

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	72
Number of Logic Elements/Cells	576
Total RAM Bits	6144
Number of I/O	102
Number of Gates	31000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k10tc144-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1 shows a block diagram of the FLEX 10KE architecture. Each group of LEs is combined into an LAB; groups of LABs are arranged into rows and columns. Each row also contains a single EAB. The LABs and EABs are interconnected by the FastTrack Interconnect routing structure. IOEs are located at the end of each row and column of the FastTrack Interconnect routing structure.

Embedded Array Block (EAB) I/O Element IOE IOE IOE IOE IOE IOE IOE IOE IOE (IOE) IOE Column Logic Array Interconnect EAB Logic Array Block (LAB) IOE Logic Element (LE) Row EAB Interconnect Local Interconnect Logic Array

Figure 1. FLEX 10KE Device Block Diagram

IOE

IOE

IOE

IOE

IOE

IOE

Embedded Array

FLEX 10KE devices provide six dedicated inputs that drive the flipflops' control inputs and ensure the efficient distribution of high-speed, low-skew (less than 1.5 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect routing structure. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device.

IOE

IOE

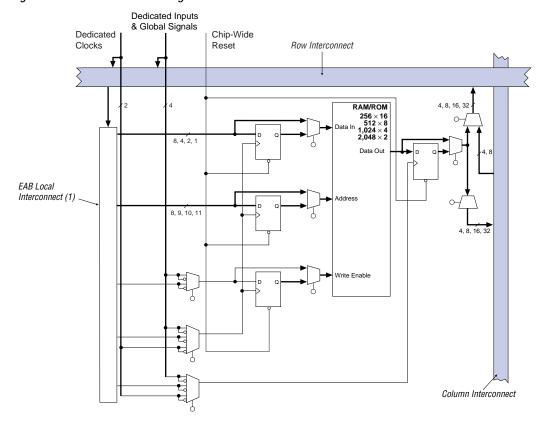


Figure 4. FLEX 10KE Device in Single-Port RAM Mode

Note:

 EPF10K30E, EPF10K50E, and EPF10K50S devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 104 EAB local interconnect channels.

EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB's synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB's self-timed RAM must only meet the setup and hold time specifications of the global clock.

LE Operating Modes

The FLEX 10KE LE can operate in the following four modes:

- Normal mode
- Arithmetic mode
- Up/down counter mode
- Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs.

Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is ANDed with a synchronous clear signal.

Internal Tri-State Emulation

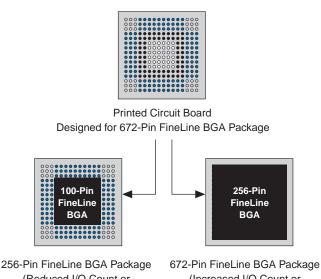
Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.

During compilation, the Altera Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six modes chosen during design entry:


- Asynchronous clear
- Asynchronous preset
- Asynchronous clear and preset
- Asynchronous load with clear
- Asynchronous load with preset
- Asynchronous load without clear or preset

SameFrame Pin-Outs

FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K30E device in a 256-pin FineLine BGA package to an EPF10K200S device in a 672-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 18).

Figure 18. SameFrame Pin-Out Example

256-Pin FineLine BGA Packag (Reduced I/O Count or Logic Reguirements) 672-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t_R	Input rise time				5	ns
t _F	Input fall time				5	ns
t _{INDUTY}	Input duty cycle		40		60	%
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		75	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		37.5	MHz
f _{CLKDEV}	Input deviation from user specification in the MAX+PLUS II software (1)				25,000 (2)	PPM
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs
t _{JITTER}	Jitter on ClockLock or ClockBoost-	$t_{INCLKSTB} < 100$			250	ps
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost-generated clock		40	50	60	%

Notes to tables:

- (1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{IITTER} specification is measured under long-term observation. The maximum value for t_{IITTER} is 200 ps if $t_{INCLKSTB}$ is lower than 50 ps.

I/O Configuration

This section discusses the peripheral component interconnect (PCI) pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera software logic options. The MultiVolt I/O interface is controlled by connecting $V_{\rm CCIO}$ to a different voltage than $V_{\rm CCINT}.$ Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu).

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All FLEX 10KE devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. FLEX 10KE devices can also be configured using the JTAG pins through the BitBlaster or ByteBlasterMV download cable, or via hardware that uses the JamTM STAPL programming and test language. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. FLEX 10KE devices support the JTAG instructions shown in Table 15.

