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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Figure 1 shows a block diagram of the FLEX 10KE architecture. Each 
group of LEs is combined into an LAB; groups of LABs are arranged into 
rows and columns. Each row also contains a single EAB. The LABs and 
EABs are interconnected by the FastTrack Interconnect routing structure. 
IOEs are located at the end of each row and column of the FastTrack 
Interconnect routing structure.

Figure 1. FLEX 10KE Device Block Diagram

FLEX 10KE devices provide six dedicated inputs that drive the flipflops’ 
control inputs and ensure the efficient distribution of high-speed, low-
skew (less than 1.5 ns) control signals. These signals use dedicated routing 
channels that provide shorter delays and lower skews than the FastTrack 
Interconnect routing structure. Four of the dedicated inputs drive four 
global signals. These four global signals can also be driven by internal 
logic, providing an ideal solution for a clock divider or an internally 
generated asynchronous clear signal that clears many registers in the 
device. 
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Figure 7. FLEX 10KE LAB

Notes:
(1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the 

row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26.
(2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, 

EPF10K130E, EPF10K200E, and EPF10K200S devices have 34.
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FLEX 10KE Embedded Programmable Logic Devices Data Sheet
The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock, clear, and preset control signals on the flipflop can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the flipflop is bypassed and the output 
of the LUT drives the output of the LE. 

The LE has two outputs that drive the interconnect: one drives the local 
interconnect and the other drives either the row or column FastTrack 
Interconnect routing structure. The two outputs can be controlled 
independently. For example, the LUT can drive one output while the 
register drives the other output. This feature, called register packing, can 
improve LE utilization because the register and the LUT can be used for 
unrelated functions.

The FLEX 10KE architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports 
high-speed counters and adders and the cascade chain implements 
wide-input functions with minimum delay. Carry and cascade chains 
connect all LEs in a LAB as well as all LABs in the same row. Intensive use 
of carry and cascade chains can reduce routing flexibility. Therefore, the 
use of these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
FLEX 10KE architecture to implement high-speed counters, adders, and 
comparators of arbitrary width efficiently. Carry chain logic can be 
created automatically by the Altera Compiler during design processing, 
or manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EPF10K50E device, the carry chain stops at the eighteenth LAB and 
a new one begins at the nineteenth LAB.
18 Altera Corporation
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Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 

Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder)
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Altera Compiler automatically selects 
the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function; the other generates a carry output. As 
shown in Figure 11 on page 22, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Use 2 three-input LUTs: one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
Altera Corporation 23 
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For improved routing, the row interconnect consists of a combination of 
full-length and half-length channels. The full-length channels connect to 
all LABs in a row; the half-length channels connect to the LABs in half of 
the row. The EAB can be driven by the half-length channels in the left half 
of the row and by the full-length channels. The EAB drives out to the full-
length channels. In addition to providing a predictable, row-wide 
interconnect, this architecture provides increased routing resources. Two 
neighboring LABs can be connected using a half-row channel, thereby 
saving the other half of the channel for the other half of the row.

Table 7 summarizes the FastTrack Interconnect routing structure 
resources available in each FLEX 10KE device.

In addition to general-purpose I/O pins, FLEX 10KE devices have six 
dedicated input pins that provide low-skew signal distribution across the 
device. These six inputs can be used for global clock, clear, preset, and 
peripheral output enable and clock enable control signals. These signals 
are available as control signals for all LABs and IOEs in the device. The 
dedicated inputs can also be used as general-purpose data inputs because 
they can feed the local interconnect of each LAB in the device. 

Figure 14 shows the interconnection of adjacent LABs and EABs, with 
row, column, and local interconnects, as well as the associated cascade 
and carry chains. Each LAB is labeled according to its location: a letter 
represents the row and a number represents the column. For example, 
LAB B3 is in row B, column 3.

