E·XFL

Altera - EPF10K130EFC672-2X Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2 0 0 0 0 0	
Product Status	Active
Number of LABs/CLBs	832
Number of Logic Elements/Cells	6656
Total RAM Bits	65536
Number of I/O	413
Number of Gates	342000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf10k130efc672-2x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 4. FLEX 10KE Package Sizes										
Device	144- Pin TQFP	208-Pin PQFP	240-Pin PQFP RQFP	256-Pin FineLine BGA	356- Pin BGA	484-Pin FineLine BGA	599-Pin PGA	600- Pin BGA	672-Pin FineLine BGA	
Pitch (mm)	0.50	0.50	0.50	1.0	1.27	1.0	-	1.27	1.0	
Area (mm ²)	484	936	1,197	289	1,225	529	3,904	2,025	729	
$\begin{array}{l} \text{Length} \times \text{width} \\ \text{(mm} \times \text{mm)} \end{array}$	22 × 22	30.6 × 30.6	34.6×34.6	17 × 17	35×35	23 × 23	62.5 × 62.5	45×45	27 × 27	

General Description

Altera FLEX 10KE devices are enhanced versions of FLEX 10K devices. Based on reconfigurable CMOS SRAM elements, the FLEX architecture incorporates all features necessary to implement common gate array megafunctions. With up to 200,000 typical gates, FLEX 10KE devices provide the density, speed, and features to integrate entire systems, including multiple 32-bit buses, into a single device.

The ability to reconfigure FLEX 10KE devices enables 100% testing prior to shipment and allows the designer to focus on simulation and design verification. FLEX 10KE reconfigurability eliminates inventory management for gate array designs and generation of test vectors for fault coverage.

Table 5 shows FLEX 10KE performance for some common designs. All performance values were obtained with Synopsys DesignWare or LPM functions. Special design techniques are not required to implement the applications; the designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file.

When used as RAM, each EAB can be configured in any of the following sizes: 256×16 , 512×8 , $1,024 \times 4$, or $2,048 \times 2$ (see Figure 5).

Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block; two 512×8 RAM blocks can be combined to form a 512×16 block (see Figure 6).

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. The Altera software automatically combines EABs to meet a designer's RAM specifications.

Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time, or as an output register for data that requires fast clock-to-output performance. In some cases, using an LE register for an input register will result in a faster setup time than using an IOE register. IOEs can be used as input, output, or bidirectional pins. For bidirectional registered I/O implementation, the output register should be in the IOE, and the data input and output enable registers should be LE registers placed adjacent to the bidirectional pin. The Altera Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Figure 15 shows the bidirectional I/O registers. Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels is different for each IOE (see Figure 17).

The values for m and n are provided in Table 11.

Table 11 lists the FLEX 10KE column-to-IOE interconnect resources.

Table 11. FLEX 10KE Column-to-IOE Interconnect Resources								
Device	Channels per Column (n)	Column Channels per Pin (m)						
EPF10K30E	24	16						
EPF10K50E EPF10K50S	24	16						
EPF10K100E	24	16						
EPF10K130E	32	24						
EPF10K200E EPF10K200S	48	40						

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. Figure 19 shows the incoming and generated clock specifications.

Figure 19. Specifications for Incoming & Generated Clocks

The t_l parameter refers to the nominal input clock period; the t_0 parameter refers to the nominal output clock period.

Tables 12 and 13 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively.

Table 12	Table 12. ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices											
Symbol	Parameter	Condition	Min	Тур	Max	Unit						
t _R	Input rise time				5	ns						
t _F	Input fall time				5	ns						
t _{INDUTY}	Input duty cycle		40		60	%						
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		180	MHz						
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		90	MHz						
f _{CLKDEV}	Input deviation from user specification in the MAX+PLUS II software (1)				25,000 (2)	PPM						
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps						
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs						
t _{JITTER}	Jitter on ClockLock or ClockBoost-	$t_{INCLKSTB} < 100$			250	ps						
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps						
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost-generated clock		40	50	60	%						

PCI Pull-Up Clamping Diode Option

FLEX 10KE devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the signal to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When V_{CCIO} is 3.3 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When V_{CCIO} is 2.5 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can be activated for a subset of pins, which would allow a device to bridge between a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of 4.3 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate pin-by-pin or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects the falling edge of the output.

