

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	832
Number of Logic Elements/Cells	6656
Total RAM Bits	65536
Number of I/O	413
Number of Gates	342000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k130efi672-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. FLEX 10KE Device Features									
Feature	EPF10K100E (2)	EPF10K130E	EPF10K200E EPF10K200S						
Typical gates (1)	100,000	130,000	200,000						
Maximum system gates	257,000	342,000	513,000						
Logic elements (LEs)	4,992	6,656	9,984						
EABs	12	16	24						
Total RAM bits	49,152	65,536	98,304						
Maximum user I/O pins	338	413	470						

Note to tables:

- (1) The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates.
- (2) New EPF10K100B designs should use EPF10K100E devices.

...and More Features

- Fabricated on an advanced process and operate with a 2.5-V internal supply voltage
- In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port
- ClockLockTM and ClockBoostTM options for reduced clock delay/skew and clock multiplication
- Built-in low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required
- Pull-up on I/O pins before and during configuration

■ Flexible interconnect

- FastTrack® Interconnect continuous routing structure for fast, predictable interconnect delays
- Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
- Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
- Tri-state emulation that implements internal tri-state buses
- Up to six global clock signals and four global clear signals

■ Powerful I/O pins

- Individual tri-state output enable control for each pin
- Open-drain option on each I/O pin
- Programmable output slew-rate control to reduce switching noise
- Clamp to V_{CCIO} user-selectable on a pin-by-pin basis
- Supports hot-socketing

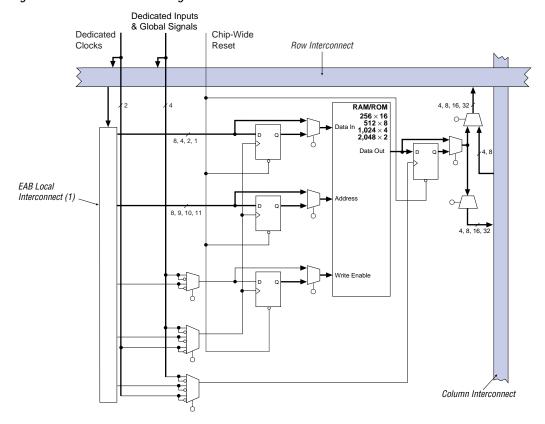


Figure 4. FLEX 10KE Device in Single-Port RAM Mode

Note:

 EPF10K30E, EPF10K50E, and EPF10K50S devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 104 EAB local interconnect channels.

EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB's synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB's self-timed RAM must only meet the setup and hold time specifications of the global clock.

EABs provide flexible options for driving and controlling clock signals. Different clocks and clock enables can be used for reading and writing to the EAB. Registers can be independently inserted on the data input, EAB output, write address, write enable signals, read address, and read enable signals. The global signals and the EAB local interconnect can drive write enable, read enable, and clock enable signals. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control write enable, read enable, clear, clock, and clock enable signals.

An EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs (see Figures 2 and 4). The column interconnect, which is adjacent to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the FLEX 10KE architecture, facilitating efficient routing with optimum device utilization and high performance (see Figure 7).

Cascade Chain

With the cascade chain, the FLEX 10KE architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE provides four more inputs to the effective width of a function. Cascade chain logic can be created automatically by the Altera Compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EPF10K50E device, the cascade chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. The LE delay is 0.9 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 2.7 ns are needed to decode a 16-bit address.

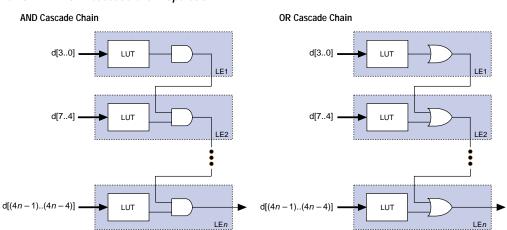


Figure 10. FLEX 10KE Cascade Chain Operation

LE Operating Modes

The FLEX 10KE LE can operate in the following four modes:

- Normal mode
- Arithmetic mode
- Up/down counter mode
- Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs.