Table 7. FLEX 10KE FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per
Column

EPF10K30E 6 216 36 24

EPF10K50E
EPF10K50S

10 216 36 24

EPF10K100E 12 312 52 24

EPF10K130E 16 312 52 32

EPF10K200E
EPF10K200S

24 312 52 48
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Figure 15. FLEX 10KE Bidirectional I/O Registers 

Note:
(1) All FLEX 10KE devices (except the EPF10K50E and EPF10K200E devices) have a programmable input delay buffer 

on the input path.
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Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row 
channels. The signal is accessible by all LEs within that row. When an IOE 
is used as an output, the signal is driven by a multiplexer that selects a 
signal from the row channels. Up to eight IOEs connect to each side of 
each row channel (see Figure 16).

Figure 16. FLEX 10KE Row-to-IOE Connections

Table 10 lists the FLEX 10KE row-to-IOE interconnect resources. 

n

n

Each IOE is driven by an
m-to-1 multiplexer.

Each IOE can drive two
row channels.

IOE8

IOE1
m

m

Row FastTrack
Interconnect

n

The values for m and n are provided in Table 10.

Table 10. FLEX 10KE Row-to-IOE Interconnect Resources

Device Channels per Row (n) Row Channels per Pin (m)

EPF10K30E 216 27

EPF10K50E
EPF10K50S

216 27

EPF10K100E 312 39

EPF10K130E 312 39

EPF10K200E
EPF10K200S

312 39
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ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the 
incoming clock must meet certain requirements. If these specifications are 
not met, the circuitry may not lock onto the incoming clock, which 
generates an erroneous clock within the device. The clock generated by 
the ClockLock and ClockBoost circuitry must also meet certain 
specifications. If the incoming clock meets these requirements during 
configuration, the ClockLock and ClockBoost circuitry will lock onto the 
clock during configuration. The circuit will be ready for use immediately 
after configuration. Figure 19 shows the incoming and generated clock 
specifications.

Figure 19. Specifications for Incoming & Generated Clocks

The tI parameter refers to the nominal input clock period; the tO parameter refers to the 
nominal output clock period.
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Tables 12 and 13 summarize the ClockLock and ClockBoost parameters 
for -1 and -2 speed-grade devices, respectively.

Table 12. ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices

Symbol Parameter Condition Min Typ Max Unit
tR Input rise time 5 ns

tF Input fall time 5 ns

t INDUTY Input duty cycle 40 60 %

fCLK1 Input clock frequency (ClockBoost 

clock multiplication factor equals 1)

25 180 MHz

fCLK2 Input clock frequency (ClockBoost 

clock multiplication factor equals 2)

16 90 MHz

fCLKDEV Input deviation from user 

specification in the MAX+PLUS II 

software (1)

25,000 (2) PPM

t INCLKSTB Input clock stability (measured 

between adjacent clocks)

100 ps

tLOCK Time required for ClockLock or 

ClockBoost to acquire lock (3)
10 µs

t JITTER Jitter on ClockLock or ClockBoost-

generated clock (4)
tINCLKSTB < 100 250 ps

t INCLKSTB < 50 200 (4) ps

tOUTDUTY Duty cycle for ClockLock or 

ClockBoost-generated clock

40 50 60 %
40 Altera Corporation
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Notes to tables:
(1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the 

input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. 
The fCLKDEV parameter specifies how much the incoming clock can differ from the specified frequency during 
device operation. Simulation does not reflect this parameter.

(2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
(3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If 

the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during 
configuration because the tLOCK value is less than the time required for configuration.

(4) The tJITTER specification is measured under long-term observation. The maximum value for tJITTER is 200 ps if 
tINCLKSTB is lower than 50 ps.

I/O 
Configuration

This section discusses the peripheral component interconnect (PCI)
pull-up clamping diode option, slew-rate control, open-drain output 
option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI 
pull-up clamping diode, slew-rate control, and open-drain output options 
are controlled pin-by-pin via Altera software logic options. The MultiVolt 
I/O interface is controlled by connecting VCCIO to a different voltage than 
VCCINT. Its effect can be simulated in the Altera software via the Global 
Project Device Options dialog box (Assign menu).