Open-Drain Output Option

FLEX 10KE devices provide an optional open-drain output (electrically equivalent to open-collector output) for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

MultiVolt I/O Interface

The FLEX 10KE device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10KE devices in all packages to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

Figure 26. FLEX 10KE Device IOE Timing Model

Figure 27. FLEX 10KE Device EAB Timing Model

Table 30. External Bidirectional Timing Parameters Note (9)							
Symbol	Parameter	Conditions					
^t insubidir	Setup time for bi-directional pins with global clock at same-row or same- column LE register						
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at same-row or same-column LE register						
t _{INH}	Hold time with global clock at IOE register						
t _{OUTCOBIDIR}	Clock-to-output delay for bidirectional pins with global clock at IOE register	C1 = 35 pF					
t _{XZBIDIR}	Synchronous IOE output buffer disable delay	C1 = 35 pF					
t _{ZXBIDIR}	Synchronous IOE output buffer enable delay, slow slew rate= off	C1 = 35 pF					

Notes to tables:

- (1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly.
- (2) Operating conditions: VCCIO = $3.3 \text{ V} \pm 10\%$ for commercial or industrial use.
- (3) Operating conditions: VCCIO = 2.5 V ±5% for commercial or industrial use in EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E, and EPF10K200S devices.
- (4) Operating conditions: VCCIO = 3.3 V.
- (5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered.
- (6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters.
- (7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.
- (8) Contact Altera Applications for test circuit specifications and test conditions.
- (9) This timing parameter is sample-tested only.
- (10) This parameter is measured with the measurement and test conditions, including load, specified in the PCI Local Bus Specification, revision 2.2.

Symbol	-1 Speed Grade		-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.0		2.3	ns
t _{EABDATA1}		0.6		0.7		0.8	ns
t _{EABWE1}		1.1		1.3		1.4	ns
t _{EABWE2}		0.4		0.4		0.5	ns
t _{EABRE1}		0.8		0.9		1.0	ns
t _{EABRE2}		0.4		0.4		0.5	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.3		0.4	ns
t _{EABBYPASS}		0.5		0.6		0.7	ns
t _{EABSU}	0.9		1.0		1.2		ns
t _{EABH}	0.4		0.4		0.5		ns
t _{EABCLR}	0.3		0.3		0.3		ns
t _{AA}		3.2		3.8		4.4	ns
t _{WP}	2.5		2.9		3.3		ns
t _{RP}	0.9		1.1		1.2		ns
t _{WDSU}	0.9		1.0		1.1		ns
t _{WDH}	0.1		0.1		0.1		ns
t _{WASU}	1.7		2.0		2.3		ns
t _{WAH}	1.8		2.1		2.4		ns
t _{RASU}	3.1		3.7		4.2		ns
t _{RAH}	0.2		0.2		0.2		ns
t _{WO}		2.5		2.9		3.3	ns
t _{DD}		2.5		2.9		3.3	ns
t _{EABOUT}		0.5		0.6		0.7	ns
t _{EABCH}	1.5		2.0		2.3		ns
t _{EABCL}	2.5		2.9		3.3		ns

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)										
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit			
	Min	Мах	Min	Max	Min	Max				
t _{DRR}		8.5		10.0		13.5	ns			
t _{INSU}	2.7		3.2		4.3		ns			
t _{INH}	0.0		0.0		0.0		ns			
t _{оитсо}	2.0	4.5	2.0	5.2	2.0	7.3	ns			
t _{PCISU}	3.0		4.2		-		ns			
t _{PCIH}	0.0		0.0		-		ns			
t _{PCICO}	2.0	6.0	2.0	7.7	-	-	ns			

 Table 44. EPF10K50E External Bidirectional Timing Parameters
 Notes (1), (2)

					-		
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	2.7		3.2		4.3		ns
t _{INHBIDIR}	0.0		0.0		0.0		ns
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.2	2.0	7.3	ns
t _{XZBIDIR}		6.8		7.8		10.1	ns
tZXBIDIR		6.8		7.8		10.1	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external timing parameters.

