E·XFL

Intel - EPF10K130EBC600-3 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detuns	
Product Status	Obsolete
Number of LABs/CLBs	832
Number of Logic Elements/Cells	6656
Total RAM Bits	65536
Number of I/O	424
Number of Gates	342000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	600-BGA
Supplier Device Package	600-BGA (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k130ebc600-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800
- Flexible package options
 - Available in a variety of packages with 144 to 672 pins, including the innovative FineLine BGA[™] packages (see Tables 3 and 4)
 - SameFrame[™] pin-out compatibility between FLEX 10KA and FLEX 10KE devices across a range of device densities and pin counts
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic

Table 3. FLEX 10KE Package Options & I/O Pin Count Notes (1), (2)									
Device	144-Pin TQFP	208-Pin PQFP	240-Pin PQFP RQFP	256-Pin FineLine BGA	356-Pin BGA	484-Pin FineLine BGA	599-Pin PGA	600-Pin BGA	672-Pin FineLine BGA
EPF10K30E	102	147		176		220			220 (3)
EPF10K50E	102	147	189	191		254			254 (3)
EPF10K50S	102	147	189	191	220	254			254 (3)
EPF10K100E		147	189	191	274	338			338 (3)
EPF10K130E			186		274	369		424	413
EPF10K200E							470	470	470
EPF10K200S			182		274	369	470	470	470

Notes:

- (1) FLEX 10KE device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), pin-grid array (PGA), and ball-grid array (BGA) packages.
- (2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When planning device migration, use the I/O pins that are common to all devices.
- (3) This option is supported with a 484-pin FineLine BGA package. By using SameFrame pin migration, all FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin, 484-pin, and 672-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration is set.

The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the output of the LUT drives the output of the LE.

The LE has two outputs that drive the interconnect: one drives the local interconnect and the other drives either the row or column FastTrack Interconnect routing structure. The two outputs can be controlled independently. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, can improve LE utilization because the register and the LUT can be used for unrelated functions.

The FLEX 10KE architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. The carry chain supports high-speed counters and adders and the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in a LAB as well as all LABs in the same row. Intensive use of carry and cascade chains can reduce routing flexibility. Therefore, the use of these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 10KE architecture to implement high-speed counters, adders, and comparators of arbitrary width efficiently. Carry chain logic can be created automatically by the Altera Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as LPM and DesignWare functions automatically take advantage of carry chains.

Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from oddnumbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EPF10K50E device, the carry chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB. Figure 9 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal.

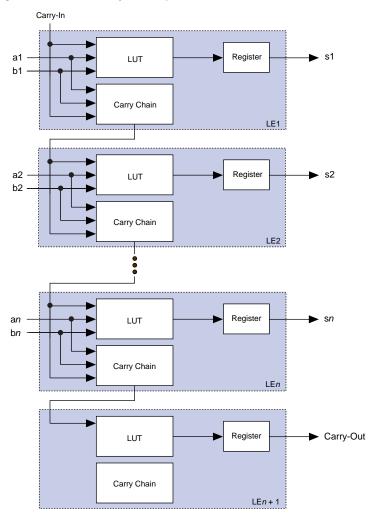


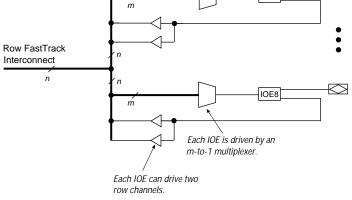
Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder)

FastTrack Interconnect Routing Structure

In the FLEX 10KE architecture, connections between LEs, EABs, and device I/O pins are provided by the FastTrack Interconnect routing structure, which is a series of continuous horizontal and vertical routing channels that traverses the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect. The row interconnect can drive I/O pins and feed other LABs in the row. The column interconnect routes signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row signal is buffered at every LAB or EAB to reduce the effect of fan-out on delay. A row channel can be driven by an LE or by one of three column channels. These four signals feed dual 4-to-1 multiplexers that connect to two specific row channels. These multiplexers, which are connected to each LE, allow column channels to drive row channels even when all eight LEs in a LAB drive the row interconnect.


Each column of LABs or EABs is served by a dedicated column interconnect. The column interconnect that serves the EABs has twice as many channels as other column interconnects. The column interconnect can then drive I/O pins or another row's interconnect to route the signals to other LABs or EABs in the device. A signal from the column interconnect, which can be either the output of a LE or an input from an I/O pin, must be routed to the row interconnect before it can enter a LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one specific column channel.