Table 13. ClockLock & ClockBoost Parameters for -2 Speed-Grade Devices

Symbol Parameter Condition Min Typ Max Unit
tR Input rise time 5 ns

tF Input fall time 5 ns

t INDUTY Input duty cycle 40 60 %

fCLK1 Input clock frequency (ClockBoost 

clock multiplication factor equals 1)

25 75 MHz

fCLK2 Input clock frequency (ClockBoost 

clock multiplication factor equals 2)

16 37.5 MHz

fCLKDEV Input deviation from user 

specification in the MAX+PLUS II 

software (1)

25,000 (2) PPM

t INCLKSTB Input clock stability (measured 

between adjacent clocks)

100 ps

tLOCK Time required for ClockLock or 

ClockBoost to acquire lock (3)
10 µs

tJITTER Jitter on ClockLock or ClockBoost-

generated clock (4)
t INCLKSTB < 100 250 ps

t INCLKSTB < 50 200 (4) ps

tOUTDUTY Duty cycle for ClockLock or 
ClockBoost-generated clock

40 50 60 %
Altera Corporation 41 
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The VCCINT pins must always be connected to a 2.5-V power supply. 
With a 2.5-V VCCINT level, input voltages are compatible with 2.5-V, 3.3-
V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 
3.3-V power supply, depending on the output requirements. When the 
VCCIO pins are connected to a 2.5-V power supply, the output levels are 
compatible with 2.5-V systems. When the VCCIO pins are connected to a 
3.3-V power supply, the output high is at 3.3 V and is therefore compatible 
with 3.3-V or 5.0-V systems. Devices operating with VCCIO levels higher 
than 3.0 V achieve a faster timing delay of tOD2 instead of tOD1.

Table 14 summarizes FLEX 10KE MultiVolt I/O support.

Notes:
(1) The PCI clamping diode must be disabled to drive an input with voltages higher 

than VCCIO.
(2) When VCCIO = 3.3 V, a FLEX 10KE device can drive a 2.5-V device that has 3.3-V 

tolerant inputs.

Open-drain output pins on FLEX 10KE devices (with a pull-up resistor to 
the 5.0-V supply) can drive 5.0-V CMOS input pins that require a VIH of 
3.5 V. When the open-drain pin is active, it will drive low. When the pin is 
inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain 
pin will only drive low or tri-state; it will never drive high. The rise time 
is dependent on the value of the pull-up resistor and load impedance. The 
IOL current specification should be considered when selecting a pull-up 
resistor.

Power Sequencing & Hot-Socketing
Because FLEX 10KE devices can be used in a mixed-voltage environment, 
they have been designed specifically to tolerate any possible power-up 
sequence. The VCCIO and VCCINT power planes can be powered in any 
order.

Signals can be driven into FLEX 10KE devices before and during power 
up without damaging the device. Additionally, FLEX 10KE devices do not 
drive out during power up. Once operating conditions are reached, 
FLEX 10KE devices operate as specified by the user.

Table 14. FLEX 10KE MultiVolt I/O Support

VCCIO (V) Input Signal (V) Output Signal (V)

2.5 3.3 5.0 2.5 3.3 5.0

2.5 v v(1) v(1) v

3.3 v v v(1) v(2) v v
Altera Corporation 43 
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Notes:
(1) The most significant bit (MSB) is on the left.
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

FLEX 10KE devices include weak pull-up resistors on the JTAG pins.

f For more information, see the following documents:

■ Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in 
Altera Devices) 

■ BitBlaster Serial Download Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ Jam Programming & Test Language Specification

Table 17. 32-Bit IDCODE for FLEX 10KE Devices Note (1)

Device IDCODE (32 Bits)

Version 
(4 Bits)

Part Number (16 Bits) Manufacturer’s
Identity (11 Bits)

1 (1 Bit) 
(2)

EPF10K30E 0001 0001 0000 0011 0000 00001101110 1

EPF10K50E
EPF10K50S

0001 0001 0000 0101 0000 00001101110 1

EPF10K100E 0010 0000 0001 0000 0000 00001101110 1

EPF10K130E 0001 0000 0001 0011 0000 00001101110 1

EPF10K200E
EPF10K200S

0001 0000 0010 0000 0000 00001101110 1
Altera Corporation 45 
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Figure 20 shows the timing requirements for the JTAG signals.

