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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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■ Software design support and automatic place-and-route provided by 
Altera’s development systems for Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800

■ Flexible package options
– Available in a variety of packages with 144 to 672 pins, including 

the innovative FineLine BGATM packages (see Tables 3 and 4)
– SameFrameTM pin-out compatibility between FLEX 10KA and 

FLEX 10KE devices across a range of device densities and pin 
counts

■ Additional design entry and simulation support provided by EDIF 
2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), 
DesignWare components, Verilog HDL, VHDL, and other interfaces 
to popular EDA tools from manufacturers such as Cadence, 
Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, 
VeriBest, and Viewlogic 

Notes:
(1) FLEX 10KE device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat 

pack (RQFP), pin-grid array (PGA), and ball-grid array (BGA) packages.
(2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When 

planning device migration, use the I/O pins that are common to all devices. 
(3) This option is supported with a 484-pin FineLine BGA package. By using SameFrame pin migration, all 

FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin, 484-pin, and 
672-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration 
is set.

Table 3. FLEX 10KE Package Options & I/O Pin Count  Notes (1), (2)

Device 144-Pin 
TQFP

208-Pin 
PQFP

240-Pin
PQFP
RQFP

256-Pin
FineLine 

BGA

356-Pin 
BGA

484-Pin
FineLine 

BGA

599-Pin 
PGA

600-Pin 
BGA

672-Pin
FineLine 

BGA

EPF10K30E 102 147 176 220 220 (3)

EPF10K50E 102 147 189 191 254 254 (3)

EPF10K50S 102 147 189 191 220 254 254 (3)

EPF10K100E 147 189 191 274 338 338 (3)

EPF10K130E 186 274 369 424 413

EPF10K200E 470 470 470

EPF10K200S 182 274 369 470 470 470
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Notes:
(1) This application uses combinatorial inputs and outputs.
(2) This application uses registered inputs and outputs.

Table 6 shows FLEX 10KE performance for more complex designs. These 
designs are available as Altera MegaCore® functions.

Note:
(1) These values are for calculation time. Calculation time = number of clocks required/fmax. Number of clocks 

required = ceiling [log 2 (points)/2] × [points +14 + ceiling]

Table 5. FLEX 10KE Performance

Application Resources Used Performance Units

LEs EABs -1 Speed Grade -2 Speed Grade -3 Speed Grade

16-bit loadable counter 16 0 285 250 200 MHz

16-bit accumulator 16 0 285 250 200 MHz

16-to-1 multiplexer (1) 10 0 3.5 4.9 7.0 ns

16-bit multiplier with 3-stage 
pipeline (2)

592 0 156 131 93 MHz

256 × 16 RAM read cycle 
speed (2)

0 1 196 154 118 MHz

256 × 16 RAM write cycle 
speed (2)

0 1 185 143 106 MHz

Table 6. FLEX 10KE Performance for Complex Designs

Application LEs Used Performance Units

-1 Speed Grade -2 Speed Grade -3 Speed Grade

8-bit, 16-tap parallel finite impulse 
response (FIR) filter

597 192 156 116 MSPS

8-bit, 512-point fast Fourier 
transform (FFT) function

1,854 23.4 28.7 38.9 µs (1)

113 92 68 MHz

a16450 universal asynchronous 
receiver/transmitter (UART)

342 36 28 20.5 MHz
Altera Corporation 5 
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Similar to the FLEX 10KE architecture, embedded gate arrays are the 
fastest-growing segment of the gate array market. As with standard gate 
arrays, embedded gate arrays implement general logic in a conventional 
“sea-of-gates” architecture. Additionally, embedded gate arrays have 
dedicated die areas for implementing large, specialized functions. By 
embedding functions in silicon, embedded gate arrays reduce die area 
and increase speed when compared to standard gate arrays. While 
embedded megafunctions typically cannot be customized, FLEX 10KE 
devices are programmable, providing the designer with full control over 
embedded megafunctions and general logic, while facilitating iterative 
design changes during debugging.

Each FLEX 10KE device contains an embedded array and a logic array. 
The embedded array is used to implement a variety of memory functions 
or complex logic functions, such as digital signal processing (DSP), wide 
data-path manipulation, microcontroller applications, and data-
transformation functions. The logic array performs the same function as 
the sea-of-gates in the gate array and is used to implement general logic 
such as counters, adders, state machines, and multiplexers. The 
combination of embedded and logic arrays provides the high 
performance and high density of embedded gate arrays, enabling 
designers to implement an entire system on a single device.