Table 45. EPF10K100E Device LE Timing Microparameters Note (1)										
Symbol	-1 Spee	eed Grade -2 Speed Grade -3 Speed Grade		ed Grade -2 Spee		-2 Speed Grade		d Grade	Unit	
	Min	Max	Min	Max	Min	Max				
t _{LUT}		0.7		1.0		1.5	ns			
t _{CLUT}		0.5		0.7		0.9	ns			
t _{RLUT}		0.6		0.8		1.1	ns			
t _{PACKED}		0.3		0.4		0.5	ns			
t _{EN}		0.2		0.3		0.3	ns			
t _{CICO}		0.1		0.1		0.2	ns			
t _{CGEN}		0.4		0.5		0.7	ns			

Table 47. EPF10K100E Device EAB Internal Microparameters Note (1)								
Symbol	-1 Speed Grade		-2 Spee	ed Grade	-3 Spee	ed Grade	Unit	
	Min	Max	Min	Max	Min	Мах		
t _{EABDATA1}		1.5		2.0		2.6	ns	
t _{EABDATA1}		0.0		0.0		0.0	ns	
t _{EABWE1}		1.5		2.0		2.6	ns	
t _{EABWE2}		0.3		0.4		0.5	ns	
t _{EABRE1}		0.3		0.4		0.5	ns	
t _{EABRE2}		0.0		0.0		0.0	ns	
t _{EABCLK}		0.0		0.0		0.0	ns	
t _{EABCO}		0.3		0.4		0.5	ns	
t _{EABBYPASS}		0.1		0.1		0.2	ns	
t _{EABSU}	0.8		1.0		1.4		ns	
t _{EABH}	0.1		0.1		0.2		ns	
t _{EABCLR}	0.3		0.4		0.5		ns	
t _{AA}		4.0		5.1		6.6	ns	
t _{WP}	2.7		3.5		4.7		ns	
t _{RP}	1.0		1.3		1.7		ns	
t _{WDSU}	1.0		1.3		1.7		ns	
t _{WDH}	0.2		0.2		0.3		ns	
t _{WASU}	1.6		2.1		2.8		ns	
t _{WAH}	1.6		2.1		2.8		ns	
t _{RASU}	3.0		3.9		5.2		ns	
t _{RAH}	0.1		0.1		0.2		ns	
t _{WO}		1.5		2.0		2.6	ns	
t _{DD}		1.5		2.0		2.6	ns	
t _{EABOUT}		0.2		0.3		0.3	ns	
t _{EABCH}	1.5		2.0		2.5		ns	
t _{EABCL}	2.7		3.5		4.7		ns	

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters (Part 1 of

2)	Note	(1)
-/		· · /

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.9		7.6		9.9	ns
t _{EABRCOMB}	5.9		7.6		9.9		ns
t _{EABRCREG}	5.1		6.5		8.5		ns
t _{EABWP}	2.7		3.5		4.7		ns

Table 48. EPF10K	100E Device	e EAB Interna	al Timing M	acroparame	ters (Part 2	of 2) No	ote (1)
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABWCOMB}	5.9		7.7		10.3		ns
t _{EABWCREG}	5.4		7.0		9.4		ns
t _{EABDD}		3.4		4.5		5.9	ns
t _{EABDATACO}		0.5		0.7		0.8	ns
t _{EABDATASU}	0.8		1.0		1.4		ns
t _{EABDATAH}	0.1		0.1		0.2		ns
t _{EABWESU}	1.1		1.4		1.9		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.0		1.3		1.7		ns
t _{EABWDH}	0.2		0.2		0.3		ns
t _{EABWASU}	4.1		5.2		6.8		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		3.4		4.5		5.9	ns

 Table 49. EPF10K100E Device Interconnect Timing Microparameters
 Note (1)

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		3.1		3.6		4.4	ns
t _{DIN2LE}		0.3		0.4		0.5	ns
t _{DIN2DATA}		1.6		1.8		2.0	ns
t _{DCLK2IOE}		0.8		1.1		1.4	ns
t _{DCLK2LE}		0.3		0.4		0.5	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.5		2.5		3.4	ns
t _{SAMECOLUMN}		0.4		1.0		1.6	ns
t _{DIFFROW}		1.9		3.5		5.0	ns
t _{TWOROWS}		3.4		6.0		8.4	ns
t _{LEPERIPH}		4.3		5.4		6.5	ns
t _{LABCARRY}		0.5		0.7		0.9	ns
t _{LABCASC}		0.8		1.0		1.4	ns

