E·XFL

Intel - EPF10K130EBC600-1X Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	832
Number of Logic Elements/Cells	6656
Total RAM Bits	65536
Number of I/O	424
Number of Gates	342000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	600-BGA
Supplier Device Package	600-BGA (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k130ebc600-1x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Similar to the FLEX 10KE architecture, embedded gate arrays are the fastest-growing segment of the gate array market. As with standard gate arrays, embedded gate arrays implement general logic in a conventional "sea-of-gates" architecture. Additionally, embedded gate arrays have dedicated die areas for implementing large, specialized functions. By embedding functions in silicon, embedded gate arrays reduce die area and increase speed when compared to standard gate arrays. While embedded megafunctions typically cannot be customized, FLEX 10KE devices are programmable, providing the designer with full control over embedded megafunctions and general logic, while facilitating iterative design changes during debugging.

Each FLEX 10KE device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and datatransformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

FLEX 10KE devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers the EPC1, EPC2, and EPC16 configuration devices, which configure FLEX 10KE devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera BitBlasterTM, ByteBlasterMVTM, or MasterBlaster download cables. After a FLEX 10KE device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 85 ms, real-time changes can be made during system operation.

FLEX 10KE devices contain an interface that permits microprocessors to configure FLEX 10KE devices serially or in-parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat a FLEX 10KE device as memory and configure it by writing to a virtual memory location, making it easy to reconfigure the device.

The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous read or writes.

Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2).

Notes:

- (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
- (2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, and EPF10K200E devices have 104 EAB local interconnect channels.

Figure 7. FLEX 10KE LAB

Notes:

- (1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26.
- (2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 34.

Each LAB provides four control signals with programmable inversion that can be used in all eight LEs. Two of these signals can be used as clocks, the other two can be used for clear/preset control. The LAB clocks can be driven by the dedicated clock input pins, global signals, I/O signals, or internal signals via the LAB local interconnect. The LAB preset and clear control signals can be driven by the global signals, I/O signals, or internal signals via the LAB local interconnect. The global control signals are typically used for global clock, clear, or preset signals because they provide asynchronous control with very low skew across the device. If logic is required on a control signal, it can be generated in one or more LE in any LAB and driven into the local interconnect of the target LAB. In addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the FLEX 10KE architecture, has a compact size that provides efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can quickly compute any function of four variables. In addition, each LE contains a programmable flipflop with a synchronous clock enable, a carry chain, and a cascade chain. Each LE drives both the local and the FastTrack Interconnect routing structure (see Figure 8).

LE Operating Modes

The FLEX 10KE LE can operate in the following four modes:

- Normal mode
- Arithmetic mode
- Up/down counter mode
- Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs.

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Altera Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time.

The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a three-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a four-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 11 on page 22, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources.

Generic Testing

Each FLEX 10KE device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10KE devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 21. FLEX 10KE AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V. devices or outputs.

Operating Conditions

Tables 19 through 23 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V FLEX 10KE devices.

Table 19. FLEX 10KE 2.5-V Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit				
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	3.6	V				
V _{CCIO}			-0.5	4.6	V				
VI	DC input voltage		-2.0	5.75	V				
IOUT	DC output current, per pin		-25	25	mA				
T _{STG}	Storage temperature	No bias	-65	150	°C				
T _{AMB}	Ambient temperature	Under bias	-65	135	°C				
TJ	Junction temperature	PQFP, TQFP, BGA, and FineLine BGA		135	°C				
		packages, under blas							
		Ceramic PGA packages, under bias		150	°C				

Table 23. FLEX 10KE Device Capacitance Note (14)									
Symbol	Parameter	Conditions	Min	Max	Unit				
CIN	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF				
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF				
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF				

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
 (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS
- signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22.
- (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) This value is specified for normal device operation. The value may vary during power-up.
- (12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial temperature devices.
- (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (14) Capacitance is sample-tested only.

Figure 22 shows the required relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance.

Figure 23 shows the typical output drive characteristics of FLEX 10KE devices with 3.3-V and 2.5-V V_{CCIO}. The output driver is compliant to the 3.3-V *PCI Local Bus Specification*, *Revision 2.2* (when VCCIO pins are connected to 3.3 V). FLEX 10KE devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification*, *Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems.

