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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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General 
Description

Altera FLEX 10KE devices are enhanced versions of FLEX 10K devices. 
Based on reconfigurable CMOS SRAM elements, the FLEX architecture 
incorporates all features necessary to implement common gate array 
megafunctions. With up to 200,000 typical gates, FLEX 10KE devices 
provide the density, speed, and features to integrate entire systems, 
including multiple 32-bit buses, into a single device. 

The ability to reconfigure FLEX 10KE devices enables 100% testing prior 
to shipment and allows the designer to focus on simulation and design 
verification. FLEX 10KE reconfigurability eliminates inventory 
management for gate array designs and generation of test vectors for fault 
coverage.

Table 5 shows FLEX 10KE performance for some common designs. All 
performance values were obtained with Synopsys DesignWare or LPM 
functions. Special design techniques are not required to implement the 
applications; the designer simply infers or instantiates a function in a 
Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or 
schematic design file.

Table 4. FLEX 10KE Package Sizes 

Device 144-
Pin 

TQFP

208-Pin 
PQFP

240-Pin
PQFP
RQFP

256-Pin
FineLine 

BGA

356-
Pin 
BGA

484-Pin
FineLine 

BGA

599-Pin 
PGA

600-
Pin 
BGA

672-Pin
FineLine 

BGA

Pitch (mm) 0.50 0.50 0.50 1.0 1.27 1.0 – 1.27 1.0

Area (mm2) 484 936 1,197 289 1,225 529 3,904 2,025 729

Length × width
(mm × mm)

22 × 22 30.6 × 30.6 34.6 × 34.6 17 × 17 35 × 35 23 × 23 62.5 × 62.5 45 × 45 27 × 27
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f For more information on FLEX device configuration, see the following 
documents:

■ Configuration Devices for APEX & FLEX Devices Data Sheet
■ BitBlaster Serial Download Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ MasterBlaster Download Cable Data Sheet
■ Application Note 116 (Configuring APEX 20K, FLEX 10K, & FLEX 6000 

Devices)

FLEX 10KE devices are supported by the Altera development systems, 
which are integrated packages that offer schematic, text (including 
AHDL), and waveform design entry, compilation and logic synthesis, full 
simulation and worst-case timing analysis, and device configuration. The 
Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, 
and other interfaces for additional design entry and simulation support 
from other industry-standard PC- and UNIX workstation-based EDA 
tools. 

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains, which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development system includes DesignWare 
functions that are optimized for the FLEX 10KE architecture. 

The Altera development system runs on Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800.

f See the MAX+PLUS II Programmable Logic Development System & Software 
Data Sheet and the Quartus Programmable Logic Development System & 
Software Data Sheet for more information.
Altera Corporation 7 
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The EAB can also use Altera megafunctions to implement dual-port RAM 
applications where both ports can read or write, as shown in Figure 3.

Figure 3. FLEX 10KE EAB in Dual-Port RAM Mode

The FLEX 10KE EAB can be used in a single-port mode, which is useful for 
backward-compatibility with FLEX 10K designs (see Figure 4).

Port A Port B

address_a[] address_b[]

data_a[] data_b[]

we_a we_b

clkena_a clkena_b

Clock A Clock B
12 Altera Corporation



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
EABs provide flexible options for driving and controlling clock signals. 
Different clocks and clock enables can be used for reading and writing to 
the EAB. Registers can be independently inserted on the data input, EAB 
output, write address, write enable signals, read address, and read enable 
signals. The global signals and the EAB local interconnect can drive write 
enable, read enable, and clock enable signals. The global signals, 
dedicated clock pins, and EAB local interconnect can drive the EAB clock 
signals. Because the LEs drive the EAB local interconnect, the LEs can 
control write enable, read enable, clear, clock, and clock enable signals. 

