Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 624 | | Number of Logic Elements/Cells | 4992 | | Total RAM Bits | 49152 | | Number of I/O | 189 | | Number of Gates | 257000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 85°C (TA) | | Package / Case | 240-BFQFP | | Supplier Device Package | 240-PQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k100eqi240-3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong EABs provide flexible options for driving and controlling clock signals. Different clocks and clock enables can be used for reading and writing to the EAB. Registers can be independently inserted on the data input, EAB output, write address, write enable signals, read address, and read enable signals. The global signals and the EAB local interconnect can drive write enable, read enable, and clock enable signals. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control write enable, read enable, clear, clock, and clock enable signals. An EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs (see Figures 2 and 4). The column interconnect, which is adjacent to the EAB, has twice as many channels as other columns in the device. #### Logic Array Block An LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the FLEX 10KE architecture, facilitating efficient routing with optimum device utilization and high performance (see Figure 7). #### LE Operating Modes The FLEX 10KE LE can operate in the following four modes: - Normal mode - Arithmetic mode - Up/down counter mode - Clearable counter mode Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance. The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs. In addition to the six clear and preset modes, FLEX 10KE devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality. Figure 12. FLEX 10KE LE Clear & Preset Modes #### **Asynchronous Clear** The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to VCC to deactivate it. #### **Asynchronous Preset** An asynchronous preset is implemented as an asynchronous load, or with an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes. #### Asynchronous Preset & Clear When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register. #### **Asynchronous Load with Clear** When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits. #### **Asynchronous Load with Preset** When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output. #### **Asynchronous Load without Preset or Clear** When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row. Table 7 summarizes the FastTrack Interconnect routing structure resources available in each FLEX 10KE device. | Table 7. FLEX 1 | Table 7. FLEX 10KE FastTrack Interconnect Resources | | | | | | | | |--------------------------|---|---------------------|---------|------------------------|--|--|--|--| | Device | Rows | Channels per
Row | Columns | Channels per
Column | | | | | | EPF10K30E | 6 | 216 | 36 | 24 | | | | | | EPF10K50E
EPF10K50S | 10 | 216 | 36 | 24 | | | | | | EPF10K100E | 12 | 312 | 52 | 24 | | | | | | EPF10K130E | 16 | 312 | 52 | 32 | | | | | | EPF10K200E