Table 15. FLEX 10KE	TTAG Instructions
JTAG Instruction	Description
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins.
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.
USERCODE	Selects the user electronic signature (USERCODE) register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
ICR Instructions	These instructions are used when configuring a FLEX 10KE device via JTAG ports with a BitBlaster or ByteBlasterMV download cable, or using a Jam File (.jam) or Jam Byte-Code File (.jbc) via an embedded processor.

The instruction register length of FLEX 10KE devices is 10 bits. The USERCODE register length in FLEX 10KE devices is 32 bits; 7 bits are determined by the user, and 25 bits are pre-determined. Tables 16 and 17 show the boundary-scan register length and device IDCODE information for FLEX 10KE devices.

Table 16. FLEX 10KE Boundary-Scan Register Length					
Device	Boundary-Scan Register Length				
EPF10K30E	690				
EPF10K50E EPF10K50S	798				
EPF10K100E	1,050				
EPF10K130E	1,308				
EPF10K200E EPF10K200S	1,446				

to Be Driven

Figure 20. FLEX 10KE JTAG Waveforms TMS TDI t_{JPSU} TCK t_{JPZX} t _{JPXZ} $\mathbf{t}_{\mathsf{JPCO}}$ TDO t_{JSH} t_{JSSU} Signal to Be Captured t_{JSCO}t_{JSZX} t_{JSXZ} Signal

Figure 20 shows the timing requirements for the JTAG signals.

Table 18 shows the timing parameters and values for FLEX 10KE devices.

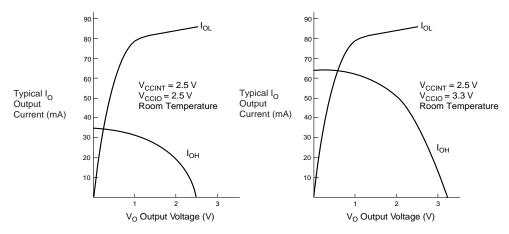

Table 1	8. FLEX 10KE JTAG Timing Parameters & Values			
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		35	ns
t _{JSZX}	Update register high impedance to valid output		35	ns
t _{JSXZ}	Update register valid output to high impedance		35	ns

Table 2	Table 23. FLEX 10KE Device Capacitance Note (14)						
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF		
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF		
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF		

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
- (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22.
- (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) This value is specified for normal device operation. The value may vary during power-up.
- (12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial temperature devices.
- (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (14) Capacitance is sample-tested only.

Figure 23. Output Drive Characteristics of FLEX 10KE Devices Note (1)

Note:

These are transient (AC) currents.

Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay (t_{CO})
- Interconnect delay ($t_{SAMEROW}$)
- LE look-up table delay (t_{LUT})
- LE register setup time (t_{SI})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

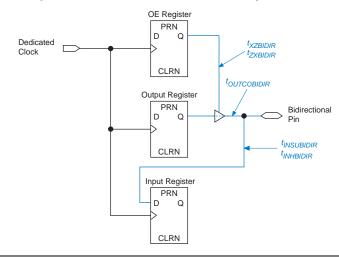


Figure 28. Synchronous Bidirectional Pin External Timing Model

Tables 24 through 28 describe the FLEX 10KE device internal timing parameters. Tables 29 through 30 describe the FLEX 10KE external timing parameters and their symbols.

Symbol	Parameter	Condition
t _{LUT}	LUT delay for data-in	
t _{CLUT}	LUT delay for carry-in	
t _{RLUT}	LUT delay for LE register feedback	
t _{PACKED}	Data-in to packed register delay	
t _{EN}	LE register enable delay	
t _{CICO}	Carry-in to carry-out delay	
t _{CGEN}	Data-in to carry-out delay	
t _{CGENR}	LE register feedback to carry-out delay	
t _{CASC}	Cascade-in to cascade-out delay	
t_{C}	LE register control signal delay	
t _{CO}	LE register clock-to-output delay	
t _{COMB}	Combinatorial delay	
t _{SU}	LE register setup time for data and enable signals before clock; LE register recovery time after asynchronous clear, preset, or load	
t_H	LE register hold time for data and enable signals after clock	
t _{PRE}	LE register preset delay	

