E·XFL

Intel - EPF10K130EQI240-2N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	832
Number of Logic Elements/Cells	6656
Total RAM Bits	65536
Number of I/O	186
Number of Gates	342000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k130eqi240-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 5. FLEX 10KE Perform	nance						
Application	Resource	es Used	Performance				
	LEs	EABs	-1 Speed Grade	-2 Speed Grade	-3 Speed Grade		
16-bit loadable counter	16	0	285	250	200	MHz	
16-bit accumulator	16	0	285	250	200	MHz	
16-to-1 multiplexer (1)	10	0	3.5	4.9	7.0	ns	
16-bit multiplier with 3-stage pipeline (2)	592	0	156	131	93	MHz	
256×16 RAM read cycle speed (2)	0	1	196	154	118	MHz	
256×16 RAM write cycle speed (2)	0	1	185	143	106	MHz	

Table 5. FLEX 10KE Performance

Notes:

(1) This application uses combinatorial inputs and outputs.

(2) This application uses registered inputs and outputs.

Table 6 shows FLEX 10KE performance for more complex designs. These designs are available as Altera MegaCore $^{\circ}$ functions.

Table 6. FLEX 10KE Performanc	e for Complex	Designs			
Application	LEs Used	Performance Unit			
		-1 Speed Grade	-2 Speed Grade	-3 Speed Grade	
8-bit, 16-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS
8-bit, 512-point fast Fourier	1,854	23.4	28.7	38.9	µs (1)
transform (FFT) function		113	92	68	MHz
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz

Note:

(1) These values are for calculation time. Calculation time = number of clocks required / f_{max} . Number of clocks required = ceiling [log 2 (points)/2] × [points +14 + ceiling]

Functional Description

Each FLEX 10KE device contains an enhanced embedded array to implement memory and specialized logic functions, and a logic array to implement general logic.

The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions, such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions.

The logic array consists of logic array blocks (LABs). Each LAB contains eight LEs and a local interconnect. An LE consists of a four-input look-up table (LUT), a programmable flipflop, and dedicated signal paths for carry and cascade functions. The eight LEs can be used to create medium-sized blocks of logic—such as 8-bit counters, address decoders, or state machines—or combined across LABs to create larger logic blocks. Each LAB represents about 96 usable gates of logic.

Signal interconnections within FLEX 10KE devices (as well as to and from device pins) are provided by the FastTrack Interconnect routing structure, which is a series of fast, continuous row and column channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect routing structure. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an output or input register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. As inputs, they provide setup times as low as 0.9 ns and hold times of 0 ns. As outputs, these registers provide clock-to-output times as low as 3.0 ns. IOEs provide a variety of features, such as JTAG BST support, slew-rate control, tri-state buffers, and open-drain outputs. When used as RAM, each EAB can be configured in any of the following sizes: 256×16 , 512×8 , $1,024 \times 4$, or $2,048 \times 2$ (see Figure 5).

Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block; two 512×8 RAM blocks can be combined to form a 512×16 block (see Figure 6).

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. The Altera software automatically combines EABs to meet a designer's RAM specifications.

Figure 7. FLEX 10KE LAB

Notes:

- (1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26.
- (2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 34.

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Altera Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time.

The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a three-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a four-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 11 on page 22, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources.

Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

On all FLEX 10KE devices (except EPF10K50E and EPF10K200E devices), the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. EPF10K50S and EPF10K200S devices also support this feature. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time or turn it off to minimize setup time. This feature is used to reduce setup time for complex pin-to-register paths (e.g., PCI designs).

Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across the device and provides up to 12 peripheral control signals that can be allocated as follows:

- Up to eight output enable signals
- Up to six clock enable signals
- Up to two clock signals
- Up to two clear signals

If more than six clock enable or eight output enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, a LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chipwide reset signal resets all IOE registers, overriding any other control signals.

When a dedicated clock pin drives IOE registers, it can be inverted for all IOEs in the device. All IOEs must use the same sense of the clock. For example, if any IOE uses the inverted clock, all IOEs must use the inverted clock and no IOE can use the non-inverted clock. However, LEs can still use the true or complement of the clock on a LAB-by-LAB basis.

The incoming signal may be inverted at the dedicated clock pin and will drive all IOEs. For the true and complement of a clock to be used to drive IOEs, drive it into both global clock pins. One global clock pin will supply the true, and the other will supply the complement.

When the true and complement of a dedicated input drives IOE clocks, two signals on the peripheral control bus are consumed, one for each sense of the clock. When dedicated inputs drive non-inverted and inverted peripheral clears, clock enables, and output enables, two signals on the peripheral control bus will be used.

