t _{SAMEROW} | Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row | (7) | | t _{SAME} COLUMN | Routing delay for an LE driving an IOE in the same column | (7) | | t _{DIFFROW} | Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row | (7) | | t _{TWOROWS} | Routing delay for a row IOE or EAB driving an LE or EAB in a different row | (7) | | t _{LEPERIPH} | Routing delay for an LE driving a control signal of an IOE via the peripheral control bus | (7) | | t _{LABCARRY} | Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB | | | t _{LABCASC} | Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB | | | Table 29. External Timing Parameters | | | | | | | | | | |--------------------------------------|------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|--| | Symbol | Parameter | Conditions | | | | | | | | | t _{DRR} | Register-to-register delay via four LEs, three row interconnects, and four local interconnects | (8) | | | | | | | | | t _{INSU} | Setup time with global clock at IOE register | (9) | | | | | | | | | t _{INH} | Hold time with global clock at IOE register | (9) | | | | | | | | | tоитсо | Clock-to-output delay with global clock at IOE register | (9) | | | | | | | | | t _{PCISU} | Setup time with global clock for registers used in PCI designs | (9),(10) | | | | | | | | | t _{PCIH} | Hold time with global clock for registers used in PCI designs | (9),(10) | | | | | | | | | t _{PCICO} | Clock-to-output delay with global clock for registers used in PCI designs | (9),(10) | | | | | | | | | Table 31. EPF10K30E Device LE Timing Microparameters (Part 2 of 2) Note (1) | | | | | | | | | | | |-----------------------------------------------------------------------------|---------|----------------|-----|----------------|-----|----------|------|--|--|--| | Symbol | -1 Spee | -1 Speed Grade | | -2 Speed Grade | | ed Grade | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | | | | t _{CASC} | | 0.6 | | 0.8 | | 1.0 | ns | | | | | $t_{\mathbb{C}}$ | | 0.0 | | 0.0 | | 0.0 | ns | | | | | t_{CO} | | 0.3 | | 0.4 | | 0.5 | ns | | | | | t _{COMB} | | 0.4 | | 0.4 | | 0.6 | ns | | | | | t_{SU} | 0.4 | | 0.6 | | 0.6 | | ns | | | | | t_H | 0.7 | | 1.0 | | 1.3 | | ns | | | | | t _{PRE} | | 0.8 | | 0.9 | | 1.2 | ns | | | | | t _{CLR} | | 0.8 | | 0.9 | | 1.2 | ns | | | | | t _{CH} | 2.0 | | 2.5 | | 2.5 | | ns | | | | | t_{CL} | 2.0 | | 2.5 | | 2.5 | | ns | | | | | Table 32. EPF10K30E Device IOE Timing Microparameters Note (1) | | | | | | | | | | |----------------------------------------------------------------|----------------|-----|----------------|-----|---------|----------|------|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Spec | ed Grade | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{IOD} | | 2.4 | | 2.8 | | 3.8 | ns | | | | t _{IOC} | | 0.3 | | 0.4 | | 0.5 | ns | | | | t _{IOCO} | | 1.0 | | 1.1 | | 1.6 | ns | | | | t _{IOCOMB} | | 0.0 | | 0.0 | | 0.0 | ns | | | | t _{IOSU} | 1.2 | | 1.4 | | 1.9 | | ns | | | | t _{IOH} | 0.3 | | 0.4 | | 0.5 | | ns | | | | t _{IOCLR} | | 1.0 | | 1.1 | | 1.6 | ns | | | | t _{OD1} | | 1.9 | | 2.3 | | 3.0 | ns | | | | t _{OD2} | | 1.4 | | 1.8 | | 2.5 | ns | | | | t _{OD3} | | 4.4 | | 5.2 | | 7.0 | ns | | | | t_{XZ} | | 2.7 | | 3.1 | | 4.3 | ns | | | | t_{ZX1} | | 2.7 | | 3.1 | | 4.3 | ns | | | | t_{ZX2} | | 2.2 | | 2.6 | | 3.8 | ns | | | | t_{ZX3} | | 5.2 | | 6.0 | | 8.3 | ns | | | | t _{INREG} | | 3.4 | | 4.1 | | 5.5 | ns | | | | t _{IOFD} | | 0.8 | | 1.3 | | 2.4 | ns | | | | t _{INCOMB} | | 0.8 | | 1.3 | | 2.4 | ns | | | | Table 56. EPF10k | K130E Device | e Interconne | ct Timing M | icroparamet | ters Not | e (1) | | | |--------------------------|--------------|--------------|----------------|-------------|----------|---------|------|--| | Symbol | -1 Spee | ed Grade | -2 Speed Grade | | -3 Spee | d Grade | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{DIN2IOE} | | 2.8 | | 3.5 | | 4.4 | ns | | | t _{DIN2LE} | | 0.7 | | 1.2 | | 1.6 | ns | | | t _{DIN2DATA} | | 1.6 | | 1.9 | | 2.2 | ns | | | t _{DCLK2IOE} | | 1.6 | | 2.1 | | 2.7 | ns | | | t _{DCLK2LE} | | 0.7 | | 1.2 | | 1.6 | ns | | | t _{SAMELAB} | | 0.1 | | 0.2 | | 0.2 | ns | | | t _{SAMEROW} | | 1.9 | | 3.4 | | 5.1 | ns | | | t _{SAME} COLUMN | | 0.9 | | 2.6 | | 4.4 | ns | | | t _{DIFFROW} | | 2.8 | | 6.0 | | 9.5 | ns | | | t _{TWOROWS} | | 4.7 | | 9.4 | | 14.6 | ns | | | t _{LEPERIPH} | | 3.1 | | 4.7 | | 6.9 | ns | | | t _{LABCARRY} | | 0.6 | | 0.8 | | 1.0 | ns | | | t _{LABCASC} | | 0.9 | | 1.2 | | 1.6 | ns | | | Table 57. EPF10K | Table 57. EPF10K130E External Timing Parameters Notes (1), (2) | | | | | | | | |------------------------|----------------------------------------------------------------|----------|---------|---------|---------|---------|------|--| | Symbol | -1 Spee | ed Grade | -2 Spee | d Grade | -3 Spee | d Grade | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{DRR} | | 9.0 | | 12.0 | | 16.0 | ns | | | t _{INSU} (3) | 1.9 | | 2.1 | | 3.0 | | ns | | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{outco} (3) | 2.0 | 5.0 | 2.0 | 7.0 | 2.0 | 9.2 | ns | | | t _{INSU} (4) | 0.9 | | 1.1 | | - | | ns | | | t _{INH} (4) | 0.0 | | 0.0 | | - | | ns | | | t _{OUTCO} (4) | 0.5 | 4.0 | 0.5 | 6.0 | - | - | ns | | | t _{PCISU} | 3.0 | | 6.2 | | - | | ns | | | t _{PCIH} | 0.0 | | 0.0 | | - | | ns | | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 6.9 | _ | _ | ns | | | Table 69. EPF10K50S Device EAB Internal Timing Macroparameters Note (1) | | | | | | | | |-------------------------------------------------------------------------|----------------|-----|----------------|-----|----------------|-----|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{EABAA} | | 3.7 | | 5.2 | | 7.0 | ns | | t _{EABRCCOMB} | 3.7 | | 5.2 | | 7.0 | | ns | | t _{EABRCREG} | 3.5 | | 4.9 | | 6.6 | | ns | | t _{EABWP} | 2.0 | | 2.8 | | 3.8 | | ns | | t _{EABWCCOMB} | 4.5 | | 6.3 | | 8.6 | | ns | | t _{EABWCREG} | 5.6 | | 7.8 | | 10.6 | | ns | | t_{EABDD} | | 3.8 | | 5.3 | | 7.2 | ns | | t _{EABDATACO} | | 0.8 | | 1.1 | | 1.5 | ns | | t _{EABDATASU} | 1.1 | | 1.6 | | 2.1 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 0.7 | | 1.0 | | 1.3 | | ns | | t _{EABWEH} | 0.4 | | 0.6 | | 0.8 | | ns | | t _{EABWDSU} | 1.2 | | 1.7 | | 2.2 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 