Access to row and column channels can be switched between LEs in adjacent pairs of LABs. For example, a LE in one LAB can drive the row and column channels normally driven by a particular LE in the adjacent LAB in the same row, and vice versa. This flexibility enables routing resources to be used more efficiently (see Figure 13). Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row channels. The signal is accessible by all LEs within that row. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the row channels. Up to eight IOEs connect to each side of each row channel (see Figure 16).

Figure 16. FLEX 10KE Row-to-IOE Connections The values for m and n are provided in Table 10.

m loe1

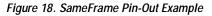
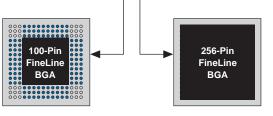

Table 10 lists the FLEX 10KE row-to-IOE interco	onnect resources.
---	-------------------

Table 10. FLEX 10KE Row-to-IOE Interconnect Resources						
Device	Channels per Row (n)	Row Channels per Pin (m)				
EPF10K30E	216	27				
EPF10K50E	216	27				
EPF10K50S						
EPF10K100E	312	39				
EPF10K130E	312	39				
EPF10K200E	312	39				
EPF10K200S						

 \bigcirc


SameFrame Pin-Outs FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ballcount packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K30E device in a 256-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 18).

Printed Circuit Board Designed for 672-Pin FineLine BGA Package

 256-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements)
 672-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

PCI Pull-Up Clamping Diode Option

FLEX 10KE devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the signal to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When V_{CCIO} is 3.3 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When V_{CCIO} is 2.5 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can be activated for a subset of pins, which would allow a device to bridge between a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of 4.3 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate pin-by-pin or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects the falling edge of the output.

Open-Drain Output Option

FLEX 10KE devices provide an optional open-drain output (electrically equivalent to open-collector output) for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

MultiVolt I/O Interface

The FLEX 10KE device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10KE devices in all packages to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCINT pins must always be connected to a 2.5-V power supply. With a 2.5-V V_{CCINT} level, input voltages are compatible with 2.5-V, 3.3-V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V_{CCIO} levels higher than 3.0 V achieve a faster timing delay of t_{OD2} instead of t_{OD1} .

Table 14. FLEX 10KE MultiVolt I/O Support							
V _{CCI0} (V) Input Signal (V) Output Signal (V)							
	2.5	3.3	5.0	2.5	3.3	5.0	
2.5	\checkmark	✓(1)	✓(1)	 			
3.3	 Image: A start of the start of	\checkmark	✓(1)	√ (2)	\checkmark	\checkmark	

Table 14 summarizes FLEX 10KE MultiVolt I/O support.

Notes:

(1) The PCI clamping diode must be disabled to drive an input with voltages higher than $V_{\rm CCIO}$.

(2) When V_{CCIO} = 3.3 V, a FLEX 10KE device can drive a 2.5-V device that has 3.3-V tolerant inputs.

Open-drain output pins on FLEX 10KE devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

Power Sequencing & Hot-Socketing

Because FLEX 10KE devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order.

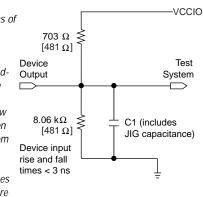
Signals can be driven into FLEX 10KE devices before and during power up without damaging the device. Additionally, FLEX 10KE devices do not drive out during power up. Once operating conditions are reached, FLEX 10KE devices operate as specified by the user.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All FLEX 10KE devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. FLEX 10KE devices can also be configured using the JTAG pins through the BitBlaster or ByteBlasterMV download cable, or via hardware that uses the Jam[™] STAPL programming and test language. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. FLEX 10KE devices support the JTAG instructions shown in Table 15.

Table 15. FLEX 10KE JTAG Instructions					
JTAG Instruction	Description				
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins.				
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.				
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.				
USERCODE	Selects the user electronic signature (USERCODE) register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.				
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.				
ICR Instructions	These instructions are used when configuring a FLEX 10KE device via JTAG ports with a BitBlaster or ByteBlasterMV download cable, or using a Jam File (.jam) or Jam Byte-Code File (.jbc) via an embedded processor.				

The instruction register length of FLEX 10KE devices is 10 bits. The USERCODE register length in FLEX 10KE devices is 32 bits; 7 bits are determined by the user, and 25 bits are pre-determined. Tables 16 and 17 show the boundary-scan register length and device IDCODE information for FLEX 10KE devices.


Table 16. FLEX 10KE Boundary-Scan Register Length					
Device Boundary-Scan Register Length					
EPF10K30E	690				
EPF10K50E	798				
EPF10K50S					
EPF10K100E	1,050				
EPF10K130E	1,308				
EPF10K200E EPF10K200S	1,446				

Generic Testing

Each FLEX 10KE device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10KE devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 21. FLEX 10KE AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V. devices or outputs.