Tables 8 and 9 list the sources for each peripheral control signal, and show how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals. The tables also show the rows that can drive global signals.

Table 8. Peripheral Bus Sources for EPF10K30E, E	PF10K50E & EPF10K50S Devi	ices
Peripheral Control Signal	EPF10K30E	EPF10K50E EPF10K50S
OEO	Row A	Row A
OE1	Row B	Row B
OE2	Row C	Row D
OE3	Row D	Row F
OE4	Row E	Row H
OE5	Row F	Row J
CLKENA0/CLK0/GLOBAL0	Row A	Row A
CLKENA1/OE6/GLOBAL1	Row B	Row C
CLKENA2/CLR0	Row C	Row E
CLKENA3/OE7/GLOBAL2	Row D	Row G
CLKENA4/CLR1	Row E	Row I
CLKENA5/CLK1/GLOBAL3	Row F	Row J

Г

Tables 12 and 13 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _R	Input rise time				5	ns
t _F	Input fall time				5	ns
t _{INDUTY}	Input duty cycle		40		60	%
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		180	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		90	MHz
f _{CLKDEV}	Input deviation from user specification in the MAX+PLUS II software (1)				25,000 (2)	PPM
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs
t _{JITTER}	Jitter on ClockLock or ClockBoost-	$t_{INCLKSTB} < 100$			250	ps
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost-generated clock		40	50	60	%

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All FLEX 10KE devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. FLEX 10KE devices can also be configured using the JTAG pins through the BitBlaster or ByteBlasterMV download cable, or via hardware that uses the Jam[™] STAPL programming and test language. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. FLEX 10KE devices support the JTAG instructions shown in Table 15.

Table 15. FLEX 10KE	JTAG Instructions						
JTAG Instruction	Description						
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins.						
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.						
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.						
USERCODE	Selects the user electronic signature (USERCODE) register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.						
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.						
ICR Instructions	These instructions are used when configuring a FLEX 10KE device via JTAG ports with a BitBlaster or ByteBlasterMV download cable, or using a Jam File (.jam) or Jam Byte-Code File (.jbc) via an embedded processor.						

The instruction register length of FLEX 10KE devices is 10 bits. The USERCODE register length in FLEX 10KE devices is 32 bits; 7 bits are determined by the user, and 25 bits are pre-determined. Tables 16 and 17 show the boundary-scan register length and device IDCODE information for FLEX 10KE devices.

Table 16. FLEX 10KE Boundary-Scan Register Length					
Device	Boundary-Scan Register Length				
EPF10K30E	690				
EPF10K50E	798				
EPF10K50S					
EPF10K100E	1,050				
EPF10K130E	1,308				
EPF10K200E EPF10K200S	1,446				

Figure 20 shows the timing requirements for the JTAG signals.

Figure 20. FLEX 10KE JTAG Waveforms

Table 18 shows the timing parameters and values for FLEX 10KE devices.

Sumbol	Parameter	Min	Max	Unit
Symbol	Parameter	IVIIII	IVIAX	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		35	ns
t _{JSZX}	Update register high impedance to valid output		35	ns
t _{JSXZ}	Update register valid output to high impedance		35	ns

Figure 22 shows the required relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance.

Figure 23 shows the typical output drive characteristics of FLEX 10KE devices with 3.3-V and 2.5-V V_{CCIO}. The output driver is compliant to the 3.3-V *PCI Local Bus Specification*, *Revision 2.2* (when VCCIO pins are connected to 3.3 V). FLEX 10KE devices with a -1 speed grade also comply with the drive strength requirements of the *PCI Local Bus Specification*, *Revision 2.2* (when VCCINT pins are powered with a minimum supply of 2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices can be used in open 5.0-V PCI systems.

Timing simulation and delay prediction are available with the Altera Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis.

Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the FLEX 10KE device.

Figures 25 through 28 show the delays that correspond to various paths and functions within the LE, IOE, EAB, and bidirectional timing models.