Figure 25. FLEX 10KE Device LE Timing Model

Table 24. LE Timing Microparameters (Part 2 of 2) Note (1)					
Symbol	Symbol Parameter				
t _{CLR}	LE register clear delay				
t _{CH}	Minimum clock high time from clock pin				
t _{CL}	Minimum clock low time from clock pin				

Table 25. IOE Timing Microparameters Note (1)						
Symbol	Parameter	Conditions				
t _{IOD}	IOE data delay					
t _{IOC}	IOE register control signal delay					
t _{IOCO}	IOE register clock-to-output delay					
t _{IOCOMB}	IOE combinatorial delay					
t _{IOSU}	IOE register setup time for data and enable signals before clock; IOE register recovery time after asynchronous clear					
t _{IOH}	IOE register hold time for data and enable signals after clock					
t _{IOCLR}	IOE register clear time					
t _{OD1}	Output buffer and pad delay, slow slew rate = off, V_{CCIO} = 3.3 V	C1 = 35 pF (2)				
t _{OD2}	Output buffer and pad delay, slow slew rate = off, V_{CCIO} = 2.5 V	C1 = 35 pF (3)				
t _{OD3}	Output buffer and pad delay, slow slew rate = on	C1 = 35 pF (4)				
t _{XZ}	IOE output buffer disable delay					
t _{ZX1}	IOE output buffer enable delay, slow slew rate = off, V_{CCIO} = 3.3 V	C1 = 35 pF (2)				
t _{ZX2}	IOE output buffer enable delay, slow slew rate = off, V_{CCIO} = 2.5 V	C1 = 35 pF (3)				
t _{ZX3}	IOE output buffer enable delay, slow slew rate = on	C1 = 35 pF (4)				
t _{INREG}	IOE input pad and buffer to IOE register delay					
t _{IOFD}	IOE register feedback delay					
t _{INCOMB}	IOE input pad and buffer to FastTrack Interconnect delay					

Table 26. EAB Timing Microparameters Note (1)						
Symbol	Parameter	Conditions				
t _{EABDATA1}	Data or address delay to EAB for combinatorial input					
t _{EABDATA2}	Data or address delay to EAB for registered input					
t _{EABWE1}	Write enable delay to EAB for combinatorial input					
t _{EABWE2}	Write enable delay to EAB for registered input					
t _{EABRE1}	Read enable delay to EAB for combinatorial input					
t _{EABRE2}	Read enable delay to EAB for registered input					
t _{EABCLK}	EAB register clock delay					
t _{EABCO}	EAB register clock-to-output delay					
t _{EABBYPASS}	Bypass register delay					
t _{EABSU}	EAB register setup time before clock					
t _{EABH}	EAB register hold time after clock					
t _{EABCLR}	EAB register asynchronous clear time to output delay					
t _{AA}	Address access delay (including the read enable to output delay)					
t _{WP}	Write pulse width					
t _{RP}	Read pulse width					
t _{WDSU}	Data setup time before falling edge of write pulse	(5)				
t _{WDH}	Data hold time after falling edge of write pulse	(5)				
t _{WASU}	Address setup time before rising edge of write pulse	(5)				
t _{WAH}	Address hold time after falling edge of write pulse	(5)				
t _{RASU}	Address setup time with respect to the falling edge of the read enable					
t _{RAH}	Address hold time with respect to the falling edge of the read enable					
t _{WO}	Write enable to data output valid delay					
t _{DD}	Data-in to data-out valid delay					
t _{EABOUT}	Data-out delay					
t _{EABCH}	Clock high time					
t _{EABCL}	Clock low time					

Table 28. Interconnect Timing Microparameters Note (1)						
Symbol	Parameter	Conditions				
t _{DIN2IOE}	Delay from dedicated input pin to IOE control input	(7)				
t _{DIN2LE}	Delay from dedicated input pin to LE or EAB control input	(7)				
t _{DCLK2IOE}	Delay from dedicated clock pin to IOE clock	(7)				
t _{DCLK2LE}	Delay from dedicated clock pin to LE or EAB clock	(7)				
t _{DIN2DATA}	Delay from dedicated input or clock to LE or EAB data	(7)				
t _{SAMELAB}	Routing delay for an LE driving another LE in the same LAB					
t _{SAMEROW}	Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row	(7)				
t _{SAMECOLUMN}	Routing delay for an LE driving an IOE in the same column	(7)				
t _{DIFFROW}	Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row	(7)				
t _{TWOROWS}	Routing delay for a row IOE or EAB driving an LE or EAB in a different row	(7)				
t _{LEPERIPH}	Routing delay for an LE driving a control signal of an IOE via the peripheral control bus	(7)				
t _{LABCARRY}	Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB					
t _{LABCASC}	Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB					

Table 29. External Timing Parameters						
Symbol	Parameter	Conditions				
t _{DRR}	Register-to-register delay via four LEs, three row interconnects, and four local interconnects	(8)				
t _{INSU}	Setup time with global clock at IOE register	(9)				
t _{INH}	Hold time with global clock at IOE register	(9)				
t _{outco}	Clock-to-output delay with global clock at IOE register	(9)				
t _{PCISU}	Setup time with global clock for registers used in PCI designs	(9),(10)				
t _{PCIH}	Hold time with global clock for registers used in PCI designs	(9),(10)				
t _{PCICO}	Clock-to-output delay with global clock for registers used in PCI designs	(9),(10)				

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Write (EAB Output Registers Used)

Tables 31 through 37 show EPF10K30E device internal and external timing parameters.