Operating Conditions

Tables 19 through 23 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V FLEX 10KE devices.

Table 19. FLEX 10KE 2.5-V Device Absolute Maximum Ratings Note (1)								
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	3.6	V			
V _{CCIO}			-0.5	4.6	V			
VI	DC input voltage		-2.0	5.75	V			
IOUT	DC output current, per pin		-25	25	mA			
T _{STG}	Storage temperature	No bias	-65	150	°C			
T _{AMB}	Ambient temperature	Under bias	-65	135	°C			
Τ _J	Junction temperature	PQFP, TQFP, BGA, and FineLine BGA packages, under bias		135	°C			
		Ceramic PGA packages, under bias		150	°C			

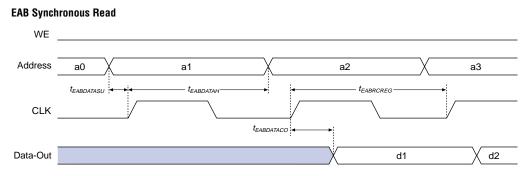
Table 20. 2.5-V EPF10K50E & EPF10K200E Device Recommended Operating Conditions							
Symbol	Parameter	Conditions	Min	Мах	Unit		
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	2.30 (2.30)	2.70 (2.70)	V		
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V		
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.30 (2.30)	2.70 (2.70)	V		
VI	Input voltage	(5)	-0.5	5.75	V		
Vo	Output voltage		0	V _{CCIO}	V		
Τ _A	Ambient temperature	For commercial use	0	70	°C		
		For industrial use	-40	85	°C		
TJ	Operating temperature	For commercial use	0	85	°C		
		For industrial use	-40	100	°C		
t _R	Input rise time			40	ns		
t _F	Input fall time			40	ns		

Table 21. 2.5-V EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E & EPF10K200S Device Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	2.375 (2.375)	2.625 (2.625)	V
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V
VI	Input voltage	(5)	-0.5	5.75	V
Vo	Output voltage		0	V _{CCIO}	V
Τ _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
Τ _J	Operating temperature	For commercial use	0	85	°C
		For industrial use	-40	100	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Table 30. External Bidirectional Timing Parameters Note (9)					
Symbol	Parameter	Conditions			
t _{INSUBIDIR}	Setup time for bi-directional pins with global clock at same-row or same- column LE register				
t _{inhbidir}	Hold time for bidirectional pins with global clock at same-row or same-column LE register				
t _{INH}	Hold time with global clock at IOE register				
t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE register	C1 = 35 pF			
t _{XZBIDIR}	Synchronous IOE output buffer disable delay	C1 = 35 pF			
t _{ZXBIDIR}	Synchronous IOE output buffer enable delay, slow slew rate= off	C1 = 35 pF			

Notes to tables:


- (1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly.
- (2) Operating conditions: VCCIO = $3.3 \text{ V} \pm 10\%$ for commercial or industrial use.
- (3) Operating conditions: VCCIO = 2.5 V ±5% for commercial or industrial use in EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E, and EPF10K200S devices.
- (4) Operating conditions: VCCIO = 3.3 V.
- (5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered.
- (6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters.
- (7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.
- (8) Contact Altera Applications for test circuit specifications and test conditions.
- (9) This timing parameter is sample-tested only.
- (10) This parameter is measured with the measurement and test conditions, including load, specified in the PCI Local Bus Specification, revision 2.2.

Figures 29 and 30 show the asynchronous and synchronous timing waveforms, respectively, or the EAB macroparameters in Tables 26 and 27.

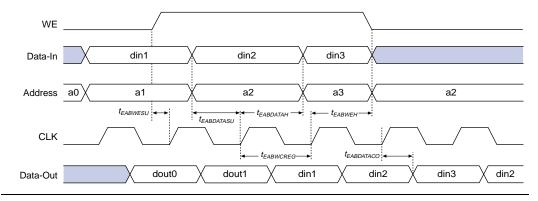

EAB Asynchronous Read WE _ a0 a2 Address a1 a3 – t_{EABAA}t_{EABRCCOMB} Data-Out d0 d3 d1 d2 **EAB Asynchronous Write** WE t_{EABWP} ► t_{EABWDH} t_{EABWDSU} × a din0 din1 Data-In t_{EABWASU} t_{EABWAH} t_{EABWCCOMB} Address a0 a1 a2 t_{EABDD} Data-Out din0 din1 dout2

Figure 29. EAB Asynchronous Timing Waveforms

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Write (EAB Output Registers Used)

Tables 31 through 37 show EPF10K30E device internal and external timing parameters.