FLEX 10KE devices are configured at system power-up with data stored 
in an Altera serial configuration device or provided by a system 
controller. Altera offers the EPC1, EPC2, and EPC16 configuration 
devices, which configure FLEX 10KE devices via a serial data stream. 
Configuration data can also be downloaded from system RAM or via the 
Altera BitBlasterTM, ByteBlasterMVTM, or MasterBlaster download cables. 
After a FLEX 10KE device has been configured, it can be reconfigured 
in-circuit by resetting the device and loading new data. Because 
reconfiguration requires less than 85 ms, real-time changes can be made 
during system operation.

FLEX 10KE devices contain an interface that permits microprocessors to 
configure FLEX 10KE devices serially or in-parallel, and synchronously or 
asynchronously. The interface also enables microprocessors to treat a 
FLEX 10KE device as memory and configure it by writing to a virtual 
memory location, making it easy to reconfigure the device.
6 Altera Corporation
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EABs provide flexible options for driving and controlling clock signals. 
Different clocks and clock enables can be used for reading and writing to 
the EAB. Registers can be independently inserted on the data input, EAB 
output, write address, write enable signals, read address, and read enable 
signals. The global signals and the EAB local interconnect can drive write 
enable, read enable, and clock enable signals. The global signals, 
dedicated clock pins, and EAB local interconnect can drive the EAB clock 
signals. Because the LEs drive the EAB local interconnect, the LEs can 
control write enable, read enable, clear, clock, and clock enable signals. 

An EAB is fed by a row interconnect and can drive out to row and column 
interconnects. Each EAB output can drive up to two row channels and up 
to two column channels; the unused row channel can be driven by other 
LEs. This feature increases the routing resources available for EAB 
outputs (see Figures 2 and 4). The column interconnect, which is adjacent 
to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure to the FLEX 10KE architecture, facilitating 
efficient routing with optimum device utilization and high performance 
(see Figure 7). 
Altera Corporation 15 
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Cascade Chain

With the cascade chain, the FLEX 10KE architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE 
provides four more inputs to the effective width of a function. Cascade 
chain logic can be created automatically by the Altera Compiler during 
design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EPF10K50E device, the 
cascade chain stops at the eighteenth LAB and a new one begins at the 
nineteenth LAB). This break is due to the EAB’s placement in the middle 
of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to 
form functions with a wide fan-in. These examples show functions of 
4n variables implemented with n LEs. The LE delay is 0.9 ns; the cascade 
chain delay is 0.6 ns. With the cascade chain, 2.7 ns are needed to decode 
a 16-bit address.

Figure 10. FLEX 10KE Cascade Chain Operation
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Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but 
supports a synchronous clear instead of the up/down control. The clear 
function is substituted for the cascade-in signal in the up/down counter 
mode. Use 2 three-input LUTs: one generates the counter data, and the 
other generates the fast carry bit. Synchronous loading is provided by a 
2-to-1 multiplexer. The output of this multiplexer is AND ed with a 
synchronous clear signal. 

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer. 

Clear & Preset Logic Control

Logic for the programmable register’s clear and preset functions is 
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The 
clear and preset control structure of the LE asynchronously loads signals 
into a register. Either LABCTRL1 or LABCTRL2 can control the 
asynchronous clear. Alternatively, the register can be set up so that 
LABCTRL1 implements an asynchronous load. The data to be loaded is 
driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the 
register.

During compilation, the Altera Compiler automatically selects the best 
control signal implementation. Because the clear and preset functions are 
active-low, the Compiler automatically assigns a logic high to an unused 
clear or preset. 

The clear and preset logic is implemented in one of the following six 
modes chosen during design entry: 

■ Asynchronous clear
■ Asynchronous preset
■ Asynchronous clear and preset
■ Asynchronous load with clear
■ Asynchronous load with preset
■ Asynchronous load without clear or preset
24 Altera Corporation
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On all FLEX 10KE devices (except EPF10K50E and EPF10K200E devices), 
the input path from the I/O pad to the FastTrack Interconnect has a 
programmable delay element that can be used to guarantee a zero hold 
time. EPF10K50S and EPF10K200S devices also support this feature. 
Depending on the placement of the IOE relative to what it is driving, the 
designer may choose to turn on the programmable delay to ensure a zero 
hold time or turn it off to minimize setup time. This feature is used to 
reduce setup time for complex pin-to-register paths (e.g., PCI designs).