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Altera Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time.

The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a three-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a four-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 11 on page 22, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources.

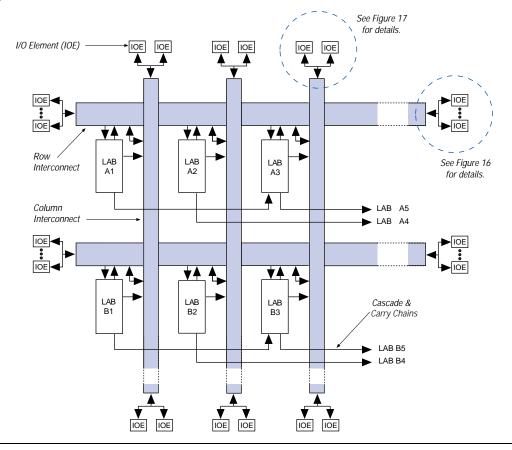


Figure 14. FLEX 10KE Interconnect Resources

I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time, or as an output register for data that requires fast clock-to-output performance. In some cases, using an LE register for an input register will result in a faster setup time than using an IOE register. IOEs can be used as input, output, or bidirectional pins. For bidirectional registered I/O implementation, the output register should be in the IOE, and the data input and output enable registers should be LE registers placed adjacent to the bidirectional pin. The Altera Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Figure 15 shows the bidirectional I/O registers.

Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels is different for each IOE (see Figure 17).

Figure 17. FLEX 10KE Column-to-IOE Connections

The values for m and n are provided in Table 11.

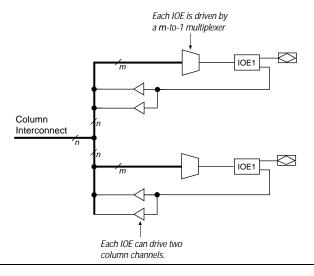


Table 11 lists the FLEX 10KE column-to-IOE interconnect resources.

Table 11. FLEX 10KE Column-to-IOE Interconnect Resources									
Device	Channels per Column (n)	Column Channels per Pin (m)							
EPF10K30E	24	16							
EPF10K50E EPF10K50S	24	16							
EPF10K100E	24	16							
EPF10K130E	32	24							
EPF10K200E EPF10K200S	48	40							

PCI Pull-Up Clamping Diode Option

FLEX 10KE devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the signal to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When $V_{\rm CCIO}$ is 3.3 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When $V_{\rm CCIO}$ is 2.5 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can be activated for a subset of pins, which would allow a device to bridge between a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of 4.3 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate pin-by-pin or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects the falling edge of the output.

Open-Drain Output Option

FLEX 10KE devices provide an optional open-drain output (electrically equivalent to open-collector output) for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired- \mathbb{QR} plane.

MultiVolt I/O Interface

The FLEX 10KE device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10KE devices in all packages to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCINT pins must always be connected to a 2.5-V power supply. With a 2.5-V $V_{\rm CCINT}$ level, input voltages are compatible with 2.5-V, 3.3-V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels higher than 3.0 V achieve a faster timing delay of t_{OD2} instead of t_{OD1} .

Table 14 summarizes FLEX 10KE MultiVolt I/O support.

Table 14. FLEX 10KE MultiVolt I/O Support									
V _{CCIO} (V)	Inj	Input Signal (V) Output Signal (V)							
	2.5	3.3	5.0	2.5	3.3	5.0			
2.5	✓	√ (1)	√ (1)	✓					
3.3	✓	✓	√ (1)	√ (2)	✓	✓			

Notes:

- (1) The PCI clamping diode must be disabled to drive an input with voltages higher than $V_{\rm CCIO}$.
- (2) When $V_{\rm CCIO}$ = 3.3 V, a FLEX 10KE device can drive a 2.5-V device that has 3.3-V tolerant inputs.