Table 26. EA	B Timing Microparameters Note (1)	
Symbol	Parameter	Conditions
t _{EABDATA1}	Data or address delay to EAB for combinatorial input	
t _{EABDATA2}	Data or address delay to EAB for registered input	
t _{EABWE1}	Write enable delay to EAB for combinatorial input	
t _{EABWE2}	Write enable delay to EAB for registered input	
t _{EABRE1}	Read enable delay to EAB for combinatorial input	
t _{EABRE2}	Read enable delay to EAB for registered input	
t _{EABCLK}	EAB register clock delay	
t _{EABCO}	EAB register clock-to-output delay	
t _{EABBYPASS}	Bypass register delay	
t _{EABSU}	EAB register setup time before clock	
t _{EABH}	EAB register hold time after clock	
t _{EABCLR}	EAB register asynchronous clear time to output delay	
t_{AA}	Address access delay (including the read enable to output delay)	
t_{WP}	Write pulse width	
t_{RP}	Read pulse width	
t _{WDSU}	Data setup time before falling edge of write pulse	(5)
t_{WDH}	Data hold time after falling edge of write pulse	(5)
t _{WASU}	Address setup time before rising edge of write pulse	(5)
t_{WAH}	Address hold time after falling edge of write pulse	(5)
t _{RASU}	Address setup time with respect to the falling edge of the read enable	
t _{RAH}	Address hold time with respect to the falling edge of the read enable	
t_{WO}	Write enable to data output valid delay	
t_{DD}	Data-in to data-out valid delay	
t _{EABOUT}	Data-out delay	
t _{EABCH}	Clock high time	
t _{EABCL}	Clock low time	

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.0		2.7	ns
t _{EABDATA1}		0.6		0.7		0.9	ns
t _{EABWE1}		1.1		1.3		1.8	ns
t _{EABWE2}		0.4		0.4		0.6	ns
t _{EABRE1}		0.8		0.9		1.2	ns
t _{EABRE2}		0.4		0.4		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.3		0.5	ns
t _{EABBYPASS}		0.5		0.6		0.8	ns
t _{EABSU}	0.9		1.0		1.4		ns
t _{EABH}	0.4		0.4		0.6		ns
t _{EABCLR}	0.3		0.3		0.5		ns
t_{AA}		3.2		3.8		5.1	ns
t_{WP}	2.5		2.9		3.9		ns
t_{RP}	0.9		1.1		1.5		ns
t _{WDSU}	0.9		1.0		1.4		ns
t_{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.7		2.0		2.7		ns
t _{WAH}	1.8		2.1		2.9		ns
t _{RASU}	3.1		3.7		5.0		ns
t _{RAH}	0.2		0.2		0.3		ns
t_{WO}		2.5		2.9		3.9	ns
t_{DD}		2.5		2.9		3.9	ns
t _{EABOUT}		0.5		0.6		0.8	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.5		2.9		3.9		ns

Table 41. EPF10	K50E Device	EAB Interna	l Timing Ma	croparamet	ers Note	(1)	
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		6.4		7.6		10.2	ns
t _{EABRCOMB}	6.4		7.6		10.2		ns
t _{EABRCREG}	4.4		5.1		7.0		ns
t _{EABWP}	2.5		2.9		3.9		ns
t _{EABWCOMB}	6.0		7.0		9.5		ns
t _{EABWCREG}	6.8		7.8		10.6		ns
t _{EABDD}		5.7		6.7		9.0	ns
t _{EABDATACO}		0.8		0.9		1.3	ns
t _{EABDATASU}	1.5		1.7		2.3		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	1.3		1.4		2.0		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.5		1.7		2.3		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.0		3.6		4.8		ns
t _{EABWAH}	0.5		0.5		0.8		ns
t _{EABWO}		5.1		6.0		8.1	ns

Table 42. EPF10	K50E Device	Interconnec	t Timing Mid	croparamete	ers Note	(1)	
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		3.5		4.3		5.6	ns
t _{DIN2LE}		2.1		2.5		3.4	ns
t _{DIN2DATA}		2.2		2.4		3.1	ns
t _{DCLK2IOE}		2.9		3.5		4.7	ns
t _{DCLK2LE}		2.1		2.5		3.4	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.1		1.1		1.5	ns
t _{SAME} COLUMN		0.8		1.0		1.3	ns
t _{DIFFROW}		1.9		2.1		2.8	ns
t _{TWOROWS}		3.0		3.2		4.3	ns
t _{LEPERIPH}		3.1		3.3		3.7	ns
t _{LABCARRY}		0.1		0.1		0.2	ns
t _{LABCASC}		0.3		0.3		0.5	ns

Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{CGENR}		0.1		0.1		0.2	ns
t _{CASC}		0.6		0.9		1.2	ns
t _C		0.8		1.0		1.4	ns
t _{CO}		0.6		0.8		1.1	ns
t _{COMB}		0.4		0.5		0.7	ns
t _{SU}	0.4		0.6		0.7		ns
t _H	0.5		0.7		0.9		ns
t _{PRE}		0.8		1.0		1.4	ns
t _{CLR}		0.8		1.0		1.4	ns
t _{CH}	1.5		2.0		2.5		ns
t_{CL}	1.5		2.0		2.5		ns