An EAB is fed by a row interconnect and can drive out to row and column 
interconnects. Each EAB output can drive up to two row channels and up 
to two column channels; the unused row channel can be driven by other 
LEs. This feature increases the routing resources available for EAB 
outputs (see Figures 2 and 4). The column interconnect, which is adjacent 
to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure to the FLEX 10KE architecture, facilitating 
efficient routing with optimum device utilization and high performance 
(see Figure 7). 
Altera Corporation 15 
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Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 

Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder)

LUTa1
b1

Carry Chain

s1

LE1

Register

a2
b2

Carry Chain

s2

LE2

Register

Carry Chain

sn

LEn

Registeran
bn

Carry Chain

Carry-Out

LEn + 1

Register

Carry-In

LUT

LUT

LUT
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Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but 
supports a synchronous clear instead of the up/down control. The clear 
function is substituted for the cascade-in signal in the up/down counter 
mode. Use 2 three-input LUTs: one generates the counter data, and the 
other generates the fast carry bit. Synchronous loading is provided by a 
2-to-1 multiplexer. The output of this multiplexer is AND ed with a 
synchronous clear signal. 

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer. 

Clear & Preset Logic Control

Logic for the programmable register’s clear and preset functions is 
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The 
clear and preset control structure of the LE asynchronously loads signals 
into a register. Either LABCTRL1 or LABCTRL2 can control the 
asynchronous clear. Alternatively, the register can be set up so that 
LABCTRL1 implements an asynchronous load. The data to be loaded is 
driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the 
register.

During compilation, the Altera Compiler automatically selects the best 
control signal implementation. Because the clear and preset functions are 
active-low, the Compiler automatically assigns a logic high to an unused 
clear or preset. 

The clear and preset logic is implemented in one of the following six 
modes chosen during design entry: 

■ Asynchronous clear
■ Asynchronous preset
■ Asynchronous clear and preset
■ Asynchronous load with clear
■ Asynchronous load with preset
■ Asynchronous load without clear or preset
24 Altera Corporation
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FastTrack Interconnect Routing Structure

In the FLEX 10KE architecture, connections between LEs, EABs, and 
device I/O pins are provided by the FastTrack Interconnect routing 
structure, which is a series of continuous horizontal and vertical routing 
channels that traverses the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the 
segmented routing in FPGAs requires switch matrices to connect a 
variable number of routing paths, increasing the delays between logic 
resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column 
interconnect channels that span the entire device. Each row of LABs is 
served by a dedicated row interconnect. The row interconnect can drive 
I/O pins and feed other LABs in the row. The column interconnect routes 
signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row 
signal is buffered at every LAB or EAB to reduce the effect of fan-out on 
delay. A row channel can be driven by an LE or by one of three column 
channels. These four signals feed dual 4-to-1 multiplexers that connect to 
two specific row channels. These multiplexers, which are connected to 
each LE, allow column channels to drive row channels even when all eight 
LEs in a LAB drive the row interconnect. 

Each column of LABs or EABs is served by a dedicated column 
interconnect. The column interconnect that serves the EABs has twice as 
many channels as other column interconnects. The column interconnect 
can then drive I/O pins or another row’s interconnect to route the signals 
to other LABs or EABs in the device. A signal from the column 
interconnect, which can be either the output of a LE or an input from an 
I/O pin, must be routed to the row interconnect before it can enter a LAB 
or EAB. Each row channel that is driven by an IOE or EAB can drive one 
specific column channel.

Access to row and column channels can be switched between LEs in 
adjacent pairs of LABs. For example, a LE in one LAB can drive the row 
and column channels normally driven by a particular LE in the adjacent 
LAB in the same row, and vice versa. This flexibility enables routing 
resources to be used more efficiently (see Figure 13).
Altera Corporation 27 
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For improved routing, the row interconnect consists of a combination of 
full-length and half-length channels. The full-length channels connect to 
all LABs in a row; the half-length channels connect to the LABs in half of 
the row. The EAB can be driven by the half-length channels in the left half 
of the row and by the full-length channels. The EAB drives out to the full-
length channels. In addition to providing a predictable, row-wide 
interconnect, this architecture provides increased routing resources. Two 
neighboring LABs can be connected using a half-row channel, thereby 
saving the other half of the channel for the other half of the row.