EPF10K200S | 24 | 312 | 52 | 48 | | | | | In addition to general-purpose I/O pins, FLEX 10KE devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output enable and clock enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. On all FLEX 10KE devices (except EPF10K50E and EPF10K200E devices), the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. EPF10K50S and EPF10K200S devices also support this feature. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time or turn it off to minimize setup time. This feature is used to reduce setup time for complex pin-to-register paths (e.g., PCI designs). Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across the device and provides up to 12 peripheral control signals that can be allocated as follows: - Up to eight output enable signals - Up to six clock enable signals - Up to two clock signals - Up to two clear signals If more than six clock enable or eight output enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, a LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chipwide reset signal resets all IOE registers, overriding any other control signals. When a dedicated clock pin drives IOE registers, it can be inverted for all IOEs in the device. All IOEs must use the same sense of the clock. For example, if any IOE uses the inverted clock, all IOEs must use the inverted clock and no IOE can use the non-inverted clock. However, LEs can still use the true or complement of the clock on a LAB-by-LAB basis. The incoming signal may be inverted at the dedicated clock pin and will drive all IOEs. For the true and complement of a clock to be used to drive IOEs, drive it into both global clock pins. One global clock pin will supply the true, and the other will supply the complement. When the true and complement of a dedicated input drives IOE clocks, two signals on the peripheral control bus are consumed, one for each sense of the clock. #### Column-to-IOE Connections When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels is different for each IOE (see Figure 17). Figure 17. FLEX 10KE Column-to-IOE Connections The values for m and n are provided in Table 11. Table 11 lists the FLEX 10KE column-to-IOE interconnect resources. | Table 11. FLEX 10 | Table 11. FLEX 10KE Column-to-IOE Interconnect Resources | | | | | | | |--------------------------|--|-----------------------------|--|--|--|--|--| | Device | Channels per Column (n) | Column Channels per Pin (m) | | | | | | | EPF10K30E | 24 | 16 | | | | | | | EPF10K50E
EPF10K50S | 24 | 16 | | | | | | | EPF10K100E | 24 | 16 | | | | | | | EPF10K130E | 32 | 24 | | | | | | | EPF10K200E
EPF10K200S | 48 | 40 | | | | | | Tables 12 and 13 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively. | Table 12. | . ClockLock & ClockBoost Param | eters for -1 Speed-C | Grade Device | es | | | |-----------------------|---|----------------------|--------------|-----|------------|------| | Symbol | Parameter | Condition | Min | Тур | Max | Unit | | t_R | Input rise time | | | | 5 | ns | | t _F | Input fall time | | | | 5 | ns | | t _{INDUTY} | Input duty cycle | | 40 | | 60 | % | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | | 25 | | 180 | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | | 16 | | 90 | MHz | | f _{CLKDEV} | Input deviation from user specification in the MAX+PLUS II software (1) | | | | 25,000 (2) | PPM | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | | 100 | ps | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (3) | | | | 10 | μs | | t _{JITTER} | Jitter on ClockLock or ClockBoost- | $t_{INCLKSTB} < 100$ | | | 250 | ps | | | generated clock (4) | $t_{INCLKSTB} < 50$ | | | 200 (4) | ps | | t _{OUTDUTY} | Duty cycle for ClockLock or ClockBoost-generated clock | | 40 | 50 | 60 | % | | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|---|--------------------|-------------|-------------------|------| | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 2.30 (2.30) | 2.70 (2.70) | V | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | | Supply voltage for output buffers, 2.5-V operation | (3), (4) | 2.30 (2.30) | 2.70 (2.70) | V | | VI | Input voltage | (5) | -0.5 | 5.75 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | For industrial use | -40 | 85 | ° C | | T _J | Operating temperature | For commercial use | 0 | 85 | ° C | | | | For industrial use | -40 | 100 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Table 21. 