

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	72
Number of Logic Elements/Cells	576
Total RAM Bits	6144
Number of I/O	59
Number of Gates	31000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k10lc84-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. FLEX 10KE Device Features			
Feature	EPF10K100E (2)	EPF10K130E	EPF10K200E EPF10K200S
Typical gates (1)	100,000	130,000	200,000
Maximum system gates	257,000	342,000	513,000
Logic elements (LEs)	4,992	6,656	9,984
EABs	12	16	24
Total RAM bits	49,152	65,536	98,304
Maximum user I/O pins	338	413	470

Note to tables:

- (1) The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates.
- (2) New EPF10K100B designs should use EPF10K100E devices.

...and More Features

- Fabricated on an advanced process and operate with a 2.5-V internal supply voltage
- In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port
- ClockLockTM and ClockBoostTM options for reduced clock delay/skew and clock multiplication
- Built-in low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required
- Pull-up on I/O pins before and during configuration

■ Flexible interconnect

- FastTrack® Interconnect continuous routing structure for fast, predictable interconnect delays
- Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
- Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
- Tri-state emulation that implements internal tri-state buses
- Up to six global clock signals and four global clear signals

■ Powerful I/O pins

- Individual tri-state output enable control for each pin
- Open-drain option on each I/O pin
- Programmable output slew-rate control to reduce switching noise
- Clamp to V_{CCIO} user-selectable on a pin-by-pin basis
- Supports hot-socketing

Application	Resources Used			Performance			
	LEs	EABs	-1 Speed Grade	-2 Speed Grade	-3 Speed Grade		
16-bit loadable counter	16	0	285	250	200	MHz	
16-bit accumulator	16	0	285	250	200	MHz	
16-to-1 multiplexer (1)	10	0	3.5	4.9	7.0	ns	
16-bit multiplier with 3-stage pipeline (2)	592	0	156	131	93	MHz	
256 × 16 RAM read cycle speed (2)	0	1	196	154	118	MHz	
256 × 16 RAM write cycle	0	1	185	143	106	MHz	

Notes:

- (1) This application uses combinatorial inputs and outputs.
- (2) This application uses registered inputs and outputs.

Table 6 shows FLEX 10KE performance for more complex designs. These designs are available as Altera MegaCore $^{\circ}$ functions.

Table 6. FLEX 10KE Performance for Complex Designs								
Application	LEs Used		Performance		Units			
		-1 Speed Grade	-2 Speed Grade	-3 Speed Grade				
8-bit, 16-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS			
8-bit, 512-point fast Fourier	1,854	23.4	28.7	38.9	μ s (1)			
transform (FFT) function		113	92	68	MHz			
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz			

Note:

(1) These values are for calculation time. Calculation time = number of clocks required / f_{max} . Number of clocks required = ceiling [log 2 (points)/2] × [points +14 + ceiling]

Functional Description

Each FLEX 10KE device contains an enhanced embedded array to implement memory and specialized logic functions, and a logic array to implement general logic.

The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions, such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions.

The logic array consists of logic array blocks (LABs). Each LAB contains eight LEs and a local interconnect. An LE consists of a four-input look-up table (LUT), a programmable flipflop, and dedicated signal paths for carry and cascade functions. The eight LEs can be used to create medium-sized blocks of logic—such as 8-bit counters, address decoders, or state machines—or combined across LABs to create larger logic blocks. Each LAB represents about 96 usable gates of logic.

Signal interconnections within FLEX 10KE devices (as well as to and from device pins) are provided by the FastTrack Interconnect routing structure, which is a series of fast, continuous row and column channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect routing structure. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an output or input register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. As inputs, they provide setup times as low as 0.9 ns and hold times of 0 ns. As outputs, these registers provide clock-to-output times as low as 3.0 ns. IOEs provide a variety of features, such as JTAG BST support, slew-rate control, tri-state buffers, and open-drain outputs.

Figure 1 shows a block diagram of the FLEX 10KE architecture. Each group of LEs is combined into an LAB; groups of LABs are arranged into rows and columns. Each row also contains a single EAB. The LABs and EABs are interconnected by the FastTrack Interconnect routing structure. IOEs are located at the end of each row and column of the FastTrack Interconnect routing structure.