Table 7 summarizes the FastTrack Interconnect routing structure 
resources available in each FLEX 10KE device.

In addition to general-purpose I/O pins, FLEX 10KE devices have six 
dedicated input pins that provide low-skew signal distribution across the 
device. These six inputs can be used for global clock, clear, preset, and 
peripheral output enable and clock enable control signals. These signals 
are available as control signals for all LABs and IOEs in the device. The 
dedicated inputs can also be used as general-purpose data inputs because 
they can feed the local interconnect of each LAB in the device. 

Figure 14 shows the interconnection of adjacent LABs and EABs, with 
row, column, and local interconnects, as well as the associated cascade 
and carry chains. Each LAB is labeled according to its location: a letter 
represents the row and a number represents the column. For example, 
LAB B3 is in row B, column 3.

Table 7. FLEX 10KE FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per
Column

EPF10K30E 6 216 36 24

EPF10K50E
EPF10K50S

10 216 36 24

EPF10K100E 12 312 52 24

EPF10K130E 16 312 52 32

EPF10K200E
EPF10K200S

24 312 52 48
Altera Corporation 29 



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Generic Testing Each FLEX 10KE device is functionally tested. Complete testing of each 
configurable static random access memory (SRAM) bit and all logic 
functionality ensures 100% yield. AC test measurements for FLEX 10KE 
devices are made under conditions equivalent to those shown in 
Figure 21. Multiple test patterns can be used to configure devices during 
all stages of the production flow.

Figure 21. FLEX 10KE AC Test Conditions

Operating 
Conditions

Tables 19 through 23 provide information on absolute maximum ratings, 
recommended operating conditions, DC operating conditions, and 
capacitance for 2.5-V FLEX 10KE devices.

Test
System

C1 (includes
JIG capacitance)

Device input
rise and fall
times < 3 ns

Device
Output

703 Ω

8.06 kΩ
[481    ]Ω

[481    ]Ω
 

VCCIO
Power supply transients can affect AC
measurements. Simultaneous transitions of 
multiple outputs should be avoided for 
accurate measurement. Threshold tests 
must not be performed under AC 
conditions. Large-amplitude, fast-ground-
current transients normally occur as the 
device outputs discharge the load 
capacitances. When these transients flow 
through the parasitic inductance between 
the device ground pin and the test system 
ground, significant reductions in 
observable noise immunity can result. 
Numbers in brackets are for 2.5-V devices 
or outputs. Numbers without brackets are 
for 3.3-V. devices or outputs.

Table 19. FLEX 10KE 2.5-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage With respect to ground (2) –0.5 3.6 V

VCCIO –0.5 4.6 V

VI DC input voltage –2.0 5.75 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, TQFP, BGA, and FineLine BGA 
packages, under bias

135 ° C

Ceramic PGA packages, under bias 150 ° C
Altera Corporation 47 
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Table 20. 2.5-V EPF10K50E & EPF10K200E Device Recommended Operating Conditions 

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage for internal logic 
and input buffers

(3), (4) 2.30 (2.30) 2.70 (2.70) V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.30 (2.30) 2.70 (2.70) V

VI Input voltage (5) –0.5 5.75 V

VO Output voltage 0 VCCIO V

TA Ambient temperature For commercial use 0 70 ° C

For industrial use –40 85 ° C

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns

Table 21. 2.5-V EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E & EPF10K200S Device 
Recommended Operating Conditions 

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage for internal logic 
and input buffers

(3), (4) 2.375 
(2.375)

2.625 
(2.625)

V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.375 
(2.375)

2.625 
(2.625)

V

VI Input voltage (5) –0.5 5.75 V

VO Output voltage 0 VCCIO V

TA Ambient temperature For commercial use 0 70 ° C

For industrial use –40 85 ° C

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
48 Altera Corporation
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Table 22. FLEX 10KE 2.5-V Device DC Operating Conditions Notes (6), (7)