Table 64. EPF10K200E External Timing Parameters Notes (1), (2)										
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{DRR}		10.0		12.0		16.0	ns			
t _{INSU}	2.8		3.4		4.4		ns			
t _{INH}	0.0		0.0		0.0		ns			
t _{оитсо}	2.0	4.5	2.0	5.3	2.0	7.8	ns			
t _{PCISU}	3.0		6.2		-		ns			
t _{PCIH}	0.0		0.0		-		ns			
t _{PCICO}	2.0	6.0	2.0	8.9	-	-	ns			

Table 65. EPF10K200E External Bidirectional Timing Parameters Notes (1), (2)

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{INSUBIDIR}	3.0		4.0		5.5		ns			
t _{INHBIDIR}	0.0		0.0		0.0		ns			
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.3	2.0	7.8	ns			
t _{XZBIDIR}		8.1		9.5		13.0	ns			
tZXBIDIR		8.1		9.5		13.0	ns			

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

Tables 66 through 79 show EPF10K50S and EPF10K200S device external timing parameters.

Table 66. EPF10K50S Device LE Timing Microparameters (Part 1 of 2) Note (1)										
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		d Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{LUT}		0.6		0.8		1.1	ns			
t _{CLUT}		0.5		0.6		0.8	ns			
t _{RLUT}		0.6		0.7		0.9	ns			
t _{PACKED}		0.2		0.3		0.4	ns			
t _{EN}		0.6		0.7		0.9	ns			
t _{CICO}		0.1		0.1		0.1	ns			
t _{CGEN}		0.4		0.5		0.6	ns			

Table 66. EPF10K50S Device LE Timing Microparameters (Part 2 of 2) Note (1)										
Symbol	-1 Spee	ed Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{CGENR}		0.1		0.1		0.1	ns			
t _{CASC}		0.5		0.8		1.0	ns			
t _C		0.5		0.6		0.8	ns			
t _{CO}		0.6		0.6		0.7	ns			
t _{COMB}		0.3		0.4		0.5	ns			
t _{SU}	0.5		0.6		0.7		ns			
t _H	0.5		0.6		0.8		ns			
t _{PRE}		0.4		0.5		0.7	ns			
t _{CLR}		0.8		1.0		1.2	ns			
t _{CH}	2.0		2.5		3.0		ns			
t _{CL}	2.0		2.5		3.0		ns			

Table 67. EPF10K50S Device IOE Timing Microparameters Note (1)									
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		ed Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{IOD}		1.3		1.3		1.9	ns		
t _{IOC}		0.3		0.4		0.4	ns		
t _{IOCO}		1.7		2.1		2.6	ns		
t _{IOCOMB}		0.5		0.6		0.8	ns		
t _{IOSU}	0.8		1.0		1.3		ns		
t _{IOH}	0.4		0.5		0.6		ns		
t _{IOCLR}		0.2		0.2		0.4	ns		
t _{OD1}		1.2		1.2		1.9	ns		
t _{OD2}		0.7		0.8		1.7	ns		
t _{OD3}		2.7		3.0		4.3	ns		
t _{XZ}		4.7		5.7		7.5	ns		
t _{ZX1}		4.7		5.7		7.5	ns		
t _{ZX2}		4.2		5.3		7.3	ns		
t _{ZX3}		6.2		7.5		9.9	ns		
t _{INREG}		3.5		4.2		5.6	ns		
t _{IOFD}		1.1		1.3		1.8	ns		
t _{INCOMB}		1.1		1.3		1.8	ns		

Table 74. EPF10K	200S Device	e IOE Timing	n Microparai	meters (Par	t 2 of 2)	Note (1)	
Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{ZX2}		4.5		4.8		6.6	ns
t _{ZX3}		6.6		7.6		10.1	ns
t _{INREG}		3.7		5.7		7.7	ns
t _{IOFD}		1.8		3.4		4.0	ns
t _{INCOMB}		1.8		3.4		4.0	ns

Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Мах	
t _{EABDATA1}		1.8		2.4		3.2	ns
t _{EABDATA1}		0.4		0.5		0.6	ns
t _{EABWE1}		1.1		1.7		2.3	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0		0		0	ns
t _{EABRE2}		0.4		0.5		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		0.9		1.2	ns
t _{EABBYPASS}		0.0		0.1		0.1	ns
t _{EABSU}	0.7		1.1		1.5		ns
t _{EABH}	0.4		0.5		0.6		ns
t _{EABCLR}	0.8		0.9		1.2		ns
t _{AA}		2.1		3.7		4.9	ns
t _{WP}	2.1		4.0		5.3		ns
t _{RP}	1.1		1.1		1.5		ns
tWDSU	0.5		1.1		1.5		ns
t _{WDH}	0.1		0.1		0.1		ns
t _{WASU}	1.1		1.6		2.1		ns
t _{WAH}	1.6		2.5		3.3		ns
t _{RASU}	1.6		2.6		3.5		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		2.0		2.4		3.2	ns
t _{DD}		2.0		2.4		3.2	ns
t _{EABOUT}		0.0		0.1		0.1	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.1		2.8		3.8		ns

Altera Corporation

Table 77. EPF10K200S Device Interconnect Timing Microparameters (Part 2 of 2) Note (1)										
Symbol	-1 Spee	d Grade	Grade -2 Speed Grade		-3 Spee	d Grade	Unit			
	Min	Мах	Min	Max	Min	Max				
t _{LABCASC}		0.5		1.0		1.4	ns			

 Table 78. EPF10K200S External Timing Parameters
 Note (1)

		-					
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DRR}		9.0		12.0		16.0	ns
t _{INSU} (2)	3.1		3.7		4.7		ns
t _{INH} (2)	0.0		0.0		0.0		ns
t _{оитсо} (2)	2.0	3.7	2.0	4.4	2.0	6.3	ns
t _{INSU} (3)	2.1		2.7		-		ns
t _{INH} (3)	0.0		0.0		-		ns
t _{OUTCO} (3)	0.5	2.7	0.5	3.4	-	-	ns
t _{PCISU}	3.0		4.2		-		ns
t _{PCIH}	0.0		0.0		-		ns
t _{PCICO}	2.0	6.0	2.0	8.9	-	-	ns

Table 79. EPF10K200S External Bidirectional Timing Parameters Note (1) Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit Min Max Min Max Min Max t_{INSUBIDIR} (2) 2.3 3.4 4.4 ns 0.0 t_{INHBIDIR} (2) 0.0 0.0 ns tINSUBIDIR (3) 3.3 4.4 _ ns t_{INHBIDIR} (3) 0.0 0.0 _ ns toutcobidir (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns t_{XZBIDIR} (2) 6.9 7.6 9.2 ns 5.9 t_{ZXBIDIR} (2) 6.6 _ ns toutcobidir (3) 0.5 2.7 0.5 3.4 _ _ ns t_{XZBIDIR} (3) 6.9 7.6 9.2 ns t_{ZXBIDIR} (3) 5.9 6.6 _ ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(3) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Altera Corporation

Figure 31. FLEX 10KE I_{CCACTIVE} vs. Operating Frequency (Part 2 of 2)

Configuration & Operation

The FLEX 10KE architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The FLEX 10KE architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. The process of physically loading the SRAM data into the device is called *configuration*. Before configuration, as V_{CC} rises, the device initiates a Power-On Reset (POR). This POR event clears the device and prepares it for configuration. The FLEX 10KE POR time does not exceed 50 µs.

When configuring with a configuration device, refer to the respective configuration device data sheet for POR timing information.

During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

SRAM configuration elements allow FLEX 10KE devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 85 ms and can be used to reconfigure an entire system dynamically. In-field upgrades can be performed by distributing new configuration files.

Before and during configuration, all I/O pins (except dedicated inputs, clock, or configuration pins) are pulled high by a weak pull-up resistor.

Programming Files

Despite being function- and pin-compatible, FLEX 10KE devices are not programming- or configuration file-compatible with FLEX 10K or FLEX 10KA devices. A design therefore must be recompiled before it is transferred from a FLEX 10K or FLEX 10KA device to an equivalent FLEX 10KE device. This recompilation should be performed both to create a new programming or configuration file and to check design timing in FLEX 10KE devices, which has different timing characteristics than FLEX 10K or FLEX 10KA devices.

FLEX 10KE devices are generally pin-compatible with equivalent FLEX 10KA devices. In some cases, FLEX 10KE devices have fewer I/O pins than the equivalent FLEX 10KA devices. Table 81 shows which FLEX 10KE devices have fewer I/O pins than equivalent FLEX 10KA devices. However, power, ground, JTAG, and configuration pins are the same on FLEX 10KA and FLEX 10KE devices, enabling migration from a FLEX 10KA design to a FLEX 10KE design.