Open-drain output pins on FLEX 10KE devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor.

Power Sequencing & Hot-Socketing

Because FLEX 10KE devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order.

Signals can be driven into FLEX 10KE devices before and during power up without damaging the device. Additionally, FLEX 10KE devices do not drive out during power up. Once operating conditions are reached, FLEX 10KE devices operate as specified by the user.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	2.30 (2.30)	2.70 (2.70)	V
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.30 (2.30)	2.70 (2.70)	V
VI	Input voltage	(5)	-0.5	5.75	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	° C
		For industrial use	-40	85	° C
T _J	Operating temperature	For commercial use	0	85	° C
		For industrial use	-40	100	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Table 21. 2.5-V EPF10K30E, EPF10K50S, EPF10K100E, EPF10K130E & EPF10K200S Device Recommended Operating Conditions									
Symbol	Parameter	Conditions	Min	Max	Unit				
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	2.375 (2.375)	2.625 (2.625)	V				
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V				
l '	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V				
V _I	Input voltage	(5)	-0.5	5.75	V				
Vo	Output voltage		0	V _{CCIO}	V				
T _A	Ambient temperature	For commercial use	0	70	° C				
		For industrial use	-40	85	° C				
TJ	Operating temperature	For commercial use	0	85	° C				
		For industrial use	-40	100	° C				
t _R	Input rise time			40	ns				
t _F	Input fall time			40	ns				

3 Timing Macroparameters Note (1), (6)						
Parameter	Conditions					
EAB address access delay						
EAB asynchronous read cycle time						
EAB synchronous read cycle time						
EAB write pulse width						
EAB asynchronous write cycle time						
EAB synchronous write cycle time						
EAB data-in to data-out valid delay						
EAB clock-to-output delay when using output registers						
EAB data/address setup time before clock when using input register						
EAB data/address hold time after clock when using input register						
EAB WE setup time before clock when using input register						
EAB WE hold time after clock when using input register						
EAB data setup time before falling edge of write pulse when not using input registers						
EAB data hold time after falling edge of write pulse when not using input registers						
EAB address setup time before rising edge of write pulse when not using input registers						
EAB address hold time after falling edge of write pulse when not using input registers						
EAB write enable to data output valid delay						
	Parameter EAB address access delay EAB asynchronous read cycle time EAB synchronous read cycle time EAB write pulse width EAB asynchronous write cycle time EAB synchronous write cycle time EAB data-in to data-out valid delay EAB clock-to-output delay when using output registers EAB data/address setup time before clock when using input register EAB we setup time before clock when using input register EAB we hold time after clock when using input register EAB data setup time before falling edge of write pulse when not using input registers EAB data hold time after falling edge of write pulse when not using input registers EAB address setup time before rising edge of write pulse when not using input registers EAB address setup time before rising edge of write pulse when not using input registers EAB address hold time after falling edge of write pulse when not using input registers					

Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		1.8		2.4		2.9	ns
t _{DIN2LE}		1.5		1.8		2.4	ns
t _{DIN2DATA}		1.5		1.8		2.2	ns
t _{DCLK2IOE}		2.2		2.6		3.0	ns
t _{DCLK2LE}		1.5		1.8		2.4	ns
t _{SAMELAB}		0.1		0.2		0.3	ns
t _{SAMEROW}		2.0		2.4		2.7	ns
t _{SAME} COLUMN		0.7		1.0		0.8	ns
t _{DIFFROW}		2.7		3.4		3.5	ns
t _{TWOROWS}		4.7		5.8		6.2	ns
t _{LEPERIPH}		2.7		3.4		3.8	ns
t _{LABCARRY}		0.3		0.4		0.5	ns
t _{LABCASC}		0.8		0.8		1.1	ns