Symbol Parameter Conditions Min Typ Max Unit

VIH High-level input 
voltage

1.7, 0.5 × VCCIO (8) 5.75 V

VIL Low-level input 
voltage

–0.5 0.8, 
0.3 × VCCIO (8)

V

VOH 3.3-V high-level TTL 
output voltage

IOH = –8 mA DC, 
VCCIO = 3.00 V (9) 

2.4 V

3.3-V high-level 
CMOS output voltage

IOH = –0.1 mA DC, 
VCCIO = 3.00 V (9) 

VCCIO – 0.2 V

3.3-V high-level PCI 
output voltage

IOH = –0.5 mA DC, 
VCCIO = 3.00 to 3.60 V (9) 

0.9 × VCCIO V

2.5-V high-level output 
voltage

IOH = –0.1 mA DC, 
VCCIO = 2.30 V (9) 

2.1 V

IOH = –1 mA DC, 
VCCIO = 2.30 V (9) 

2.0 V

IOH = –2 mA DC, 
VCCIO = 2.30 V (9) 

1.7 V

VOL 3.3-V low-level TTL 
output voltage

IOL = 12 mA DC, 
VCCIO = 3.00 V (10)

0.45 V

3.3-V low-level CMOS 
output voltage

IOL = 0.1 mA DC, 
VCCIO = 3.00 V (10)

0.2 V

3.3-V low-level PCI 
output voltage

IOL = 1.5 mA DC, 
VCCIO = 3.00 to 3.60 V 
(10)

0.1 × VCCIO V

2.5-V low-level output 
voltage

IOL = 0.1 mA DC, 
VCCIO = 2.30 V (10)

0.2 V

IOL = 1 mA DC, 
VCCIO = 2.30 V (10)

0.4 V

IOL = 2 mA DC, 
VCCIO = 2.30 V (10)

0.7 V

II Input pin leakage 
current

VI = VCCIOmax to 0 V (11) –10 10 µA

IOZ Tri-stated I/O pin 
leakage current

VO = VCCIOmax to 0 V (11) –10 10 µA

ICC0 VCC supply current 
(standby)

VI = ground, no load, no 
toggling inputs

5 mA

VI = ground, no load, no 
toggling inputs (12)

10 mA

RCONF Value of I/O pin pull-
up resistor before and 
during configuration

VCCIO = 3.0 V (13) 20 50 k¾

VCCIO = 2.3 V (13) 30 80 k¾
Altera Corporation 49 
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Figure 26. FLEX 10KE Device IOE Timing Model

Figure 27. FLEX 10KE Device EAB Timing Model
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Table 28. Interconnect Timing Microparameters Note (1)

Symbol Parameter Conditions

tDIN2IOE Delay from dedicated input pin to IOE control input (7)

tDIN2LE Delay from dedicated input pin to LE or EAB control input (7)

tDCLK2IOE Delay from dedicated clock pin to IOE clock (7)

tDCLK2LE Delay from dedicated clock pin to LE or EAB clock (7)

tDIN2DATA Delay from dedicated input or clock to LE or EAB data (7)

tSAMELAB Routing delay for an LE driving another LE in the same LAB

tSAMEROW Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the 
same row

(7)

tSAMECOLUMN Routing delay for an LE driving an IOE in the same column (7)

tDIFFROW Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different 
row

(7)

tTWOROWS Routing delay for a row IOE or EAB driving an LE or EAB in a different row (7)

tLEPERIPH Routing delay for an LE driving a control signal of an IOE via the peripheral 
control bus

(7)

tLABCARRY Routing delay for the carry-out signal of an LE driving the carry-in signal of a 
different LE in a different LAB

tLABCASC Routing delay for the cascade-out signal of an LE driving the cascade-in 
signal of a different LE in a different LAB

Table 29. External Timing Parameters

Symbol Parameter Conditions

tDRR Register-to-register delay via four LEs, three row interconnects, and four local 
interconnects