Embedded Array Block (EAB) I/O Element IOE IOE IOE IOE IOE IOE IOE IOE IOE (IOE) IOE Column Logic Array Interconnect EAB Logic Array Block (LAB) IOE Logic Element (LE) Row EAB Interconnect Local Interconnect Logic Array

Figure 1. FLEX 10KE Device Block Diagram

IOE

IOE

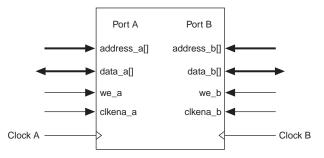
IOE

IOE

IOE

IOE

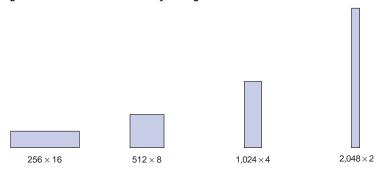
Embedded Array


FLEX 10KE devices provide six dedicated inputs that drive the flipflops' control inputs and ensure the efficient distribution of high-speed, low-skew (less than 1.5 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect routing structure. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device.

IOE

IOE

The EAB can also use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3.


Figure 3. FLEX 10KE EAB in Dual-Port RAM Mode

The FLEX 10KE EAB can be used in a single-port mode, which is useful for backward-compatibility with FLEX 10K designs (see Figure 4).

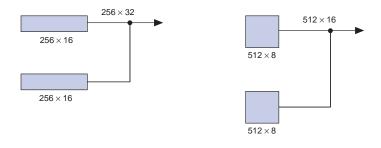

When used as RAM, each EAB can be configured in any of the following sizes: 256×16 , 512×8 , $1,024 \times 4$, or $2,048 \times 2$ (see Figure 5).

Figure 5. FLEX 10KE EAB Memory Configurations

Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block; two 512×8 RAM blocks can be combined to form a 512×16 block (see Figure 6).

Figure 6. Examples of Combining FLEX 10KE EABS

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. The Altera software automatically combines EABs to meet a designer's RAM specifications.

The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the output of the LUT drives the output of the LE.

The LE has two outputs that drive the interconnect: one drives the local interconnect and the other drives either the row or column FastTrack Interconnect routing structure. The two outputs can be controlled independently. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, can improve LE utilization because the register and the LUT can be used for unrelated functions.

The FLEX 10KE architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. The carry chain supports high-speed counters and adders and the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in a LAB as well as all LABs in the same row. Intensive use of carry and cascade chains can reduce routing flexibility. Therefore, the use of these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 10KE architecture to implement high-speed counters, adders, and comparators of arbitrary width efficiently. Carry chain logic can be created automatically by the Altera Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as LPM and DesignWare functions automatically take advantage of carry chains.

Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EPF10K50E device, the carry chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB.

On all FLEX 10KE devices (except EPF10K50E and EPF10K200E devices), the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. EPF10K50S and EPF10K200S devices also support this feature. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time or turn it off to minimize setup time. This feature is used to reduce setup time for complex pin-to-register paths (e.g., PCI designs).

Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across the device and provides up to 12 peripheral control signals that can be allocated as follows:

- Up to eight output enable signals
- Up to six clock enable signals
- Up to two clock signals
- Up to two clear signals

If more than six clock enable or eight output enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, a LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chipwide reset signal resets all IOE registers, overriding any other control signals.

When a dedicated clock pin drives IOE registers, it can be inverted for all IOEs in the device. All IOEs must use the same sense of the clock. For example, if any IOE uses the inverted clock, all IOEs must use the inverted clock and no IOE can use the non-inverted clock. However, LEs can still use the true or complement of the clock on a LAB-by-LAB basis.

The incoming signal may be inverted at the dedicated clock pin and will drive all IOEs. For the true and complement of a clock to be used to drive IOEs, drive it into both global clock pins. One global clock pin will supply the true, and the other will supply the complement.

When the true and complement of a dedicated input drives IOE clocks, two signals on the peripheral control bus are consumed, one for each sense of the clock.

Peripheral Control Signal	EPF10K100E	EPF10K130E	EPF10K200E EPF10K200S	
OE0	Row A	Row C	Row G	
OE1	Row C	Row E	Row I	
OE2	Row E	Row G	Row K	
OE3	Row L	Row N	Row R	
OE4	Row I	Row K	Row O	
OE5	Row K	Row M	Row Q	
CLKENA0/CLK0/GLOBAL0	Row F	Row H	Row L	
CLKENA1/OE6/GLOBAL1	Row D	Row F	Row J	
CLKENA2/CLR0	Row B	Row D	Row H	
CLKENA3/OE7/GLOBAL2	Row H	Row J	Row N	
CLKENA4/CLR1	Row J	Row L	Row P	
CLKENA5/CLK1/GLOBAL3	Row G	Row I	Row M	

Signals on the peripheral control bus can also drive the four global signals, referred to as <code>GLOBALO</code> through <code>GLOBALO</code> in Tables 8 and 9. An internally generated signal can drive a global signal, providing the same low-skew, low-delay characteristics as a signal driven by an input pin. An LE drives the global signal by driving a row line that drives the peripheral bus, which then drives the global signal. This feature is ideal for internally generated clear or clock signals with high fan-out. However, internally driven global signals offer no advantage over the general-purpose interconnect for routing data signals. The dedicated input pin should be driven to a known logic state (such as ground) and not be allowed to float.