Symbol	-1 Spec	ed Grade	-2 Spee	-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DRR}		8.0		9.5		12.5	ns
t _{INSU} (3)	2.1		2.5		3.9		ns
t _{INH} (3)	0.0		0.0		0.0		ns
t _{оитсо} (3)	2.0	4.9	2.0	5.9	2.0	7.6	ns
t _{INSU} (4)	1.1		1.5		-		ns
t _{INH} (4)	0.0		0.0		-		ns
^t оитсо	0.5	3.9	0.5	4.9	-	-	ns
t _{PCISU}	3.0		4.2		-		ns
рсін	0.0		0.0		-		ns
t _{PCICO}	2.0	6.0	2.0	7.5	_	_	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.0		2.7	ns
t _{EABDATA1}		0.6		0.7		0.9	ns
t _{EABWE1}		1.1		1.3		1.8	ns
t _{EABWE2}		0.4		0.4		0.6	ns
t _{EABRE1}		0.8		0.9		1.2	ns
t _{EABRE2}		0.4		0.4		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.3		0.5	ns
t _{EABBYPASS}		0.5		0.6		0.8	ns
t _{EABSU}	0.9		1.0		1.4		ns
t _{EABH}	0.4		0.4		0.6		ns
t _{EABCLR}	0.3		0.3		0.5		ns
t_{AA}		3.2		3.8		5.1	ns
t_{WP}	2.5		2.9		3.9		ns
t_{RP}	0.9		1.1		1.5		ns
t _{WDSU}	0.9		1.0		1.4		ns
t_{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.7		2.0		2.7		ns
t _{WAH}	1.8		2.1		2.9		ns
t _{RASU}	3.1		3.7		5.0		ns
t _{RAH}	0.2		0.2		0.3		ns
t_{WO}		2.5		2.9		3.9	ns
t_{DD}		2.5		2.9		3.9	ns
t _{EABOUT}		0.5		0.6		0.8	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.5		2.9		3.9		ns

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)									
Symbol	-1 Spee	d Grade	rade -2 Speed 0		d Grade -3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{DRR}		8.5		10.0		13.5	ns		
t _{INSU}	2.7		3.2		4.3		ns		
t _{INH}	0.0		0.0		0.0		ns		
t _{outco}	2.0	4.5	2.0	5.2	2.0	7.3	ns		
t _{PCISU}	3.0		4.2		-		ns		
t _{PCIH}	0.0		0.0		-		ns		
t _{PCICO}	2.0	6.0	2.0	7.7	-	-	ns		

Table 44. EPF10K50E External Bidirectional Timing Parameters Notes (1), (2)										
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{INSUBIDIR}	2.7		3.2		4.3		ns			
t _{INHBIDIR}	0.0		0.0		0.0		ns			
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.2	2.0	7.3	ns			
t _{XZBIDIR}		6.8		7.8		10.1	ns			
t _{ZXBIDIR}		6.8		7.8		10.1	ns			

Notes to tables:

- (1) All timing parameters are described in Tables 24 through 30 in this data sheet.
- (2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external timing parameters.

Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t_{LUT}		0.7		1.0		1.5	ns
t _{CLUT}		0.5		0.7		0.9	ns
t _{RLUT}		0.6		0.8		1.1	ns
t _{PACKED}		0.3		0.4		0.5	ns
t_{EN}		0.2		0.3		0.3	ns
t _{CICO}		0.1		0.1		0.2	ns
t _{CGEN}		0.4		0.5		0.7	ns

Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{CGENR}		0.1		0.1		0.2	ns
t _{CASC}		0.6		0.9		1.2	ns
t _C		0.8		1.0		1.4	ns
t _{CO}		0.6		0.8		1.1	ns
t _{COMB}		0.4		0.5		0.7	ns
t _{SU}	0.4		0.6		0.7		ns
t _H	0.5		0.7		0.9		ns
t _{PRE}		0.8		1.0		1.4	ns
t _{CLR}		0.8		1.0		1.4	ns
t _{CH}	1.5		2.0		2.5		ns
t_{CL}	1.5		2.0		2.5		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t_{IOD}		1.7		2.0		2.6	ns
t_{IOC}		0.0		0.0		0.0	ns
t_{IOCO}		1.4		1.6		2.1	ns
t_{IOCOMB}		0.5		0.7		0.9	ns
t _{IOSU}	0.8		1.0		1.3		ns
t_{IOH}	0.7		0.9		1.2		ns
t _{IOCLR}		0.5		0.7		0.9	ns
t_{OD1}		3.0		4.2		5.6	ns
t_{OD2}		3.0		4.2		5.6	ns
t_{OD3}		4.0		5.5		7.3	ns
t_{XZ}		3.5		4.6		6.1	ns
t _{ZX1}		3.5		4.6		6.1	ns
t_{ZX2}		3.5		4.6		6.1	ns
t_{ZX3}		4.5	-	5.9	-	7.8	ns
t _{INREG}		2.0		2.6		3.5	ns
t _{IOFD}		0.5		0.8		1.2	ns
t _{INCOMB}		0.5		0.8		1.2	ns

Symbol	-1 Spee	ed Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABWCOMB}	5.9		7.7		10.3		ns
t _{EABWCREG}	5.4		7.0		9.4		ns
t _{EABDD}		3.4		4.5		5.9	ns
t _{EABDATACO}		0.5		0.7		0.8	ns
t _{EABDATASU}	0.8		1.0		1.4		ns
t _{EABDATAH}	0.1		0.1		0.2		ns
t _{EABWESU}	1.1		1.4		1.9		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.0		1.3		1.7		ns
t _{EABWDH}	0.2		0.2		0.3		ns
t _{EABWASU}	4.1		5.2		6.8		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		3.4		4.5		5.9	ns

Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		3.1		3.6		4.4	ns
t _{DIN2LE}		0.3		0.4		0.5	ns
t _{DIN2DATA}		1.6		1.8		2.0	ns
t _{DCLK2IOE}		0.8		1.1		1.4	ns
t _{DCLK2LE}		0.3		0.4		0.5	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.5		2.5		3.4	ns
t _{SAME} COLUMN		0.4		1.0		1.6	ns
t _{DIFFROW}		1.9		3.5		5.0	ns
t _{TWOROWS}		3.4		6.0		8.4	ns
t _{LEPERIPH}		4.3		5.4		6.5	ns
t _{LABCARRY}		0.5		0.7		0.9	ns
t _{LABCASC}		0.8		1.0		1.4	ns

Table 53. EPF10K130E Device IOE Timing Microparameters Note (1)							
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{OD3}		4.0		5.6		7.5	ns
t_{XZ}		2.8		4.1		5.5	ns
t_{ZX1}		2.8		4.1		5.5	ns
t_{ZX2}		2.8		4.1		5.5	ns
t_{ZX3}		4.0		5.6		7.5	ns
t _{INREG}		2.5		3.0		4.1	ns
t _{IOFD}		0.4		0.5		0.6	ns
t _{INCOMB}		0.4		0.5		0.6	ns

Table 54. EPF10	K130E Devic	e EAB Interna	al Micropara	ameters (Pa	art 1 of 2)	Note (1)	
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.5		2.0		2.6	ns
t _{EABDATA2}		0.0		0.0		0.0	ns
t _{EABWE1}		1.5		2.0		2.6	ns
t _{EABWE2}		0.3		0.4		0.5	ns
t _{EABRE1}		0.3		0.4		0.5	ns
t _{EABRE2}		0.0		0.0		0.0	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.4		0.5	ns
t _{EABBYPASS}		0.1		0.1		0.2	ns
t _{EABSU}	0.8		1.0		1.4		ns
t _{EABH}	0.1		0.2		0.2		ns
t _{EABCLR}	0.3		0.4		0.5		ns
t_{AA}		4.0		5.0		6.6	ns
t_{WP}	2.7		3.5		4.7		ns
t _{RP}	1.0		1.3		1.7		ns
t _{WDSU}	1.0		1.3		1.7		ns
t_{WDH}	0.2		0.2		0.3		ns
t _{WASU}	1.6		2.1		2.8		ns
t _{WAH}	1.6		2.1		2.8		ns
t _{RASU}	3.0		3.9		5.2		ns
t _{RAH}	0.1		0.1		0.2		ns
t_{WO}		1.5		2.0		2.6	ns