1.6 | | 2.3 | | 3.0 | | ns | | t _{EABWAH} | 0.9 | | 1.2 | | 1.8 | | ns | | t_{EABWO} | | 3.1 | | 4.3 | | 5.9 | ns | | Table 70. EPF10 | K50S Device | Interconnec | t Timing Mi | croparamete | ers Note | (1) | | |--------------------------|----------------|-------------|----------------|-------------|----------------|-----|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 3.1 | | 3.7 | | 4.6 | ns | | t _{DIN2LE} | | 1.7 | | 2.1 | | 2.7 | ns | | t _{DIN2DATA} | | 2.7 | | 3.1 | | 5.1 | ns | | t _{DCLK2IOE} | | 1.6 | | 1.9 | | 2.6 | ns | | t _{DCLK2LE} | | 1.7 | | 2.1 | | 2.7 | ns | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{SAMEROW} | | 1.5 | | 1.7 | | 2.4 | ns | | t _{SAME} COLUMN | | 1.0 | | 1.3 | | 2.1 | ns | | t _{DIFFROW} | | 2.5 | | 3.0 | | 4.5 | ns | | t _{TWOROWS} | | 4.0 | | 4.7 | | 6.9 | ns | | t _{LEPERIPH} | | 2.6 | | 2.9 | | 3.4 | ns | | t _{LABCARRY} | | 0.1 | | 0.2 | | 0.2 | ns | | t _{LABCASC} | | 0.8 | | 1.0 | | 1.3 | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |------------------------|----------------|-----|----------------|-----|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 8.0 | | 9.5 | | 12.5 | ns | | t _{INSU} (2) | 2.4 | | 2.9 | | 3.9 | | ns | | t _{INH} (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{оитсо} (2) | 2.0 | 4.3 | 2.0 | 5.2 | 2.0 | 7.3 | ns | | t _{INSU} (3) | 2.4 | | 2.9 | | | | ns | | t _{INH} (3) | 0.0 | | 0.0 | | | | ns | | t _{оитсо} (3) | 0.5 | 3.3 | 0.5 | 4.1 | | | ns | | t _{PCISU} | 2.4 | | 2.9 | | _ | | ns | | t _{PCIH} | 0.0 | | 0.0 | | _ | | ns | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 7.7 | _ | - | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |----------------------------|----------------|-----|----------------|-----|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (2) | 2.7 | | 3.2 | | 4.3 | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{INHBIDIR} (3) | 0.0 | | 0.0 | | - | | ns | | t _{INSUBIDIR} (3) | 3.7 | | 4.2 | | - | | ns | | toutcobidir (2) | 2.0 | 4.5 | 2.0 | 5.2 | 2.0 | 7.3 | ns | | t _{XZBIDIR} (2) | | 6.8 | | 7.8 | | 10.1 | ns | | t _{ZXBIDIR} (2) | | 6.8 | | 7.8 | | 10.1 | ns | | toutcobidir (3) | 0.5 | 3.5 | 0.5 | 4.2 | - | - | | | t _{XZBIDIR} (3) | | 6.8 | | 8.4 | | - | ns | | t _{ZXBIDIR} (3) | | 6.8 | | 8.4 | | _ | ns | #### Notes to tables: - All timing parameters are described in Tables 24 through 30. This parameter is measured without use of the ClockLock or ClockBoost circuits. - This parameter is measured with use of the ClockLock or ClockBoost circuits (3) # Device Pin-Outs See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information. ### Revision History The information contained in the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.5 supersedes information published in previous versions. #### Version 2.5 The following changes were made to the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.5: - Note (1) added to Figure 23. - Text added to "I/O Element" section on page 34. - Updated Table 22. #### Version 2.4 The following changes were made to the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.4: updated text on page 34 and page 63.