Table 31. EPF10K30E Device LE Timing Microparameters (Part 1 of 2) Note (1)								
Symbol	-1 Spee	-1 Speed Grade		d Grade	-3 Spee	d Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{LUT}		0.7		0.8		1.1	ns	
t _{CLUT}		0.5		0.6		0.8	ns	
t _{RLUT}		0.6		0.7		1.0	ns	
t _{PACKED}		0.3		0.4		0.5	ns	
t _{EN}		0.6		0.8		1.0	ns	
t _{CICO}		0.1		0.1		0.2	ns	
t _{CGEN}		0.4		0.5		0.7	ns	

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{CGENR}		0.1		0.1		0.2	ns
t _{CASC}		0.6		0.8		1.0	ns
t _C		0.0		0.0		0.0	ns
t _{CO}		0.3		0.4		0.5	ns
t _{COMB}		0.4		0.4		0.6	ns
t _{SU}	0.4		0.6		0.6		ns
t _H	0.7		1.0		1.3		ns
t _{PRE}		0.8		0.9		1.2	ns
t _{CLR}		0.8		0.9		1.2	ns
t _{CH}	2.0		2.5		2.5		ns
t _{CL}	2.0		2.5		2.5		ns

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{IOD}		2.4		2.8		3.8	ns
t _{IOC}		0.3		0.4		0.5	ns
t _{IOCO}		1.0		1.1		1.6	ns
t _{IOCOMB}		0.0		0.0		0.0	ns
t _{IOSU}	1.2		1.4		1.9		ns
t _{IOH}	0.3		0.4		0.5		ns
t _{IOCLR}		1.0		1.1		1.6	ns
t _{OD1}		1.9		2.3		3.0	ns
t _{OD2}		1.4		1.8		2.5	ns
t _{OD3}		4.4		5.2		7.0	ns
t _{XZ}		2.7		3.1		4.3	ns
t _{ZX1}		2.7		3.1		4.3	ns
t _{ZX2}		2.2		2.6		3.8	ns
t _{ZX3}		5.2		6.0		8.3	ns
t _{INREG}		3.4		4.1		5.5	ns
t _{IOFD}		0.8		1.3		2.4	ns
t _{INCOMB}		0.8		1.3		2.4	ns

Table 37. EPF10K30E External Bidirectional Timing Parameters Notes (1), (2)							
Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	2.8		3.9		5.2		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	3.8		4.9		-		ns
t _{INHBIDIR} (4)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (3)	2.0	4.9	2.0	5.9	2.0	7.6	ns
t _{XZBIDIR} (3)		6.1		7.5		9.7	ns
t _{ZXBIDIR} (3)		6.1		7.5		9.7	ns
t _{OUTCOBIDIR} (4)	0.5	3.9	0.5	4.9	-	-	ns
t _{XZBIDIR} (4)		5.1		6.5		-	ns
t _{ZXBIDIR} (4)		5.1		6.5		-	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 38 through 44 show EPF10K50E device internal and external timing parameters.

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Мах	Min	Мах	Min	Max	
t _{LUT}		0.6		0.9		1.3	ns
t _{CLUT}		0.5		0.6		0.8	ns
t _{RLUT}		0.7		0.8		1.1	ns
t _{PACKED}		0.4		0.5		0.6	ns
t _{EN}		0.6		0.7		0.9	ns
t _{CICO}		0.2		0.2		0.3	ns
t _{CGEN}		0.5		0.5		0.8	ns
t _{CGENR}		0.2		0.2		0.3	ns
t _{CASC}		0.8		1.0		1.4	ns
t _C		0.5		0.6		0.8	ns
t _{CO}		0.7		0.7		0.9	ns
t _{COMB}		0.5		0.6		0.8	ns
t _{SU}	0.7		0.7		0.8		ns

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Table 54. EPF10K	130E Device	e EAB Intern	al Micropara	ameters (Pa	art 2 of 2)	Note (1)	
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DD}		1.5		2.0		2.6	ns
t _{EABOUT}		0.2		0.3		0.3	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.7		3.5		4.7		ns