(8)

tINSU Setup time with global clock at IOE register (9)

tINH Hold time with global clock at IOE register (9)

tOUTCO Clock-to-output delay with global clock at IOE register (9)

tPCISU Setup time with global clock for registers used in PCI designs (9),(10)

tPCIH Hold time with global clock for registers used in PCI designs (9),(10)

tPCICO Clock-to-output delay with global clock for registers used in PCI designs (9),(10)
60 Altera Corporation
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Table 34. EPF10K30E Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 6.4 7.6 8.8 ns

tEABRCOMB 6.4 7.6 8.8 ns

tEABRCREG 4.4 5.1 6.0 ns

tEABWP 2.5 2.9 3.3 ns

tEABWCOMB 6.0 7.0 8.0 ns

tEABWCREG 6.8 7.8 9.0 ns

tEABDD 5.7 6.7 7.7 ns

tEABDATACO 0.8 0.9 1.1 ns

tEABDATASU 1.5 1.7 2.0 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.3 1.4 1.7 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.5 1.7 2.0 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.3 ns

tEABWAH 0.5 0.5 0.4 ns

tEABWO 5.1 6.0 6.8 ns
66 Altera Corporation
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Table 47. EPF10K100E Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.5 2.0 2.6 ns

tEABDATA1 0.0 0.0 0.0 ns

tEABWE1 1.5 2.0 2.6 ns

tEABWE2 0.3 0.4 0.5 ns

tEABRE1 0.3 0.4 0.5 ns

tEABRE2 0.0 0.0 0.0 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.4 0.5 ns

tEABBYPASS 0.1 0.1 0.2 ns

tEABSU 0.8 1.0 1.4 ns

tEABH 0.1 0.1 0.2 ns

tEABCLR 0.3 0.4 0.5 ns

tAA 4.0 5.1 6.6 ns

tWP 2.7 3.5 4.7 ns

tRP 1.0 1.3 1.7 ns

tWDSU 1.0 1.3 1.7 ns

tWDH 0.2 0.2 0.3 ns

tWASU 1.6 2.1 2.8 ns

tWAH 1.6 2.1 2.8 ns

tRASU 3.0 3.9 5.2 ns

tRAH 0.1 0.1 0.2 ns

tWO 1.5 2.0 2.6 ns

tDD 1.5 2.0 2.6 ns

tEABOUT 0.2 0.3 0.3 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.7 3.5 4.7 ns

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 5.9 7.6 9.9 ns

tEABRCOMB 5.9 7.6 9.9 ns

tEABRCREG 5.1 6.5 8.5 ns

tEABWP 2.7 3.5 4.7 ns
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tDD 1.5 2.0 2.6 ns

tEABOUT 0.2 0.3 0.3 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.7 3.5 4.7 ns

Table 55. EPF10K130E Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 5.9 7.5 9.9 ns

tEABRCOMB 5.9 7.5 9.9 ns

tEABRCREG 5.1 6.4 8.5 ns

tEABWP 2.7 3.5 4.7 ns

tEABWCOMB 5.9 7.7 10.3 ns

tEABWCREG 5.4 7.0 9.4 ns

tEABDD 3.4 4.5 5.9 ns

tEABDATACO 0.5 0.7 0.8 ns

tEABDATASU 0.8 1.0 1.4 ns

tEABDATAH 0.1 0.1 0.2 ns

tEABWESU 1.1 1.4 1.9 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.0 1.3 1.7 ns

tEABWDH 0.2 0.2 0.3 ns

tEABWASU 4.1 5.1 6.8 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 3.4 4.5 5.9 ns