Each IOE selects the clock, clear, clock enable, and output enable controls 
from a network of I/O control signals called the peripheral control bus. 
The peripheral control bus uses high-speed drivers to minimize signal 
skew across the device and provides up to 12 peripheral control signals 
that can be allocated as follows:

■ Up to eight output enable signals
■ Up to six clock enable signals
■ Up to two clock signals
■ Up to two clear signals

If more than six clock enable or eight output enable signals are required, 
each IOE on the device can be controlled by clock enable and output 
enable signals driven by specific LEs. In addition to the two clock signals 
available on the peripheral control bus, each IOE can use one of two 
dedicated clock pins. Each peripheral control signal can be driven by any 
of the dedicated input pins or the first LE of each LAB in a particular row. 
In addition, a LE in a different row can drive a column interconnect, which 
causes a row interconnect to drive the peripheral control signal. The chip-
wide reset signal resets all IOE registers, overriding any other control 
signals.

When a dedicated clock pin drives IOE registers, it can be inverted for all 
IOEs in the device. All IOEs must use the same sense of the clock. For 
example, if any IOE uses the inverted clock, all IOEs must use the inverted 
clock and no IOE can use the non-inverted clock. However, LEs can still 
use the true or complement of the clock on a LAB-by-LAB basis. 

The incoming signal may be inverted at the dedicated clock pin and will 
drive all IOEs. For the true and complement of a clock to be used to drive 
IOEs, drive it into both global clock pins. One global clock pin will supply 
the true, and the other will supply the complement. 

When the true and complement of a dedicated input drives IOE clocks, 
two signals on the peripheral control bus are consumed, one for each 
sense of the clock.
32 Altera Corporation
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ClockLock & 
ClockBoost 
Features

To support high-speed designs, FLEX 10KE devices offer optional 
ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) 
used to increase design speed and reduce resource usage. The ClockLock 
circuitry uses a synchronizing PLL that reduces the clock delay and skew 
within a device. This reduction minimizes clock-to-output and setup 
times while maintaining zero hold times. The ClockBoost circuitry, which 
provides a clock multiplier, allows the designer to enhance device area 
efficiency by resource sharing within the device. The ClockBoost feature 
allows the designer to distribute a low-speed clock and multiply that clock 
on-device. Combined, the ClockLock and ClockBoost features provide 
significant improvements in system performance and bandwidth.

All FLEX 10KE devices, except EPF10K50E and EPF10K200E devices, 
support ClockLock and ClockBoost circuitry. EPF10K50S and 
EPF10K200S devices support this circuitry. Devices that support Clock-
Lock and ClockBoost circuitry are distinguished with an “X” suffix in the 
ordering code; for instance, the EPF10K200SFC672-1X device supports 
this circuit.

The ClockLock and ClockBoost features in FLEX 10KE devices are 
enabled through the Altera software. External devices are not required to 
use these features. The output of the ClockLock and ClockBoost circuits is 
not available at any of the device pins.

The ClockLock and ClockBoost circuitry locks onto the rising edge of the 
incoming clock. The circuit output can drive the clock inputs of registers 
only; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and 
ClockBoost circuitry. When the dedicated clock pin is driving the 
ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

For designs that require both a multiplied and non-multiplied clock, the 
clock trace on the board can be connected to the GCLK1 pin. In the 
Altera software, the GCLK1 pin can feed both the ClockLock and 
ClockBoost circuitry in the FLEX 10KE device. However, when both 
circuits are used, the other clock pin cannot be used.
38 Altera Corporation
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ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the 
incoming clock must meet certain requirements. If these specifications are 
not met, the circuitry may not lock onto the incoming clock, which 
generates an erroneous clock within the device. The clock generated by 
the ClockLock and ClockBoost circuitry must also meet certain 
specifications. If the incoming clock meets these requirements during 
configuration, the ClockLock and ClockBoost circuitry will lock onto the 
clock during configuration. The circuit will be ready for use immediately 
after configuration. Figure 19 shows the incoming and generated clock 
specifications.