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		6.4		7.6		8.8	ns
t _{EABRCOMB}	6.4		7.6		8.8		ns
t _{EABRCREG}	4.4		5.1		6.0		ns
t _{EABWP}	2.5		2.9		3.3		ns
t _{EABWCOMB}	6.0		7.0		8.0		ns
t _{EABWCREG}	6.8		7.8		9.0		ns
t _{EABDD}		5.7		6.7		7.7	ns
t _{EABDATACO}		0.8		0.9		1.1	ns
t _{EABDATASU}	1.5		1.7		2.0		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	1.3		1.4		1.7		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.5		1.7		2.0		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.0		3.6		4.3		ns
t _{EABWAH}	0.5		0.5		0.4		ns
t _{EABWO}		5.1		6.0		6.8	ns

Table 38. EPF10K	50E Device	LE Timing N	licroparame	eters (Part 2	? of 2) No	te (1)	
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _H	0.9		1.0		1.4		ns
t _{PRE}		0.5		0.6		0.8	ns
t _{CLR}		0.5		0.6		0.8	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns

Table 39. EPF10	1		- I		te (1)	i	
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{IOD}		2.2		2.4		3.3	ns
t _{IOC}		0.3		0.3		0.5	ns
t _{IOCO}		1.0		1.0		1.4	ns
t _{IOCOMB}		0.0		0.0		0.2	ns
t _{IOSU}	1.0		1.2		1.7		ns
t _{IOH}	0.3		0.3		0.5		ns
t _{IOCLR}		0.9		1.0		1.4	ns
t _{OD1}		0.8		0.9		1.2	ns
t _{OD2}		0.3		0.4		0.7	ns
t _{OD3}		3.0		3.5		3.5	ns
t _{XZ}		1.4		1.7		2.3	ns
t _{ZX1}		1.4		1.7		2.3	ns
t _{ZX2}		0.9		1.2		1.8	ns
t _{ZX3}		3.6		4.3		4.6	ns
t _{INREG}		4.9		5.8		7.8	ns
t _{IOFD}		2.8		3.3		4.5	ns
t _{INCOMB}		2.8		3.3		4.5	ns

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.0		2.7	ns
t _{EABDATA1}		0.6		0.7		0.9	ns
t _{EABWE1}		1.1		1.3		1.8	ns
t _{EABWE2}		0.4		0.4		0.6	ns
t _{EABRE1}		0.8		0.9		1.2	ns
t _{EABRE2}		0.4		0.4		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.3		0.5	ns
t _{EABBYPASS}		0.5		0.6		0.8	ns
t _{EABSU}	0.9		1.0		1.4		ns
t _{EABH}	0.4		0.4		0.6		ns
t _{EABCLR}	0.3		0.3		0.5		ns
t _{AA}		3.2		3.8		5.1	ns
t _{WP}	2.5		2.9		3.9		ns
t _{RP}	0.9		1.1		1.5		ns
t _{WDSU}	0.9		1.0		1.4		ns
t _{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.7		2.0		2.7		ns
t _{WAH}	1.8		2.1		2.9		ns
t _{RASU}	3.1		3.7		5.0		ns
t _{RAH}	0.2		0.2		0.3		ns
t _{WO}		2.5		2.9		3.9	ns
t _{DD}		2.5		2.9		3.9	ns
t _{EABOUT}		0.5		0.6		0.8	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.5		2.9		3.9		ns

Table 58. EPF10K	130E Extern	al Bidirectio	onal Timing	Parameters	Notes ((1), (2)	
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	2.2		2.4		3.2		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	2.8		3.0		-		ns
t _{INHBIDIR} (4)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (3)	2.0	5.0	2.0	7.0	2.0	9.2	ns
t _{XZBIDIR} (3)		5.6		8.1		10.8	ns
t _{ZXBIDIR} (3)		5.6		8.1		10.8	ns
t _{OUTCOBIDIR} (4)	0.5	4.0	0.5	6.0	-	-	ns
t _{XZBIDIR} (4)		4.6		7.1		-	ns
t _{ZXBIDIR} (4)		4.6		7.1		-	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 59 through 65 show EPF10K200E device internal and external timing parameters.

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	d Grade	Unit
	Min	Мах	Min	Max	Min	Max	
t _{LUT}		0.7		0.8		1.2	ns
t _{CLUT}		0.4		0.5		0.6	ns
t _{RLUT}		0.6		0.7		0.9	ns
t _{PACKED}		0.3		0.5		0.7	ns
t _{EN}		0.4		0.5		0.6	ns
t _{CICO}		0.2		0.2		0.3	ns
t _{CGEN}		0.4		0.4		0.6	ns
t _{CGENR}		0.2		0.2		0.3	ns
t _{CASC}		0.7		0.8		1.2	ns
t _C		0.5		0.6		0.8	ns
t _{CO}		0.5		0.6		0.8	ns
tсомв		0.4		0.6		0.8	ns
t _{su}	0.4		0.6		0.7		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Мах	
t _{EABWCOMB}	6.7		8.1		10.7		ns
t _{EABWCREG}	6.6		8.0		10.6		ns
t _{EABDD}		4.0		5.1		6.7	ns
t _{EABDATACO}		0.8		1.0		1.3	ns
t _{EABDATASU}	1.3		1.6		2.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	0.9		1.1		1.5		ns
t _{EABWEH}	0.4		0.5		0.6		ns
t _{EABWDSU}	1.5		1.8		2.4		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.0		3.6		4.7		ns
t _{EABWAH}	0.4		0.5		0.7		ns
t _{EABWO}		3.4		4.4		5.8	ns