Table 31. EPF10K30E Device LE Timing Microparameters (Part 1 of 2) Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{LUT}		0.7		0.8		1.1	ns	
t _{CLUT}		0.5		0.6		0.8	ns	
t _{RLUT}		0.6		0.7		1.0	ns	
t _{PACKED}		0.3		0.4		0.5	ns	
t _{EN}		0.6		0.8		1.0	ns	
t _{CICO}		0.1		0.1		0.2	ns	
t _{CGEN}		0.4		0.5		0.7	ns	

Table 33. EPF10K30E Device EAB Internal Microparameters Note (1)							
Symbol	-1 Spee	ed Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Мах	Min	Мах	
t _{EABDATA1}		1.7		2.0		2.3	ns
t _{EABDATA1}		0.6		0.7		0.8	ns
t _{EABWE1}		1.1		1.3		1.4	ns
t _{EABWE2}		0.4		0.4		0.5	ns
t _{EABRE1}		0.8		0.9		1.0	ns
t _{EABRE2}		0.4		0.4		0.5	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.3		0.4	ns
t _{EABBYPASS}		0.5		0.6		0.7	ns
t _{EABSU}	0.9		1.0		1.2		ns
t _{EABH}	0.4		0.4		0.5		ns
t _{EABCLR}	0.3		0.3		0.3		ns
t _{AA}		3.2		3.8		4.4	ns
t _{WP}	2.5		2.9		3.3		ns
t _{RP}	0.9		1.1		1.2		ns
t _{WDSU}	0.9		1.0		1.1		ns
t _{WDH}	0.1		0.1		0.1		ns
t _{WASU}	1.7		2.0		2.3		ns
t _{WAH}	1.8		2.1		2.4		ns
t _{RASU}	3.1		3.7		4.2		ns
t _{RAH}	0.2		0.2		0.2		ns
t _{WO}		2.5		2.9		3.3	ns
t _{DD}		2.5		2.9		3.3	ns
t _{EABOUT}		0.5		0.6		0.7	ns
t _{EABCH}	1.5		2.0		2.3		ns
t _{EABCL}	2.5		2.9		3.3		ns

Table 40. EPF10K50E Device EAB Internal Microparameters Note (1)							
Symbol	-1 Speed Grade		-2 Spee	ed Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.0		2.7	ns
t _{EABDATA1}		0.6		0.7		0.9	ns
t _{EABWE1}		1.1		1.3		1.8	ns
t _{EABWE2}		0.4		0.4		0.6	ns
t _{EABRE1}		0.8		0.9		1.2	ns
t _{EABRE2}		0.4		0.4		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.3		0.5	ns
t _{EABBYPASS}		0.5		0.6		0.8	ns
t _{EABSU}	0.9		1.0		1.4		ns
t _{EABH}	0.4		0.4		0.6		ns
t _{EABCLR}	0.3		0.3		0.5		ns
t _{AA}		3.2		3.8		5.1	ns
t _{WP}	2.5		2.9		3.9		ns
t _{RP}	0.9		1.1		1.5		ns
t _{WDSU}	0.9		1.0		1.4		ns
t _{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.7		2.0		2.7		ns
t _{WAH}	1.8		2.1		2.9		ns
t _{RASU}	3.1		3.7		5.0		ns
t _{RAH}	0.2		0.2		0.3		ns
t _{WO}		2.5		2.9		3.9	ns
t _{DD}		2.5		2.9		3.9	ns
t _{EABOUT}		0.5		0.6		0.8	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.5		2.9		3.9		ns

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Мах	Min	Max	Min	Max		
t _{DRR}		8.5		10.0		13.5	ns	
t _{INSU}	2.7		3.2		4.3		ns	
t _{INH}	0.0		0.0		0.0		ns	
t _{оитсо}	2.0	4.5	2.0	5.2	2.0	7.3	ns	
t _{PCISU}	3.0		4.2		-		ns	
t _{PCIH}	0.0		0.0		-		ns	
t _{PCICO}	2.0	6.0	2.0	7.7	-	-	ns	

 Table 44. EPF10K50E External Bidirectional Timing Parameters
 Notes (1), (2)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR}	2.7		3.2		4.3		ns	
t _{INHBIDIR}	0.0		0.0		0.0		ns	
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.2	2.0	7.3	ns	
t _{XZBIDIR}		6.8		7.8		10.1	ns	
tZXBIDIR		6.8		7.8		10.1	ns	

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external timing parameters.