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t_{IOD}		1.7		2.0		2.6	ns
t_{IOC}		0.0		0.0		0.0	ns
t _{IOCO}		1.4		1.6		2.1	ns
t_{IOCOMB}		0.5		0.7		0.9	ns
t _{IOSU}	0.8		1.0		1.3		ns
t_{IOH}	0.7		0.9		1.2		ns
t _{IOCLR}		0.5		0.7		0.9	ns
t_{OD1}		3.0		4.2		5.6	ns
t_{OD2}		3.0		4.2		5.6	ns
t_{OD3}		4.0		5.5		7.3	ns
t_{XZ}		3.5		4.6		6.1	ns
t _{ZX1}		3.5		4.6		6.1	ns
t_{ZX2}		3.5		4.6		6.1	ns
t_{ZX3}		4.5	-	5.9	-	7.8	ns
t _{INREG}		2.0		2.6		3.5	ns
t _{IOFD}		0.5		0.8		1.2	ns
t _{INCOMB}		0.5		0.8		1.2	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.5		2.0		2.6	ns
t _{EABDATA1}		0.0		0.0		0.0	ns
t _{EABWE1}		1.5		2.0		2.6	ns
t _{EABWE2}		0.3		0.4		0.5	ns
t _{EABRE1}		0.3		0.4		0.5	ns
t _{EABRE2}		0.0		0.0		0.0	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.4		0.5	ns
t _{EABBYPASS}		0.1		0.1		0.2	ns
t _{EABSU}	0.8		1.0		1.4		ns
t _{EABH}	0.1		0.1		0.2		ns
t _{EABCLR}	0.3		0.4		0.5		ns
t_{AA}		4.0		5.1		6.6	ns
t_{WP}	2.7		3.5		4.7		ns
t_{RP}	1.0		1.3		1.7		ns
t _{WDSU}	1.0		1.3		1.7		ns
t_{WDH}	0.2		0.2		0.3		ns
t _{WASU}	1.6		2.1		2.8		ns
t _{WAH}	1.6		2.1		2.8		ns
t _{RASU}	3.0		3.9		5.2		ns
t _{RAH}	0.1		0.1		0.2		ns
t_{WO}		1.5		2.0		2.6	ns
t _{DD}		1.5		2.0		2.6	ns
t _{EABOUT}		0.2		0.3		0.3	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.7		3.5		4.7		ns

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters (Part 1 of 2) Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{EABAA}		5.9		7.6		9.9	ns		
t _{EABRCOMB}	5.9		7.6		9.9		ns		
t _{EABRCREG}	5.1		6.5		8.5		ns		
t _{EABWP}	2.7		3.5		4.7		ns		

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		2.8		3.5		4.4	ns
t _{DIN2LE}		0.7		1.2		1.6	ns
t _{DIN2DATA}		1.6		1.9		2.2	ns
t _{DCLK2IOE}		1.6		2.1		2.7	ns
t _{DCLK2LE}		0.7		1.2		1.6	ns
t _{SAMELAB}		0.1		0.2		0.2	ns
t _{SAMEROW}		1.9		3.4		5.1	ns
t _{SAME} COLUMN		0.9		2.6		4.4	ns
t _{DIFFROW}		2.8		6.0		9.5	ns
t _{TWOROWS}		4.7		9.4		14.6	ns
t _{LEPERIPH}		3.1		4.7		6.9	ns
t _{LABCARRY}		0.6		0.8		1.0	ns
t _{LABCASC}		0.9		1.2		1.6	ns

Table 57. EPF10K130E External Timing Parameters Notes (1), (2)										
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max				
t _{DRR}		9.0		12.0		16.0	ns			
t _{INSU} (3)	1.9		2.1		3.0		ns			
t _{INH} (3)	0.0		0.0		0.0		ns			
t _{outco} (3)	2.0	5.0	2.0	7.0	2.0	9.2	ns			
t _{INSU} (4)	0.9		1.1		-		ns			
t _{INH} (4)	0.0		0.0		-		ns			
t _{OUTCO} (4)	0.5	4.0	0.5	6.0	-	-	ns			
t _{PCISU}	3.0		6.2		-		ns			
t _{PCIH}	0.0		0.0		-		ns			
t _{PCICO}	2.0	6.0	2.0	6.9	_	_	ns			

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	2.2		2.4		3.2		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	2.8		3.0		-		ns
t _{INHBIDIR} (4)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (3)	2.0	5.0	2.0	7.0	2.0	9.2	ns
t _{XZBIDIR} (3)		5.6		8.1		10.8	ns
t _{ZXBIDIR} (3)		5.6		8.1		10.8	ns
toutcobidir (4)	0.5	4.0	0.5	6.0	-	_	ns
t _{XZBIDIR} (4)		4.6		7.1		-	ns
t _{ZXBIDIR} (4)		4.6		7.1		-	ns

Notes to tables:

- (1) All timing parameters are described in Tables 24 through 30 in this data sheet.
- (2) These parameters are specified by characterization.
- (3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
- (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 59 through 65 show EPF10K200E device internal and external timing parameters.