Figure 20. FLEX 10KE JTAG Waveforms

Table 18 shows the timing parameters and values for FLEX 10KE devices.

Table 18. FLEX 10KE JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time  50 ns

tJCL TCK clock low time  50 ns

tJPSU JTAG port setup time  20 ns

tJPH JTAG port hold time  45 ns

tJPCO JTAG port clock to output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock to output 35 ns

tJSZX Update register high impedance to valid output 35 ns

tJSXZ Update register valid output to high impedance 35 ns
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Figure 30. EAB Synchronous Timing Waveforms

Tables 31 through 37 show EPF10K30E device internal and external 
timing parameters.
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Table 31. EPF10K30E Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.7 0.8 1.1 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.6 0.7 1.0 ns

tPACKED 0.3 0.4 0.5 ns

tEN 0.6 0.8 1.0 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.5 0.7 ns
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tH 0.9 1.0 1.4 ns

tPRE 0.5 0.6 0.8 ns

tCLR 0.5 0.6 0.8 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 39. EPF10K50E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 2.2 2.4 3.3 ns

tIOC 0.3 0.3 0.5 ns

tIOCO 1.0 1.0 1.4 ns

tIOCOMB 0.0 0.0 0.2 ns

tIOSU 1.0 1.2 1.7 ns

tIOH 0.3 0.3 0.5 ns

tIOCLR 0.9 1.0 1.4 ns

tOD1 0.8 0.9 1.2 ns

tOD2 0.3 0.4 0.7 ns

tOD3 3.0 3.5 3.5 ns

tXZ 1.4 1.7 2.3 ns

tZX1 1.4 1.7 2.3 ns

tZX2 0.9 1.2 1.8 ns

tZX3 3.6 4.3 4.6 ns

tINREG 4.9 5.8 7.8 ns

tIOFD 2.8 3.3 4.5 ns

tINCOMB 2.8 3.3 4.5 ns

Table 38. EPF10K50E Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Table 47. EPF10K100E Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.5 2.0 2.6 ns

tEABDATA1 0.0 0.0 0.0 ns

tEABWE1 1.5 2.0 2.6 ns

tEABWE2 0.3 0.4 0.5 ns

tEABRE1 0.3 0.4 0.5 ns

tEABRE2 0.0 0.0 0.0 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.4 0.5 ns

tEABBYPASS 0.1 0.1 0.2 ns

tEABSU 0.8 1.0 1.4 ns

tEABH 0.1 0.1 0.2 ns

tEABCLR 0.3 0.4 0.5 ns

tAA 4.0 5.1 6.6 ns

tWP 2.7 3.5 4.7 ns

tRP 1.0 1.3 1.7 ns

tWDSU 1.0 1.3 1.7 ns

tWDH 0.2 0.2 0.3 ns

tWASU 1.6 2.1 2.8 ns

tWAH 1.6 2.1 2.8 ns

tRASU 3.0 3.9 5.2 ns

tRAH 0.1 0.1 0.2 ns

tWO 1.5 2.0 2.6 ns

tDD 1.5 2.0 2.6 ns

tEABOUT 0.2 0.3 0.3 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.7 3.5 4.7 ns

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 5.9 7.6 9.9 ns

tEABRCOMB 5.9 7.6 9.9 ns

tEABRCREG 5.1 6.5 8.5 ns

tEABWP 2.7 3.5 4.7 ns
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Table 69. EPF10K50S Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 3.7 5.2 7.0 ns

tEABRCCOMB 3.7 5.2 7.0 ns

tEABRCREG 3.5 4.9 6.6 ns

tEABWP 2.0 2.8 3.8 ns

tEABWCCOMB 4.5 6.3 8.6 ns

tEABWCREG 5.6 7.8 10.6 ns

tEABDD 3.8 5.3 7.2 ns

tEABDATACO 0.8 1.1 1.5 ns

tEABDATASU 1.1 1.6 2.1 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 0.7 1.0 1.3 ns