2.5-V EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E & EPF10K200S Device Recommended Operating Conditions | | | | | | | |---|---|--------------------|------------------|-------------------|------|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 2.375
(2.375) | 2.625
(2.625) | V | | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | | | Supply voltage for output buffers, 2.5-V operation | (3), (4) | 2.375
(2.375) | 2.625
(2.625) | V | | | V _I | Input voltage | (5) | -0.5 | 5.75 | V | | | Vo | Output voltage | | 0 | V _{CCIO} | V | | | T _A | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | | For industrial use | -40 | 85 | ° C | | | TJ | Operating temperature | For commercial use | 0 | 85 | ° C | | | | | For industrial use | -40 | 100 | ° C | | | t _R | Input rise time | | | 40 | ns | | | t _F | Input fall time | | | 40 | ns | | | Table 24. LE | Timing Microparameters (Part 2 of 2) Note (1) | | |------------------|---|-----------| | Symbol | Parameter | Condition | | t _{CLR} | LE register clear delay | | | t _{CH} | Minimum clock high time from clock pin | | | t_{CL} | Minimum clock low time from clock pin | | | Table 25. IOL | E Timing Microparameters Note (1) | | |---------------------|---|----------------| | Symbol | Parameter | Conditions | | t_{IOD} | IOE data delay | | | t _{IOC} | IOE register control signal delay | | | t _{IOCO} | IOE register clock-to-output delay | | | t _{IOCOMB} | IOE combinatorial delay | | | t _{IOSU} | IOE register setup time for data and enable signals before clock; IOE register recovery time after asynchronous clear | | | t _{IOH} | IOE register hold time for data and enable signals after clock | | | t _{IOCLR} | IOE register clear time | | | t _{OD1} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | t _{OD2} | Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | t _{OD3} | Output buffer and pad delay, slow slew rate = on | C1 = 35 pF (4) | | t_{XZ} | IOE output buffer disable delay | | | t_{ZX1} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (2) | | t_{ZX2} | IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 2.5 V | C1 = 35 pF (3) | | t _{ZX3} | IOE output buffer enable delay, slow slew rate = on | C1 = 35 pF (4) | | t _{INREG} | IOE input pad and buffer to IOE register delay | | | t _{IOFD} | IOE register feedback delay | | | t _{INCOMB} | IOE input pad and buffer to FastTrack Interconnect delay | | Figure 30. EAB Synchronous Timing Waveforms #### **EAB Synchronous Read** #### EAB Synchronous Write (EAB Output Registers Used) Tables 31 through 37 show EPF10K30E device internal and external timing parameters. | Table 31. EPF10 | K30E Device | LE Timing N | 1icroparame | ters (Part 1 | of 2) No | ote (1) | | |---------------------|-------------|----------------|-------------|----------------|----------|---------|------| | Symbol | -1 Spec | -1 Speed Grade | | -2 Speed Grade | | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t_{LUT} | | 0.7 | | 0.8 | | 1.1 | ns | | t _{CLUT} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{RLUT} | | 0.6 | | 