Figure 19. Specifications for Incoming & Generated Clocks

The tI parameter refers to the nominal input clock period; the tO parameter refers to the 
nominal output clock period.
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Figure 23. Output Drive Characteristics of FLEX 10KE Devices Note (1)

Note:
(1) These are transient (AC) currents.

Timing Model The continuous, high-performance FastTrack Interconnect routing 
resources ensure predictable performance and accurate simulation and 
timing analysis. This predictable performance contrasts with that of 
FPGAs, which use a segmented connection scheme and therefore have 
unpredictable performance. 

Device performance can be estimated by following the signal path from a 
source, through the interconnect, to the destination. For example, the 
registered performance between two LEs on the same row can be 
calculated by adding the following parameters: 

■ LE register clock-to-output delay (tCO)
■ Interconnect delay (tSAMEROW)
■ LE look-up table delay (tLUT)
■ LE register setup time (tSU)

The routing delay depends on the placement of the source and destination 
LEs. A more complex registered path may involve multiple combinatorial 
LEs between the source and destination LEs. 
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Table 27. EAB Timing Macroparameters  Note (1), (6)

Symbol Parameter Conditions

tEABAA EAB address access delay

tEABRCCOMB EAB asynchronous read cycle time

tEABRCREG EAB synchronous read cycle time

tEABWP EAB write pulse width

tEABWCCOMB EAB asynchronous write cycle time

tEABWCREG EAB synchronous write cycle time

tEABDD EAB data-in to data-out valid delay

tEABDATACO EAB clock-to-output delay when using output registers

tEABDATASU EAB data/address setup time before clock when using input register

tEABDATAH EAB data/address hold time after clock when using input register

tEABWESU EAB WE setup time before clock when using input register

tEABWEH EAB WE hold time after clock when using input register

tEABWDSU EAB data setup time before falling edge of write pulse when not using input 
registers

tEABWDH EAB data hold time after falling edge of write pulse when not using input 
registers

tEABWASU EAB address setup time before rising edge of write pulse when not using 
input registers

tEABWAH EAB address hold time after falling edge of write pulse when not using input 
registers

tEABWO EAB write enable to data output valid delay
Altera Corporation 59 
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Table 28. Interconnect Timing Microparameters Note (1)

Symbol Parameter Conditions

tDIN2IOE Delay from dedicated input pin to IOE control input (7)

tDIN2LE Delay from dedicated input pin to LE or EAB control input (7)

tDCLK2IOE Delay from dedicated clock pin to IOE clock (7)

tDCLK2LE Delay from dedicated clock pin to LE or EAB clock (7)

tDIN2DATA Delay from dedicated input or clock to LE or EAB data (7)

tSAMELAB Routing delay for an LE driving another LE in the same LAB

tSAMEROW Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the 
same row

(7)

tSAMECOLUMN Routing delay for an LE driving an IOE in the same column (7)

tDIFFROW Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different 
row

(7)

tTWOROWS Routing delay for a row IOE or EAB driving an LE or EAB in a different row (7)

tLEPERIPH Routing delay for an LE driving a control signal of an IOE via the peripheral 
control bus

(7)

tLABCARRY Routing delay for the carry-out signal of an LE driving the carry-in signal of a 
different LE in a different LAB

tLABCASC Routing delay for the cascade-out signal of an LE driving the cascade-in 
signal of a different LE in a different LAB

Table 29. External Timing Parameters

Symbol Parameter Conditions

tDRR Register-to-register delay via four LEs, three row interconnects, and four local 
interconnects

(8)

tINSU Setup time with global clock at IOE register (9)

tINH Hold time with global clock at IOE register (9)

tOUTCO Clock-to-output delay with global clock at IOE register (9)

tPCISU Setup time with global clock for registers used in PCI designs (9),(10)

tPCIH Hold time with global clock for registers used in PCI designs (9),(10)

tPCICO Clock-to-output delay with global clock for registers used in PCI designs (9),(10)
60 Altera Corporation
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be 

measured explicitly.
(2) Operating conditions: VCCIO = 3.3 V ±10% for commercial or industrial use.
(3) Operating conditions: VCCIO = 2.5 V ±5% for commercial or industrial use in EPF10K30E, EPF10K50S, 

EPF10K100E, EPF10K130E, and EPF10K200S devices.
(4) Operating conditions: VCCIO = 3.3 V.
(5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. 
(6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; 

these parameters are calculated by summing selected microparameters. 
(7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 

analysis are required to determine actual worst-case performance.
(8) Contact Altera Applications for test circuit specifications and test conditions.
(9) This timing parameter is sample-tested only.
(10) This parameter is measured with the measurement and test conditions, including load, specified in the PCI Local 

Bus Specification, revision 2.2.