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.7		0.8		1.2	ns
t _{CLUT}		0.4		0.5		0.6	ns
t _{RLUT}		0.6		0.7		0.9	ns
t _{PACKED}		0.3		0.5		0.7	ns
t_{EN}		0.4		0.5		0.6	ns
t _{CICO}		0.2		0.2		0.3	ns
t _{CGEN}		0.4		0.4		0.6	ns
t _{CGENR}		0.2		0.2		0.3	ns
t _{CASC}		0.7		0.8		1.2	ns
t_{C}		0.5		0.6		0.8	ns
t _{CO}		0.5		0.6		0.8	ns
t _{COMB}		0.4		0.6		0.8	ns
t_{SU}	0.4		0.6		0.7		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.4		3.2	ns
t _{EABDATA2}		0.4		0.6		0.8	ns
t _{EABWE1}		1.0		1.4		1.9	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0.0		0.0		0.0	
t _{EABRE2}		0.4		0.6		0.8	
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		1.1		1.5	ns
t _{EABBYPASS}		0.0		0.0		0.0	ns
t _{EABSU}	0.7		1.0		1.3		ns
t _{EABH}	0.4		0.6		0.8		ns
t _{EABCLR}	0.8		1.1		1.5		
t_{AA}		2.0		2.8		3.8	ns
t_{WP}	2.0		2.8		3.8		ns
t_{RP}	1.0		1.4		1.9		
t _{WDSU}	0.5		0.7		0.9		ns
t_{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.0		1.4		1.9		ns
t _{WAH}	1.5		2.1		2.9		ns
t _{RASU}	1.5		2.1		2.8		
t _{RAH}	0.1		0.1		0.2		
t_{WO}		2.1		2.9		4.0	ns
t_{DD}		2.1		2.9		4.0	ns
t _{EABOUT}		0.0		0.0		0.0	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	1.5		2.0		2.5		ns

Table 73. EPF10K200S Device Internal & External Timing Parameters Note (1)								
Symbol	-1 Spec	ed Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t_{LUT}		0.7		0.8		1.2	ns	
t _{CLUT}		0.4		0.5		0.6	ns	
t _{RLUT}		0.5		0.7		0.9	ns	
t _{PACKED}		0.4		0.5		0.7	ns	
t_{EN}		0.6		0.5		0.6	ns	
t_{CICO}		0.1		0.2		0.3	ns	
t _{CGEN}		0.3		0.4		0.6	ns	
t _{CGENR}		0.1		0.2		0.3	ns	
t_{CASC}		0.7		0.8		1.2	ns	
$t_{\mathbb{C}}$		0.5		0.6		0.8	ns	
$t_{\rm CO}$		0.5		0.6		0.8	ns	
t _{COMB}		0.3		0.6		0.8	ns	
t_{SU}	0.4		0.6		0.7		ns	
t _H	1.0		1.1		1.5		ns	
t _{PRE}		0.4		0.6		0.8	ns	
t_{CLR}		0.5		0.6		0.8	ns	
t _{CH}	2.0		2.5		3.0		ns	
t_{CL}	2.0		2.5		3.0		ns	

Table 74. EPF10	K200S Device	e IOE Timing	n Micropara	meters (Par	t 1 of 2)	Note (1)	
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t_{IOD}		1.8		1.9		2.6	ns
t _{IOC}		0.3		0.3		0.5	ns
t _{IOCO}		1.7		1.9		2.6	ns
t _{IOCOMB}		0.5		0.6		0.8	ns
t _{IOSU}	0.8		0.9		1.2		ns
t _{IOH}	0.4		0.8		1.1		ns
t _{IOCLR}		0.2		0.2		0.3	ns
t _{OD1}		1.3		0.7		0.9	ns
t _{OD2}		0.8		0.2		0.4	ns
t _{OD3}		2.9		3.0		3.9	ns
t_{XZ}		5.0		5.3		7.1	ns
t _{ZX1}		5.0		5.3		7.1	ns