0.7 | | 1.0 | ns | | t _{PACKED} | | 0.3 | | 0.4 | | 0.5 | ns | | t_{EN} | | 0.6 | | 0.8 | | 1.0 | ns | | t _{CICO} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CGEN} | | 0.4 | | 0.5 | | 0.7 | ns | | Table 34. EPF10K30E Device EAB Internal Timing Macroparameters Note (1) | | | | | | | | |---|---------|----------------|-----|----------------|-----|----------|------| | Symbol | -1 Spee | -1 Speed Grade | | -2 Speed Grade | | ed Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{EABAA} | | 6.4 | | 7.6 | | 8.8 | ns | | t _{EABRCOMB} | 6.4 | | 7.6 | | 8.8 | | ns | | t _{EABRCREG} | 4.4 | | 5.1 | | 6.0 | | ns | | t _{EABWP} | 2.5 | | 2.9 | | 3.3 | | ns | | t _{EABWCOMB} | 6.0 | | 7.0 | | 8.0 | | ns | | t _{EABWCREG} | 6.8 | | 7.8 | | 9.0 | | ns | | t _{EABDD} | | 5.7 | | 6.7 | | 7.7 | ns | | t _{EABDATA} CO | | 0.8 | | 0.9 | | 1.1 | ns | | t _{EABDATASU} | 1.5 | | 1.7 | | 2.0 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 1.3 | | 1.4 | | 1.7 | | ns | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWDSU} | 1.5 | | 1.7 | | 2.0 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 3.0 | | 3.6 | | 4.3 | | ns | | t _{EABWAH} | 0.5 | | 0.5 | | 0.4 | | ns | | t _{EABWO} | | 5.1 | | 6.0 | | 6.8 | ns | | Symbol | -1 Spee | d Grade | -2 Spee | ed Grade | -3 Spee | ed Grade | Unit | |--------------------------|---------|---------|---------|----------|---------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 1.8 | | 2.4 | | 2.9 | ns | | t _{DIN2LE} | | 1.5 | | 1.8 | | 2.4 | ns | | t _{DIN2DATA} | | 1.5 | | 1.8 | | 2.2 | ns | | t _{DCLK2IOE} | | 2.2 | | 2.6 | | 3.0 | ns | | t _{DCLK2LE} | | 1.5 | | 1.8 | | 2.4 | ns | | t _{SAMELAB} | | 0.1 | | 0.2 | | 0.3 | ns | | t _{SAMEROW} | | 2.0 | | 2.4 | | 2.7 | ns | | t _{SAME} COLUMN | | 0.7 | | 1.0 | | 0.8 | ns | | t _{DIFFROW} | | 2.7 | | 3.4 | | 3.5 | ns | | t _{TWOROWS} | | 4.7 | | 5.8 | | 6.2 | ns | | t _{LEPERIPH} | | 2.7 | | 3.4 | | 3.8 | ns | | t _{LABCARRY} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{LABCASC} | | 0.8 | | 0.8 | | 1.1 | ns | | Symbol | -1 Spec | ed Grade | -2 Spee | d Grade | -3 Speed Grade | | Unit | |------------------------|---------|----------|---------|---------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 8.0 | | 9.5 | | 12.5 | ns | | t _{INSU} (3) | 2.1 | | 2.5 | | 3.9 | | ns | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{оитсо} (3) | 2.0 | 4.9 | 2.0 | 5.9 | 2.0 | 7.6 | ns | | t _{INSU} (4) | 1.1 | | 1.5 | | - | | ns | | t _{INH} (4) | 0.0 | | 0.0 | | - | | ns | | ^t оитсо | 0.5 | 3.9 | 0.5 | 4.9 | - | - | ns | | t _{PCISU} | 3.0 | | 4.2 | | - | | ns | | рсін | 0.0 | | 0.0 | | - | | ns | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 7.5 | _ | _ | ns | | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | d Grade | Unit | |--------------------|---------|---------|---------|---------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CASC} | | 0.6 | | 0.9 | | 1.2 | ns | | t _C | | 0.8 | | 1.0 | | 1.4 | ns | | t _{CO} | | 0.6 | | 0.8 | | 1.1 | ns | | t _{COMB} | | 0.4 | | 0.5 | | 0.7 | ns | | t _{SU} | 0.4 | | 0.6 | | 0.7 | | ns | | t _H | 0.5 | | 0.7 | | 0.9 | | ns | | t _{PRE} | | 0.8 | | 1.0 | | 1.4 | ns | | t _{CLR} | | 0.8 | | 1.0 | | 1.4 | ns | | t _{CH} | 1.5 | | 2.0 | | 2.5 | | ns | | t_{CL} | 1.5 | | 2.0 | | 2.5 | | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |---------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 1.7 | | 2.0 | | 2.6 | ns | | t_{IOC} | | 0.0 | | 0.0 | | 0.0 | ns | | t_{IOCO} | | 1.4 | | 1.6 | | 2.1 | ns | | t_{IOCOMB} | | 