Table 30. External Bidirectional Timing Parameters Note (9)

Symbol Parameter Conditions

tINSUBIDIR Setup time for bi-directional pins with global clock at same-row or same-
column LE register

tINHBIDIR Hold time for bidirectional pins with global clock at same-row or same-column 
LE register

tINH Hold time with global clock at IOE register

tOUTCOBIDIR Clock-to-output delay for bidirectional pins with global clock at IOE register C1 = 35 pF

tXZBIDIR Synchronous IOE output buffer disable delay C1 = 35 pF

tZXBIDIR Synchronous IOE output buffer enable delay, slow slew rate= off C1 = 35 pF
Altera Corporation 61 
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Figures 29 and 30 show the asynchronous and synchronous timing 
waveforms, respectively, or the EAB macroparameters in Tables 26 
and 27.

Figure 29. EAB Asynchronous Timing Waveforms
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Table 33. EPF10K30E Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.7 2.0 2.3 ns

tEABDATA1 0.6 0.7 0.8 ns

tEABWE1 1.1 1.3 1.4 ns

tEABWE2 0.4 0.4 0.5 ns

tEABRE1 0.8 0.9 1.0 ns

tEABRE2 0.4 0.4 0.5 ns

tEABCLK 0.0 0.0  0.0 ns

tEABCO 0.3 0.3 0.4 ns

tEABBYPASS 0.5 0.6 0.7 ns

tEABSU 0.9 1.0 1.2 ns

tEABH 0.4 0.4 0.5 ns

tEABCLR 0.3 0.3 0.3 ns

tAA 3.2 3.8 4.4 ns

tWP 2.5 2.9 3.3 ns

tRP 0.9 1.1 1.2 ns

tWDSU 0.9 1.0 1.1 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.7 2.0 2.3 ns

tWAH 1.8 2.1 2.4 ns

tRASU 3.1 3.7 4.2 ns

tRAH 0.2 0.2 0.2 ns

tWO 2.5 2.9 3.3 ns

tDD 2.5 2.9 3.3 ns

tEABOUT 0.5 0.6 0.7 ns

tEABCH 1.5 2.0 2.3 ns

tEABCL 2.5 2.9 3.3 ns
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Table 34. EPF10K30E Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 6.4 7.6 8.8 ns

tEABRCOMB 6.4 7.6 8.8 ns

tEABRCREG 4.4 5.1 6.0 ns

tEABWP 2.5 2.9 3.3 ns

tEABWCOMB 6.0 7.0 8.0 ns

tEABWCREG 6.8 7.8 9.0 ns

tEABDD 5.7 6.7 7.7 ns

tEABDATACO 0.8 0.9 1.1 ns

tEABDATASU 1.5 1.7 2.0 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.3 1.4 1.7 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.5 1.7 2.0 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.3 ns

tEABWAH 0.5 0.5 0.4 ns

tEABWO 5.1 6.0 6.8 ns
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Tables 52 through 58 show EPF10K130E device internal and external 
timing parameters.   

Table 52. EPF10K130E Device LE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.6 0.9 1.3 ns

tCLUT 0.6 0.8 1.0 ns

tRLUT 0.7 0.9 0.2 ns

tPACKED 0.3 0.5 0.6 ns

tEN 0.2 0.3 0.4 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.6 0.8 ns

tCGENR 0.1 0.1 0.2 ns

tCASC 0.6 0.9 1.2 ns

tC 0.3 0.5 0.6 ns

tCO 0.5 0.7 0.8 ns

tCOMB 0.3 0.5 0.6 ns

tSU 0.5 0.7 0.8 ns

tH 0.6 0.7 1.0 ns

tPRE 0.9 1.2 1.6 ns

tCLR 0.9 1.2 1.6 ns

tCH 1.5 1.5 2.5 ns

tCL 1.5 1.5 2.5 ns

Table 53. EPF10K130E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 1.3 1.5 2.0 ns