 Table 63. EPF10K200E Device Interconnect Timing Microparameters
 Note (1)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		4.2		4.6		5.7	ns
t _{DIN2LE}		1.7		1.7		2.0	ns
t _{DIN2DATA}		1.9		2.1		3.0	ns
t _{DCLK2IOE}		2.5		2.9		4.0	ns
t _{DCLK2LE}		1.7		1.7		2.0	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		2.3		2.6		3.6	ns
t _{SAMECOLUMN}		2.5		2.7		4.1	ns
t _{DIFFROW}		4.8		5.3		7.7	ns
t _{TWOROWS}		7.1		7.9		11.3	ns
t _{LEPERIPH}		7.0		7.6		9.0	ns
t _{LABCARRY}		0.1		0.1		0.2	ns
t _{LABCASC}		0.9		1.0		1.4	ns

Table 77. EPF10K200S Device Interconnect Timing Microparameters (Part 2 of 2) Note (1)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Мах	Min	Max	Min	Max	
t _{LABCASC}		0.5		1.0		1.4	ns

 Table 78. EPF10K200S External Timing Parameters
 Note (1)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DRR}		9.0		12.0		16.0	ns
t _{INSU} (2)	3.1		3.7		4.7		ns
t _{INH} (2)	0.0		0.0		0.0		ns
t _{оитсо} (2)	2.0	3.7	2.0	4.4	2.0	6.3	ns
t _{INSU} (3)	2.1		2.7		-		ns
t _{INH} (3)	0.0		0.0		-		ns
t оитсо ⁽³⁾	0.5	2.7	0.5	3.4	-	-	ns
t _{PCISU}	3.0		4.2		-		ns
t _{PCIH}	0.0		0.0		-		ns
t _{PCICO}	2.0	6.0	2.0	8.9	-	_	ns

Table 79. EPF10K200S External Bidirectional Timing Parameters Note (1) Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit Min Max Min Max Min Max t_{INSUBIDIR} (2) 2.3 3.4 4.4 ns 0.0 t_{INHBIDIR} (2) 0.0 0.0 ns tINSUBIDIR (3) 3.3 4.4 _ ns t_{INHBIDIR} (3) 0.0 0.0 _ ns toutcobidir (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns t_{XZBIDIR} (2) 6.9 7.6 9.2 ns t_{ZXBIDIR} (2) 5.9 6.6 _ ns toutcobidir (3) 0.5 2.7 0.5 3.4 _ _ ns t_{XZBIDIR} (3) 6.9 7.6 9.2 ns t_{ZXBIDIR} (3) 6.6 5.9 _ ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(3) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Altera Corporation

Additionally, the Altera software offers several features that help plan for future device migration by preventing the use of conflicting I/O pins.

Table 81. I/O Counts for FLEX 10KA & FLEX 10KE Devices						
FLEX 10	KA	FLEX 10	KE			
Device	I/O Count	Device	I/O Count			
EPF10K30AF256	191	EPF10K30EF256	176			
EPF10K30AF484	246	EPF10K30EF484	220			
EPF10K50VB356	274	EPF10K50SB356	220			
EPF10K50VF484	291	EPF10K50EF484	254			
EPF10K50VF484	291	EPF10K50SF484	254			
EPF10K100AF484	369	EPF10K100EF484	338			

Configuration Schemes

The configuration data for a FLEX 10KE device can be loaded with one of five configuration schemes (see Table 82), chosen on the basis of the target application. An EPC1, EPC2, or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of a FLEX 10KE device, allowing automatic configuration on system power-up.

Multiple FLEX 10KE devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Additional FLEX 10K, FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be configured in the same serial chain.

Table 82. Data Sources for FLEX 10KE Configuration				
Configuration Scheme	Data Source			
Configuration device	EPC1, EPC2, or EPC16 configuration device			
Passive serial (PS)	BitBlaster, ByteBlasterMV, or MasterBlaster download cables, or serial data source			
Passive parallel asynchronous (PPA)	Parallel data source			
Passive parallel synchronous (PPS)	Parallel data source			
JTAG	BitBlaster or ByteBlasterMV download cables, or microprocessor with a Jam STAPL file or JBC file			