Table 45. EPF10K100E Device LE Timing Microparameters Note (1)									
Symbol	-1 Spee	Speed Grade		-2 Speed Grade		d Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{LUT}		0.7		1.0		1.5	ns		
t _{CLUT}		0.5		0.7		0.9	ns		
t _{RLUT}		0.6		0.8		1.1	ns		
t _{PACKED}		0.3		0.4		0.5	ns		
t _{EN}		0.2		0.3		0.3	ns		
t _{CICO}		0.1		0.1		0.2	ns		
t _{CGEN}		0.4		0.5		0.7	ns		

Table 73. EPF10K200S Device Internal & External Timing Parameters Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{LUT}		0.7		0.8		1.2	ns	
t _{CLUT}		0.4		0.5		0.6	ns	
t _{RLUT}		0.5		0.7		0.9	ns	
t _{PACKED}		0.4		0.5		0.7	ns	
t _{EN}		0.6		0.5		0.6	ns	
t _{CICO}		0.1		0.2		0.3	ns	
t _{CGEN}		0.3		0.4		0.6	ns	
t _{CGENR}		0.1		0.2		0.3	ns	
t _{CASC}		0.7		0.8		1.2	ns	
t _C		0.5		0.6		0.8	ns	
t _{CO}		0.5		0.6		0.8	ns	
t _{COMB}		0.3		0.6		0.8	ns	
t _{SU}	0.4		0.6		0.7		ns	
t _H	1.0		1.1		1.5		ns	
t _{PRE}		0.4		0.6		0.8	ns	
t _{CLR}		0.5		0.6		0.8	ns	
t _{CH}	2.0		2.5		3.0		ns	
t _{CL}	2.0		2.5		3.0		ns	

 Table 74. EPF10K200S Device IOE Timing Microparameters (Part 1 of 2)
 Note (1)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{IOD}		1.8		1.9		2.6	ns
t _{IOC}		0.3		0.3		0.5	ns
t _{IOCO}		1.7		1.9		2.6	ns
t _{IOCOMB}		0.5		0.6		0.8	ns
t _{IOSU}	0.8		0.9		1.2		ns
t _{IOH}	0.4		0.8		1.1		ns
t _{IOCLR}		0.2		0.2		0.3	ns
t _{OD1}		1.3		0.7		0.9	ns
t _{OD2}		0.8		0.2		0.4	ns
t _{OD3}		2.9		3.0		3.9	ns
t _{XZ}		5.0		5.3		7.1	ns
t _{ZX1}		5.0		5.3		7.1	ns

Table 76. EPF10K200S Device EAB Internal Timing Macroparameters Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Мах	Min	Max		
t _{EABAA}		3.9		6.4		8.4	ns	
t _{EABRCOMB}	3.9		6.4		8.4		ns	
t _{EABRCREG}	3.6		5.7		7.6		ns	
t _{EABWP}	2.1		4.0		5.3		ns	
t _{EABWCOMB}	4.8		8.1		10.7		ns	
t _{EABWCREG}	5.4		8.0		10.6		ns	
t _{EABDD}		3.8		5.1		6.7	ns	
t _{EABDATACO}		0.8		1.0		1.3	ns	
t _{EABDATASU}	1.1		1.6		2.1		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	0.7		1.1		1.5		ns	
t _{EABWEH}	0.4		0.5		0.6		ns	
t _{EABWDSU}	1.2		1.8		2.4		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	1.9		3.6		4.7		ns	
t _{EABWAH}	0.8		0.5		0.7		ns	
t _{EABWO}		3.1		4.4		5.8	ns	

Table 77. EPF10K200S Device Interconnect Timing Microparameters (Part 1 of 2) Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Мах	Min	Max			
t _{DIN2IOE}		4.4		4.8		5.5	ns		
t _{DIN2LE}		0.6		0.6		0.9	ns		
t _{DIN2DATA}		1.8		2.1		2.8	ns		
t _{DCLK2IOE}		1.7		2.0		2.8	ns		
t _{DCLK2LE}		0.6		0.6		0.9	ns		
t _{SAMELAB}		0.1		0.1		0.2	ns		
t _{SAMEROW}		3.0		4.6		5.7	ns		
t _{SAMECOLUMN}		3.5		4.9		6.4	ns		
t _{DIFFROW}		6.5		9.5		12.1	ns		
t _{TWOROWS}		9.5		14.1		17.8	ns		
tLEPERIPH		5.5		6.2		7.2	ns		
t _{LABCARRY}		0.3		0.1		0.2	ns		

To better reflect actual designs, the power model (and the constant K in the power calculation equations) for continuous interconnect FLEX devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results when compared to measured power consumption for actual designs in segmented FPGAs.

Figure 31 shows the relationship between the current and operating frequency of FLEX 10KE devices.

Figure 31. FLEX 10KE I_{CCACTIVE} vs. Operating Frequency (Part 1 of 2)