0.5 | | 0.7 | | 0.9 | ns | | t _{IOSU} | 0.8 | | 1.0 | | 1.3 | | ns | | t_{IOH} | 0.7 | | 0.9 | | 1.2 | | ns | | t _{IOCLR} | | 0.5 | | 0.7 | | 0.9 | ns | | t_{OD1} | | 3.0 | | 4.2 | | 5.6 | ns | | t_{OD2} | | 3.0 | | 4.2 | | 5.6 | ns | | t_{OD3} | | 4.0 | | 5.5 | | 7.3 | ns | | t_{XZ} | | 3.5 | | 4.6 | | 6.1 | ns | | t _{ZX1} | | 3.5 | | 4.6 | | 6.1 | ns | | t_{ZX2} | | 3.5 | - | 4.6 | - | 6.1 | ns | | t_{ZX3} | | 4.5 | - | 5.9 | - | 7.8 | ns | | t _{INREG} | | 2.0 | | 2.6 | | 3.5 | ns | | t _{IOFD} | | 0.5 | | 0.8 | | 1.2 | ns | | t _{INCOMB} | | 0.5 | | 0.8 | | 1.2 | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |------------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.5 | | 2.0 | | 2.6 | ns | | t _{EABDATA1} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABWE1} | | 1.5 | | 2.0 | | 2.6 | ns | | t _{EABWE2} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{EABRE1} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{EABRE2} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{EABBYPASS} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{EABSU} | 0.8 | | 1.0 | | 1.4 | | ns | | t _{EABH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{EABCLR} | 0.3 | | 0.4 | | 0.5 | | ns | | t_{AA} | | 4.0 | | 5.1 | | 6.6 | ns | | t_{WP} | 2.7 | | 3.5 | | 4.7 | | ns | | t_{RP} | 1.0 | | 1.3 | | 1.7 | | ns | | t _{WDSU} | 1.0 | | 1.3 | | 1.7 | | ns | | t _{WDH} | 0.2 | | 0.2 | | 0.3 | | ns | | t _{WASU} | 1.6 | | 2.1 | | 2.8 | | ns | | t _{WAH} | 1.6 | | 2.1 | | 2.8 | | ns | | t _{RASU} | 3.0 | | 3.9 | | 5.2 | | ns | | t _{RAH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{WO} | | 1.5 | | 2.0 | | 2.6 | ns | | t _{DD} | | 1.5 | | 2.0 | | 2.6 | ns | | t _{EABOUT} | | 0.2 | | 0.3 | | 0.3 | ns | | t _{EABCH} | 1.5 | | 2.0 | | 2.5 | | ns | | t _{EABCL} | 2.7 | | 3.5 | | 4.7 | | ns | | Table 48. EPF10K100E Device EAB Internal Timing Macroparameters (Part 1 of 2) Note (1) | | | | | | | | | | | |---|----------------|-----|---------|----------------|-----|---------|------|--|--|--| | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | d Grade | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{EABAA} | | 5.9 | | 7.6 | | 9.9 | ns | | | | | t _{EABRCOMB} | 5.9 | | 7.6 | | 9.9 | | ns | | | | | t _{EABRCREG} | 5.1 | | 6.5 | | 8.5 | | ns | | | | | t_{EABWP} | 2.7 | | 3.5 | | 4.7 | | ns | | | | | Symbol | -1 Spee | d Grade | -2 Spee | ed Grade | -3 Spee | ed Grade | Unit | |------------------------|---------|---------|---------|----------|---------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABWCOMB} | 5.9 | | 7.7 | | 10.3 | | ns | | t _{EABWCREG} | 5.4 | | 7.0 | | 9.4 | | ns | | t _{EABDD} | | 3.4 | | 4.5 | | 5.9 | ns | | t _{EABDATACO} | | 0.5 | | 0.7 | | 0.8 | ns | | t _{EABDATASU} | 0.8 | | 1.0 | | 1.4 | | ns | | t _{EABDATAH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{EABWESU} | 1.1 | | 1.4 | | 1.9 | | ns | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWDSU} | 1.0 | | 1.3 | | 1.7 | | ns | | t _{EABWDH} | 0.2 | | 0.2 | | 0.3 | | ns | | t _{EABWASU} | 4.1 | | 5.2 | | 6.8 | | ns | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWO} | | 3.4 | | 4.5 | | 5.9 | ns | | Symbol | -1 Spee | ed Grade | -2 Speed Grade | | -3 Spee | ed Grade | Unit | |-------------------------|---------|----------|----------------|-----|---------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 3.1 | | 3.6 | | 4.4 | ns | | t _{DIN2LE} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{DIN2DATA} | | 1.6 | | 1.8 | | 2.0 | ns | | t _{DCLK2IOE} | | 