The chip-wide output enable pin is an active-high pin (DEV_OE) that can be used to tri-state all pins on the device. This option can be set in the Altera software. On EPF10K50E and EPF10K200E devices, the built-in I/O pin pull-up resistors (which are active during configuration) are active when the chip-wide output enable pin is asserted. The registers in the IOE can also be reset by the chip-wide reset pin.

Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels is different for each IOE (see Figure 17).

Figure 17. FLEX 10KE Column-to-IOE Connections

The values for m and n are provided in Table 11.

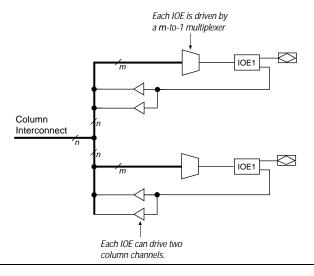


Table 11 lists the FLEX 10KE column-to-IOE interconnect resources.

Table 11. FLEX 10	Table 11. FLEX 10KE Column-to-IOE Interconnect Resources								
Device	Channels per Column (n)	Column Channels per Pin (m)							
EPF10K30E	24	16							
EPF10K50E EPF10K50S	24	16							
EPF10K100E	24	16							
EPF10K130E	32	24							
EPF10K200E EPF10K200S	48	40							

PCI Pull-Up Clamping Diode Option

FLEX 10KE devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the signal to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When $V_{\rm CCIO}$ is 3.3 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When $V_{\rm CCIO}$ is 2.5 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can be activated for a subset of pins, which would allow a device to bridge between a 3.3-V PCI bus and a 5.0-V device.

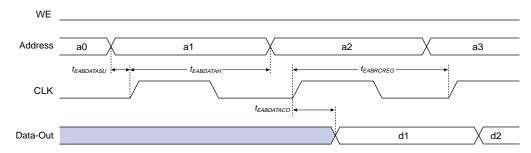
Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of 4.3 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate pin-by-pin or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects the falling edge of the output.

Open-Drain Output Option

FLEX 10KE devices provide an optional open-drain output (electrically equivalent to open-collector output) for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired- \mathbb{QR} plane.

MultiVolt I/O Interface


The FLEX 10KE device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10KE devices in all packages to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	2.30 (2.30)	2.70 (2.70)	V
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.30 (2.30)	2.70 (2.70)	V
VI	Input voltage	(5)	-0.5	5.75	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	° C
		For industrial use	-40	85	° C
T _J	Operating temperature	For commercial use	0	85	° C
		For industrial use	-40	100	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

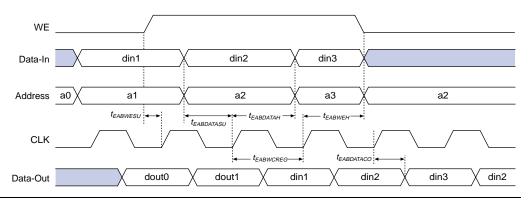

	1. 2.5-V EPF10K30E, EPF10K50S, nended Operating Conditions	EPF10K100E, EPF10K13	30E & EPF10K20	00S Device	
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	2.375 (2.375)	2.625 (2.625)	V
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V
V _I	Input voltage	(5)	-0.5	5.75	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	° C
		For industrial use	-40	85	° C
TJ	Operating temperature	For commercial use	0	85	° C
		For industrial use	-40	100	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Read

EAB Synchronous Write (EAB Output Registers Used)

Tables 31 through 37 show EPF10K30E device internal and external timing parameters.