tEABWEH 0.4 0.6 0.8 ns

tEABWDSU 1.2 1.7 2.2 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 1.6 2.3 3.0 ns

tEABWAH 0.9 1.2 1.8 ns

tEABWO 3.1 4.3 5.9 ns

Table 70. EPF10K50S Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 3.1 3.7 4.6 ns

tDIN2LE 1.7 2.1 2.7 ns

tDIN2DATA 2.7 3.1 5.1 ns

tDCLK2IOE 1.6 1.9 2.6 ns

tDCLK2LE 1.7 2.1 2.7 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.5 1.7 2.4 ns

tSAMECOLUMN 1.0 1.3 2.1 ns

tDIFFROW 2.5 3.0 4.5 ns

tTWOROWS 4.0 4.7 6.9 ns

tLEPERIPH 2.6 2.9 3.4 ns

tLABCARRY 0.1 0.2 0.2 ns

tLABCASC 0.8 1.0 1.3 ns
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Power 
Consumption

The supply power (P) for FLEX 10KE devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the 
application logic. This value is calculated based on the amount of current 
that each LE typically consumes. The PIO value, which depends on the 
device output load characteristics and switching frequency, can be 
calculated using the guidelines given in Application Note 74 (Evaluating 
Power for Altera Devices).

Compared to the rest of the device, the embedded array consumes a 
negligible amount of power. Therefore, the embedded array can be 
ignored when calculating supply current.

The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K × fMAX × N × togLC × 

Where:

fMAX = Maximum operating frequency in MHz
N = Total number of LEs used in the device
togLC = Average percent of LEs toggling at each clock 

(typically 12.5%)
K = Constant

Table 80 provides the constant (K) values for FLEX 10KE devices.

This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions.

Table 80. FLEX 10KE K Constant Values

Device K Value

EPF10K30E 4.5

EPF10K50E 4.8

EPF10K50S 4.5

EPF10K100E 4.5

EPF10K130E 4.6

EPF10K200E 4.8

EPF10K200S 4.6

µA
MHz LE×
---------------------------
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During initialization, which occurs immediately after configuration, the 
device resets registers, enables I/O pins, and begins to operate as a logic 
device. The I/O pins are tri-stated during power-up, and before and 
during configuration. Together, the configuration and initialization 
processes are called command mode; normal device operation is called user 
mode.

SRAM configuration elements allow FLEX 10KE devices to be 
reconfigured in-circuit by loading new configuration data into the device. 
Real-time reconfiguration is performed by forcing the device into 
command mode with a device pin, loading different configuration data, 
reinitializing the device, and resuming user-mode operation. The entire 
reconfiguration process requires less than 85 ms and can be used to 
reconfigure an entire system dynamically. In-field upgrades can be 
performed by distributing new configuration files.

Before and during configuration, all I/O pins (except dedicated inputs, 
clock, or configuration pins) are pulled high by a weak pull-up resistor.

Programming Files

Despite being function- and pin-compatible, FLEX 10KE devices are not 
programming- or configuration file-compatible with FLEX 10K or 
FLEX 10KA devices. A design therefore must be recompiled before it is 
transferred from a FLEX 10K or FLEX 10KA device to an equivalent 
FLEX 10KE device. This recompilation should be performed both to create 
a new programming or configuration file and to check design timing in 
FLEX 10KE devices, which has different timing characteristics than 
FLEX 10K or FLEX 10KA devices.

FLEX 10KE devices are generally pin-compatible with equivalent 
FLEX 10KA devices. In some cases, FLEX 10KE devices have fewer I/O 
pins than the equivalent FLEX 10KA devices. Table 81 shows which 
FLEX 10KE devices have fewer I/O pins than equivalent FLEX 10KA 
devices. However, power, ground, JTAG, and configuration pins are the 
same on FLEX 10KA and FLEX 10KE devices, enabling migration from a 
FLEX 10KA design to a FLEX 10KE design.
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