tIOC 0.0 0.0 0.0 ns

tIOCO 0.6 0.8 1.0 ns

tIOCOMB 0.6 0.8 1.0 ns

tIOSU 1.0 1.2 1.6 ns

tIOH 0.9 0.9 1.4 ns

tIOCLR 0.6 0.8 1.0 ns

tOD1 2.8 4.1 5.5 ns

tOD2 2.8 4.1 5.5 ns
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tOD3 4.0 5.6 7.5 ns

tXZ 2.8 4.1 5.5 ns

tZX1 2.8 4.1 5.5 ns

tZX2 2.8 4.1 5.5 ns

tZX3 4.0 5.6 7.5 ns

tINREG 2.5 3.0 4.1 ns

tIOFD 0.4 0.5 0.6 ns

tINCOMB 0.4 0.5 0.6 ns

Table 54. EPF10K130E Device EAB Internal Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.5 2.0 2.6 ns

tEABDATA2 0.0 0.0 0.0 ns

tEABWE1 1.5 2.0 2.6 ns

tEABWE2 0.3 0.4 0.5 ns

tEABRE1 0.3 0.4 0.5 ns

tEABRE2 0.0 0.0 0.0 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.4 0.5 ns

tEABBYPASS 0.1 0.1 0.2 ns

tEABSU 0.8 1.0 1.4 ns

tEABH 0.1 0.2 0.2 ns

tEABCLR 0.3 0.4 0.5 ns

tAA 4.0 5.0 6.6 ns

tWP 2.7 3.5 4.7 ns

tRP 1.0 1.3 1.7 ns

tWDSU 1.0 1.3 1.7 ns

tWDH 0.2 0.2 0.3 ns

tWASU 1.6 2.1 2.8 ns

tWAH 1.6 2.1 2.8 ns

tRASU 3.0 3.9 5.2 ns

tRAH 0.1 0.1 0.2 ns

tWO 1.5 2.0 2.6 ns

Table 53. EPF10K130E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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tH 0.9 1.1 1.5 ns

tPRE 0.5 0.6 0.8 ns

tCLR 0.5 0.6 0.8 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 60. EPF10K200E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 1.6 1.9 2.6 ns

tIOC 0.3 0.3 0.5 ns

tIOCO 1.6 1.9 2.6 ns

tIOCOMB 0.5 0.6 0.8 ns

tIOSU 0.8 0.9 1.2 ns

tIOH 0.7 0.8 1.1 ns

tIOCLR 0.2 0.2 0.3 ns

tOD1 0.6 0.7 0.9 ns

tOD2 0.1 0.2 0.7 ns

tOD3 2.5 3.0 3.9 ns

tXZ 4.4 5.3 7.1 ns

tZX1 4.4 5.3 7.1 ns

tZX2 3.9 4.8 6.9 ns

tZX3 6.3 7.6 10.1 ns

tINREG 4.8 5.7 7.7 ns

tIOFD 1.5 1.8 2.4 ns

tINCOMB 1.5 1.8 2.4 ns

Table 59. EPF10K200E Device LE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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tZX2 4.5 4.8 6.6 ns

tZX3 6.6 7.6 10.1 ns

tINREG 3.7 5.7 7.7 ns

tIOFD 1.8 3.4 4.0 ns

tINCOMB 1.8 3.4 4.0 ns

Table 75. EPF10K200S Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.8 2.4 3.2 ns

tEABDATA1 0.4 0.5 0.6 ns

tEABWE1 1.1 1.7 2.3 ns

tEABWE2 0.0 0.0 0.0 ns

tEABRE1 0 0 0 ns

tEABRE2 0.4 0.5 0.6 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.8 0.9 1.2 ns

tEABBYPASS 0.0 0.1 0.1 ns

tEABSU 0.7 1.1 1.5 ns

tEABH 0.4 0.5 0.6 ns

tEABCLR 0.8 0.9 1.2 ns

tAA 2.1 3.7 4.9 ns

tWP 2.1 4.0 5.3 ns

tRP 1.1 1.1 1.5 ns

tWDSU 0.5 1.1 1.5 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.1 1.6 2.1 ns

tWAH 1.6 2.5 3.3 ns

tRASU 1.6 2.6 3.5 ns

tRAH 0.1 0.1 0.2 ns

tWO 2.0 2.4 3.2 ns

tDD 2.0 2.4 3.2 ns

tEABOUT 0.0 0.1 0.1 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.1 2.8 3.8 ns

Table 74. EPF10K200S Device IOE Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max