Table 31. EPF10	K30E Device	LE Timing N	1icroparame	ters (Part 1	of 2) No	ote (1)	
Symbol	-1 Spec	-1 Speed Grade		-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t_{LUT}		0.7		0.8		1.1	ns
t _{CLUT}		0.5		0.6		0.8	ns
t _{RLUT}		0.6		0.7		1.0	ns
t _{PACKED}		0.3		0.4		0.5	ns
t_{EN}		0.6		0.8		1.0	ns
t _{CICO}		0.1		0.1		0.2	ns
t _{CGEN}		0.4		0.5		0.7	ns

Table 38. EPF10K	50E Device	LE Timing M	licroparame	ters (Part 2	of 2) No	te (1)	
Symbol	-1 Speed Grade -2 Speed Grade -3 Speed Grade		-1 Speed Grade		-2 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _H	0.9		1.0		1.4		ns
t _{PRE}		0.5		0.6		0.8	ns
t _{CLR}		0.5		0.6		0.8	ns
t _{CH}	2.0		2.5		3.0		ns
t_{CL}	2.0		2.5		3.0		ns

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t_{IOD}		2.2		2.4		3.3	ns
t _{IOC}		0.3		0.3		0.5	ns
t _{IOCO}		1.0		1.0		1.4	ns
t_{IOCOMB}		0.0		0.0		0.2	ns
t _{IOSU}	1.0		1.2		1.7		ns
t_{IOH}	0.3		0.3		0.5		ns
t_{IOCLR}		0.9		1.0		1.4	ns
t_{OD1}		0.8		0.9		1.2	ns
t_{OD2}		0.3		0.4		0.7	ns
t _{OD3}		3.0		3.5		3.5	ns
t_{XZ}		1.4		1.7		2.3	ns
t_{ZX1}		1.4		1.7		2.3	ns
t _{ZX2}		0.9		1.2		1.8	ns
t _{ZX3}		3.6		4.3		4.6	ns
t _{INREG}		4.9		5.8		7.8	ns
t _{IOFD}		2.8		3.3		4.5	ns
t _{INCOMB}		2.8		3.3		4.5	ns

Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.0		2.7	ns
t _{EABDATA1}		0.6		0.7		0.9	ns
t _{EABWE1}		1.1		1.3		1.8	ns
t _{EABWE2}		0.4		0.4		0.6	ns
t _{EABRE1}		0.8		0.9		1.2	ns
t _{EABRE2}		0.4		0.4		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.3		0.5	ns
t _{EABBYPASS}		0.5		0.6		0.8	ns
t _{EABSU}	0.9		1.0		1.4		ns
t _{EABH}	0.4		0.4		0.6		ns
t _{EABCLR}	0.3		0.3		0.5		ns
t_{AA}		3.2		3.8		5.1	ns
t_{WP}	2.5		2.9		3.9		ns
t_{RP}	0.9		1.1		1.5		ns
t _{WDSU}	0.9		1.0		1.4		ns
t_{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.7		2.0		2.7		ns
t_{WAH}	1.8		2.1		2.9		ns
t _{RASU}	3.1		3.7		5.0		ns
t _{RAH}	0.2		0.2		0.3		ns
t_{WO}		2.5		2.9		3.9	ns
t _{DD}		2.5		2.9		3.9	ns
t _{EABOUT}		0.5		0.6		0.8	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.5		2.9		3.9		ns

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DRR}		8.5		10.0		13.5	ns
t _{INSU}	2.7		3.2		4.3		ns
t _{INH}	0.0		0.0		0.0		ns
t _{outco}	2.0	4.5	2.0	5.2	2.0	7.3	ns
t _{PCISU}	3.0		4.2		-		ns
t _{PCIH}	0.0		0.0		-		ns
t _{PCICO}	2.0	6.0	2.0	7.7	-	-	ns

Table 44. EPF10K50E External Bidirectional Timing Parameters Notes (1), (2)							
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	2.7		3.2		4.3		ns
t _{INHBIDIR}	0.0		0.0		0.0		ns
toutcobidir	2.0	4.5	2.0	5.2	2.0	7.3	ns
t _{XZBIDIR}		6.8		7.8		10.1	ns
t _{ZXBIDIR}		6.8		7.8		10.1	ns

Notes to tables:

- (1) All timing parameters are described in Tables 24 through 30 in this data sheet.
- (2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external timing parameters.

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t_{LUT}		0.7		1.0		1.5	ns
t _{CLUT}		0.5		0.7		0.9	ns
t _{RLUT}		0.6		0.8		1.1	ns
t _{PACKED}		0.3		0.4		0.5	ns
t_{EN}		0.2		0.3		0.3	ns
t _{CICO}		0.1		0.1		0.2	ns
t _{CGEN}		0.4		0.5		0.7	ns

Table 50. EPF10K100E External Timing Parameters Notes (1), (2)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max]
t _{DRR}		9.0		12.0		16.0	ns
t _{INSU} (3)	2.0		2.5		3.3		ns
t _{INH} (3)	0.0		0.0		0.0		ns
t _{outco} (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns
t _{INSU} (4)	2.0		2.2		-		ns
t _{INH} (4)	0.0		0.0		-		ns
t _{OUTCO} (4)	0.5	3.0	0.5	4.6	-	-	ns
t _{PCISU}	3.0		6.2		-		ns
t _{PCIH}	0.0		0.0		_		ns
t _{PCICO}	2.0	6.0	2.0	6.9	_	_	ns