Table 73. EPF10K200S Device Internal & External Timing Parameters Note (1)							
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t_{LUT}		0.7		0.8		1.2	ns
t _{CLUT}		0.4		0.5		0.6	ns
t _{RLUT}		0.5		0.7		0.9	ns
t _{PACKED}		0.4		0.5		0.7	ns
t_{EN}		0.6		0.5		0.6	ns
t_{CICO}		0.1		0.2		0.3	ns
t _{CGEN}		0.3		0.4		0.6	ns
t _{CGENR}		0.1		0.2		0.3	ns
t_{CASC}		0.7		0.8		1.2	ns
$t_{\mathbb{C}}$		0.5		0.6		0.8	ns
$t_{\rm CO}$		0.5		0.6		0.8	ns
t _{COMB}		0.3		0.6		0.8	ns
t_{SU}	0.4		0.6		0.7		ns
t _H	1.0		1.1		1.5		ns
t _{PRE}		0.4		0.6		0.8	ns
t_{CLR}		0.5		0.6		0.8	ns
t _{CH}	2.0		2.5		3.0		ns
t_{CL}	2.0		2.5		3.0		ns

Table 74. EPF10K200S Device IOE Timing Microparameters (Part 1 of 2) Note (1)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t_{IOD}		1.8		1.9		2.6	ns
t _{IOC}		0.3		0.3		0.5	ns
t _{IOCO}		1.7		1.9		2.6	ns
t _{IOCOMB}		0.5		0.6		0.8	ns
t _{IOSU}	0.8		0.9		1.2		ns
t _{IOH}	0.4		0.8		1.1		ns
t _{IOCLR}		0.2		0.2		0.3	ns
t _{OD1}		1.3		0.7		0.9	ns
t _{OD2}		0.8		0.2		0.4	ns
t _{OD3}		2.9		3.0		3.9	ns
t_{XZ}		5.0		5.3		7.1	ns
t _{ZX1}		5.0		5.3		7.1	ns

Additionally, the Altera software offers several features that help plan for future device migration by preventing the use of conflicting I/O pins.

Table 81. I/O Counts for FLEX 10KA & FLEX 10KE Devices						
FLEX 10	KA	FLEX 10	KE			
Device	I/O Count	Device	I/O Count			
EPF10K30AF256	191	EPF10K30EF256	176			
EPF10K30AF484	246	EPF10K30EF484	220			
EPF10K50VB356	274	EPF10K50SB356	220			
EPF10K50VF484	291	EPF10K50EF484	254			
EPF10K50VF484	291	EPF10K50SF484	254			
EPF10K100AF484	369	EPF10K100EF484	338			

Configuration Schemes

The configuration data for a FLEX 10KE device can be loaded with one of five configuration schemes (see Table 82), chosen on the basis of the target application. An EPC1, EPC2, or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of a FLEX 10KE device, allowing automatic configuration on system power-up.

Multiple FLEX 10KE devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Additional FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be configured in the same serial chain.

Table 82. Data Sources for FLEX 10KE Configuration						
Configuration Scheme	Data Source					
Configuration device	EPC1, EPC2, or EPC16 configuration device					
Passive serial (PS)	BitBlaster, ByteBlasterMV, or MasterBlaster download cables, or serial data source					
Passive parallel asynchronous (PPA)	Parallel data source					
Passive parallel synchronous (PPS)	Parallel data source					
JTAG	BitBlaster or ByteBlasterMV download cables, or microprocessor with a Jam STAPL file or JBC file					