0.8 | | 1.1 | | 1.4 | ns | | t _{DCLK2LE} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{SAMEROW} | | 1.5 | | 2.5 | | 3.4 | ns | | t _{SAMECOLUMN} | | 0.4 | | 1.0 | | 1.6 | ns | | t _{DIFFROW} | | 1.9 | | 3.5 | | 5.0 | ns | | t _{TWOROWS} | | 3.4 | | 6.0 | | 8.4 | ns | | t _{LEPERIPH} | | 4.3 | | 5.4 | | 6.5 | ns | | t _{LABCARRY} | | 0.5 | | 0.7 | | 0.9 | ns | | t _{LABCASC} | | 0.8 | | 1.0 | | 1.4 | ns | | Table 50. EPF10K100E External Timing Parameters Notes (1), (2) | | | | | | | | | | | |--|----------------|-----|---------|----------------|-----|----------|------|--|--|--| | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | ed Grade | Unit | | | | | | Min | Max | Min | Max | Min | Max |] | | | | | t _{DRR} | | 9.0 | | 12.0 | | 16.0 | ns | | | | | t _{INSU} (3) | 2.0 | | 2.5 | | 3.3 | | ns | | | | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | | | | t _{оитсо} (3) | 2.0 | 5.2 | 2.0 | 6.9 | 2.0 | 9.1 | ns | | | | | t _{INSU} (4) | 2.0 | | 2.2 | | - | | ns | | | | | t _{INH} (4) | 0.0 | | 0.0 | | - | | ns | | | | | t _{OUTCO} (4) | 0.5 | 3.0 | 0.5 | 4.6 | - | - | ns | | | | | t _{PCISU} | 3.0 | | 6.2 | | - | | ns | | | | | t _{PCIH} | 0.0 | | 0.0 | | _ | | ns | | | | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 6.9 | _ | _ | ns | | | | | Table 51. EPF10K100E External Bidirectional Timing Parameters Notes (1), (2) | | | | | | | | | | | |--|----------------|-----|---------|----------------|-----|----------|------|--|--|--| | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | ed Grade | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{INSUBIDIR} (3) | 1.7 | | 2.5 | | 3.3 | | ns | | | | | t _{INHBIDIR} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | | | | t _{INSUBIDIR} (4) | 2.0 | | 2.8 | | _ | | ns | | | | | t _{INHBIDIR} (4) | 0.0 | | 0.0 | | _ | | ns | | | | | toutcobidir (3) | 2.0 | 5.2 | 2.0 | 6.9 | 2.0 | 9.1 | ns | | | | | t _{XZBIDIR} (3) | | 5.6 | | 7.5 | | 10.1 | ns | | | | | t _{ZXBIDIR} (3) | | 5.6 | | 7.5 | | 10.1 | ns | | | | | toutcobidir (4) | 0.5 | 3.0 | 0.5 | 4.6 | _ | - | ns | | | | | t _{XZBIDIR} (4) | | 4.6 | | 6.5 | | - | ns | | | | | t _{ZXBIDIR} (4) | | 4.6 | | 6.5 | | _ | ns | | | | #### Notes to tables: - (1) All timing parameters are described in Tables 24 through 30 in this data sheet. - (2) These parameters are specified by characterization. - (3) This parameter is measured without the use of the ClockLock or ClockBoost circuits. - (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits. | Table 64. EPF10K200E External Timing Parameters Notes (1), (2) | | | | | | | | | | | |--|---------|----------------|-----|----------------|-----|---------|------|--|--|--| | Symbol | -1 Spec | -1 Speed Grade | | -2 Speed Grade | | d Grade | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{DRR} | | 10.0 | | 12.0 | | 16.0 | ns | | | | | t _{INSU} | 2.8 | | 3.4 | | 4.4 | | ns | | | | | t _{INH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | | t _{оитсо} | 2.0 | 4.5 | 2.0 | 5.3 | 2.0 | 7.8 | ns | | | | | t _{PCISU} | 3.0 | | 6.2 | | - | | ns | | | | | t _{PCIH} | 0.0 | | 0.0 | | - | | ns | | | | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 8.9 | - | - | ns | | | | | Table 65. EPF10K200E External Bidirectional Timing Parameters Notes (1), (2) | | | | | | | | | | | | |--|---------|---------|---------|----------------|-----|---------|------|--|--|--|--| | Symbol | -1 Spee | d Grade | -2 Spee | -2 Speed Grade | | d Grade | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | t _{INSUBIDIR} | 3.0 | | 4.0 | | 5.5 | | ns | | | | | | t _{INHBIDIR} | 0.0 | | 0.0 | | 0.0 | | ns | | | | | | t _{OUTCOBIDIR} | 2.0 | 4.5 | 2.0 | 5.3 | 2.0 | 7.8 | ns | | | | | | t _{XZBIDIR} | | 8.1 | | 9.5 | | 13.0 | ns | | | | | | t _{ZXBIDIR} | | 8.1 | | 9.5 | | 13.0 | ns | | | | | #### Notes to tables: - (1) All timing parameters are described in Tables 24 through 30 in this data sheet. - (2) These parameters are specified by characterization. Tables 66 through 79 show EPF10K50S and EPF10K200S device external timing parameters. | Table 66. EPF10K50S Device LE Timing Microparameters (Part 1 of 2) Note (1) | | | | | | | | | | | |---|----------------|-----|---------|----------------|-----|---------|------|--|--|--| | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | d Grade | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t_{LUT} | | 0.6 | | 0.8 | | 1.1 | ns | | | | | t _{CLUT} | | 0.5 | | 0.6 | | 0.8 | ns | | | | | t _{RLUT} | | 0.6 | | 0.7 | | 0.9 | ns | | | | | t _{PACKED} | | 0.2 | | 0.3 | | 0.4 | ns | | | | | t_{EN} | | 0.6 | | 0.7 | | 0.9 | ns | | | | | t _{CICO} | | 0.1 | | 0.1 | | 0.1 | ns | | | | | t _{CGEN} | | 0.4 | | 0.5 | | 0.6 | ns | | | | | Table 66. EPF10K50S Device LE Timing Microparameters (Part 2 of 2) Note (1) | | | | | | | | | | |---|---------|----------------|-----|----------------|-----|---------|------|--|--| | Symbol | -1 Spec | -1 Speed Grade | | -2 Speed Grade | | d Grade | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{CGENR} | | 0.1 | | 0.1 | | 0.1 | ns | | | | t _{CASC} | | 0.5 | | 0.8 | | 1.0 | ns | | | | $t_{\mathbb{C}}$ | | 0.5 | | 0.6 | | 0.8 | ns | | | | t_{CO} | | 0.6 | | 0.6 | | 0.7 | ns | | | | t _{COMB} | | 0.3 | | 0.4 | | 0.5 | ns | | | | t_{SU} | 0.5 | | 0.6 | | 0.7 | | ns | | | | t_H | 0.5 | | 0.6 | | 0.8 | | ns | | | | t _{PRE} | | 0.4 | | 0.5 | | 0.7 | ns | | | | t _{CLR} | | 0.8 | | 1.0 | | 1.2 | ns | | | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | | | t_{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | | | Table 67. EPF10K50S Device IOE Timing Microparameters Note (1) | | | | | | | | |--|----------------|-----|----------------|-----|----------------|-----|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 1.3 | | 1.3 | | 1.9 | ns | | t_{IOC} | | 0.3 | | 0.4 | | 0.4 | ns | | t _{IOCO} | | 1.7 | | 2.1 | | 2.6 | ns | | t _{IOCOMB} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{IOSU} | 0.8 | | 1.0 | | 1.3 | | ns | | t _{IOH} | 0.4 | | 0.5 | | 0.6 | | ns | | t _{IOCLR} | | 0.2 | | 0.2 | | 0.4 | ns | | t _{OD1} | | 1.2 | | 1.2 | | 1.9 | ns | | t _{OD2} | | 0.7 | | 0.8 | | 1.7 | ns | | t_{OD3} | | 2.7 | | 3.0 | | 4.3 | ns | | t_{XZ} | | 4.7 | | 5.7 | | 7.5 | ns | | t_{ZX1} | | 4.7 | | 5.7 | | 7.5 | ns | | t_{ZX2} | | 4.2 | | 5.3 | | 7.3 | ns | | t_{ZX3} | | 6.2 | | 7.5 | | 9.9 | ns | | t _{INREG} | | 3.5 | | 4.2 | | 5.6 | ns | | t _{IOFD} | | 1.1 | | 1.3 | | 1.8 | ns | | t _{INCOMB} | | 1.1 | | 1.3 | | 1.8 | ns | # Device Pin-Outs See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information. ### Revision History The information contained in the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.5 supersedes information published in previous versions. #### Version 2.5 The following changes were made to the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.5: - Note (1) added to Figure 23. - Text added to "I/O Element" section on page 34. - Updated Table 22. #### Version 2.4 The following changes were made to the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.4: updated text on page 34 and page 63.