Table 51. EPF10K	100E Extern	al Bidirection	onal Timing	Parameters	Notes (1), <i>(2)</i>	
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	1.7		2.5		3.3		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	2.0		2.8		_		ns
t _{INHBIDIR} (4)	0.0		0.0		_		ns
toutcobidir (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns
t _{XZBIDIR} (3)		5.6		7.5		10.1	ns
t _{ZXBIDIR} (3)		5.6		7.5		10.1	ns
toutcobidir (4)	0.5	3.0	0.5	4.6	_	-	ns
t _{XZBIDIR} (4)		4.6		6.5		-	ns
t _{ZXBIDIR} (4)		4.6		6.5		-	ns

Notes to tables:

- (1) All timing parameters are described in Tables 24 through 30 in this data sheet.
- (2) These parameters are specified by characterization.
- (3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
- (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 52 through 58 show EPF10K130E device internal and external timing parameters.

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t_{LUT}		0.6		0.9		1.3	ns
t _{CLUT}		0.6		0.8		1.0	ns
t _{RLUT}		0.7		0.9		0.2	ns
t _{PACKED}		0.3		0.5		0.6	ns
t _{EN}		0.2		0.3		0.4	ns
t _{CICO}		0.1		0.1		0.2	ns
t _{CGEN}		0.4		0.6		0.8	ns
t _{CGENR}		0.1		0.1		0.2	ns
t _{CASC}		0.6		0.9		1.2	ns
t _C		0.3		0.5		0.6	ns
t _{CO}		0.5		0.7		0.8	ns
t _{COMB}		0.3		0.5		0.6	ns
t _{SU}	0.5		0.7		0.8		ns
t_H	0.6		0.7		1.0		ns
t _{PRE}		0.9		1.2		1.6	ns
t _{CLR}		0.9		1.2		1.6	ns
t _{CH}	1.5		1.5		2.5		ns
t_{CL}	1.5		1.5		2.5		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t_{IOD}		1.3		1.5		2.0	ns
t _{IOC}		0.0		0.0		0.0	ns
t _{ioco}		0.6		0.8		1.0	ns
t _I OCOMB		0.6		0.8		1.0	ns
iosu	1.0		1.2		1.6		ns
t _{IOH}	0.9		0.9		1.4		ns
t _{IOCLR}		0.6		0.8		1.0	ns
OD1		2.8		4.1		5.5	ns
t_{OD2}		2.8		4.1		5.5	ns

Additionally, the Altera software offers several features that help plan for future device migration by preventing the use of conflicting I/O pins.

Table 81. I/O Counts for FLEX 10KA & FLEX 10KE Devices						
FLEX 10	KA	FLEX 10	KE			
Device	I/O Count	Device	I/O Count			
EPF10K30AF256	191	EPF10K30EF256	176			
EPF10K30AF484	246	EPF10K30EF484	220			
EPF10K50VB356	274	EPF10K50SB356	220			
EPF10K50VF484	291	EPF10K50EF484	254			
EPF10K50VF484	291	EPF10K50SF484	254			
EPF10K100AF484	369	EPF10K100EF484	338			

Configuration Schemes

The configuration data for a FLEX 10KE device can be loaded with one of five configuration schemes (see Table 82), chosen on the basis of the target application. An EPC1, EPC2, or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of a FLEX 10KE device, allowing automatic configuration on system power-up.

Multiple FLEX 10KE devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Additional FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be configured in the same serial chain.

Table 82. Data Sources for FLEX 10KE Configuration				
Configuration Scheme	Data Source			
Configuration device	EPC1, EPC2, or EPC16 configuration device			
Passive serial (PS)	BitBlaster, ByteBlasterMV, or MasterBlaster download cables, or serial data source			
Passive parallel asynchronous (PPA)	Parallel data source			
Passive parallel synchronous (PPS)	Parallel data source			
JTAG	BitBlaster or ByteBlasterMV download cables, or microprocessor with a Jam STAPL file or JBC file			

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information.

Revision History

The information contained in the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.5 supersedes information published in previous versions.

Version 2.5

The following changes were made to the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.5:

- Note (1) added to Figure 23.
- Text added to "I/O Element" section on page 34.
- Updated Table 22.

Version 2.4

The following changes were made to the *FLEX 10KE Embedded Programmable Logic Data Sheet* version 2.4: updated text on page 34 and page 63.