Table 55. EPF10K130E Device EAB Internal Timing Macroparameters Note (1)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.9		7.5		9.9	ns
t _{EABRCOMB}	5.9		7.5		9.9		ns
t _{EABRCREG}	5.1		6.4		8.5		ns
t _{EABWP}	2.7		3.5		4.7		ns
t _{EABWCOMB}	5.9		7.7		10.3		ns
t _{EABWCREG}	5.4		7.0		9.4		ns
t _{EABDD}		3.4		4.5		5.9	ns
t _{EABDATACO}		0.5		0.7		0.8	ns
t _{EABDATASU}	0.8		1.0		1.4		ns
t _{EABDATAH}	0.1		0.1		0.2		ns
t _{EABWESU}	1.1		1.4		1.9		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.0		1.3		1.7		ns
t _{EABWDH}	0.2		0.2		0.3		ns
t _{EABWASU}	4.1		5.1		6.8		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		3.4		4.5		5.9	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		3.7		5.2		7.0	ns
t _{EABRCCOMB}	3.7		5.2		7.0		ns
t _{EABRCREG}	3.5		4.9		6.6		ns
t _{EABWP}	2.0		2.8		3.8		ns
t _{EABWCCOMB}	4.5		6.3		8.6		ns
t _{EABWCREG}	5.6		7.8		10.6		ns
t _{EABDD}		3.8		5.3		7.2	ns
t _{EABDATACO}		0.8		1.1		1.5	ns
t _{EABDATASU}	1.1		1.6		2.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	0.7		1.0		1.3		ns
t _{EABWEH}	0.4		0.6		0.8		ns
t _{EABWDSU}	1.2		1.7		2.2		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	1.6		2.3		3.0		ns
t _{EABWAH}	0.9		1.2		1.8		ns
t _{EABWO}		3.1		4.3		5.9	ns

Table 70. EPF10	K50S Device	Interconnec	t Timing Mi	croparamete	e rs Note	(1)	
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		3.1		3.7		4.6	ns
t _{DIN2LE}		1.7		2.1		2.7	ns
t _{DIN2DATA}		2.7		3.1		5.1	ns
t _{DCLK2IOE}		1.6		1.9		2.6	ns
t _{DCLK2LE}		1.7		2.1		2.7	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.5		1.7		2.4	ns
t _{SAMECOLUMN}		1.0		1.3		2.1	ns
t _{DIFFROW}		2.5		3.0		4.5	ns
t _{TWOROWS}		4.0		4.7		6.9	ns
t _{LEPERIPH}		2.6		2.9		3.4	ns
t _{LABCARRY}		0.1		0.2		0.2	ns
t _{LABCASC}		0.8		1.0		1.3	ns

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Table 77. EPF10K200S Device Interconnect Timing Microparameters (Part 2 of 2) Note (1)							
Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Speed Grade Unit		
	Min	Мах	Min	Max	Min	Max	
t _{LABCASC}		0.5		1.0		1.4	ns

 Table 78. EPF10K200S External Timing Parameters
 Note (1)

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{DRR}		9.0		12.0		16.0	ns	
t _{INSU} (2)	3.1		3.7		4.7		ns	
t _{INH} (2)	0.0		0.0		0.0		ns	
t _{оитсо} (2)	2.0	3.7	2.0	4.4	2.0	6.3	ns	
t _{INSU} (3)	2.1		2.7		-		ns	
t _{INH} (3)	0.0		0.0		-		ns	
t оитсо ⁽³⁾	0.5	2.7	0.5	3.4	-	-	ns	
t _{PCISU}	3.0		4.2		-		ns	
t _{PCIH}	0.0		0.0		-		ns	
t _{PCICO}	2.0	6.0	2.0	8.9	-	_	ns	

Table 79. EPF10K200S External Bidirectional Timing Parameters Note (1) Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit Min Max Min Max Min Max t_{INSUBIDIR} (2) 2.3 3.4 4.4 ns 0.0 t_{INHBIDIR} (2) 0.0 0.0 ns tINSUBIDIR (3) 3.3 4.4 _ ns t_{INHBIDIR} (3) 0.0 0.0 _ ns toutcobidir (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns t_{XZBIDIR} (2) 6.9 7.6 9.2 ns t_{ZXBIDIR} (2) 5.9 6.6 _ ns toutcobidir (3) 0.5 2.7 0.5 3.4 _ _ ns t_{XZBIDIR} (3) 6.9 7.6 9.2 ns t_{ZXBIDIR} (3) 6.6 5.9 _ ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(3) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Altera Corporation

Device Pin-Outs	See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information.
Revision History	The information contained in the <i>FLEX 10KE Embedded Programmable Logic Data Sheet</i> version 2.5 supersedes information published in previous versions.
	Version 2.5
	The following changes were made to the <i>FLEX 10KE Embedded Programmable Logic Data Sheet</i> version 2.5:
	 <i>Note (1)</i> added to Figure 23. Text added to "I/O Element" section on page 34. Updated Table 22.
	Version 2.4
	The following changes were made to the FLEX 10KE Embedded

Programmable Logic Data Sheet version 2.4: updated text on page 34 and page 63.