Table 54. EPF10K130E Device EAB Internal Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Table 61. EPF10K200E Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 2.0 2.4 3.2 ns

tEABDATA1 0.4 0.5 0.6 ns

tEABWE1 1.4 1.7 2.3 ns

tEABWE2 0.0 0.0 0.0 ns

tEABRE1 0 0 0 ns

tEABRE2 0.4 0.5 0.6 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.8 0.9 1.2 ns

tEABBYPASS 0.0 0.1 0.1 ns

tEABSU 0.9 1.1 1.5 ns

tEABH 0.4 0.5 0.6 ns

tEABCLR 0.8 0.9 1.2 ns

tAA 3.1 3.7 4.9 ns

tWP 3.3 4.0 5.3 ns

tRP 0.9 1.1 1.5 ns

tWDSU 0.9 1.1 1.5 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.3 1.6 2.1 ns

tWAH 2.1 2.5 3.3 ns

tRASU 2.2 2.6 3.5 ns

tRAH 0.1 0.1 0.2 ns

tWO 2.0 2.4 3.2 ns

tDD 2.0 2.4 3.2 ns

tEABOUT 0.0 0.1 0.1 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 3.3 4.0 5.3 ns

Table 62. EPF10K200E Device EAB Internal Timing Macroparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 5.1 6.4 8.4 ns

tEABRCOMB 5.1 6.4 8.4 ns

tEABRCREG 4.8 5.7 7.6 ns

tEABWP 3.3 4.0 5.3 ns
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30.
(2) This parameter is measured without use of the ClockLock or ClockBoost circuits.
(3) This parameter is measured with use of the ClockLock or ClockBoost circuits

Table 71. EPF10K50S External Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (2) 2.4 2.9 3.9 ns

tINH (2) 0.0 0.0 0.0 ns

tOUTCO (2) 2.0 4.3 2.0  5.2 2.0 7.3 ns

tINSU (3) 2.4 2.9 ns

tINH (3) 0.0 0.0 ns

tOUTCO (3) 0.5 3.3 0.5 4.1 ns

tPCISU  2.4 2.9 – ns

tPCIH  0.0  0.0 – ns

tPCICO  2.0  6.0  2.0 7.7 – – ns

Table 72. EPF10K50S External Bidirectional Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (2) 2.7 3.2 4.3 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tINHBIDIR (3) 0.0 0.0 – ns

tINSUBIDIR (3) 3.7 4.2 – ns

tOUTCOBIDIR (2) 2.0 4.5 2.0 5.2 2.0 7.3 ns

tXZBIDIR (2) 6.8 7.8 10.1 ns

tZXBIDIR (2) 6.8 7.8 10.1 ns

tOUTCOBIDIR (3) 0.5 3.5 0.5 4.2 – –

tXZBIDIR (3) 6.8 8.4 – ns

tZXBIDIR (3) 6.8 8.4 – ns
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Additionally, the Altera software offers several features that help plan for 
future device migration by preventing the use of conflicting I/O pins.

Configuration Schemes

The configuration data for a FLEX 10KE device can be loaded with one of 
five configuration schemes (see Table 82), chosen on the basis of the target 
application. An EPC1, EPC2, or EPC16 configuration device, intelligent 
controller, or the JTAG port can be used to control the configuration of a 
FLEX 10KE device, allowing automatic configuration on system 
power-up.

Multiple FLEX 10KE devices can be configured in any of the five 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device. Additional 
FLEX 10K, FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be 
configured in the same serial chain.

Table 81. I/O Counts for FLEX 10KA & FLEX 10KE Devices

FLEX 10KA FLEX 10KE

Device I/O Count Device I/O Count

EPF10K30AF256 191 EPF10K30EF256 176

EPF10K30AF484 246 EPF10K30EF484 220

EPF10K50VB356 274 EPF10K50SB356 220

EPF10K50VF484 291 EPF10K50EF484 254

EPF10K50VF484 291 EPF10K50SF484 254

EPF10K100AF484 369 EPF10K100EF484 338

Table 82. Data Sources for FLEX 10KE Configuration

Configuration Scheme Data Source

Configuration device EPC1, EPC2, or EPC16 configuration device

Passive serial (PS) BitBlaster, ByteBlasterMV, or MasterBlaster download cables, 
or serial data source

Passive parallel asynchronous (PPA) Parallel data source

Passive parallel synchronous (PPS) Parallel data source

JTAG BitBlaster or ByteBlasterMV download cables, or 
microprocessor with a Jam STAPL file or JBC file
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