Welcome to **E-XFL.COM** ### Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 1248 | | Number of Logic Elements/Cells | 9984 | | Total RAM Bits | 98304 | | Number of I/O | 470 | | Number of Gates | 513000 | | Voltage - Supply | 2.3V ~ 2.7V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 672-BBGA | | Supplier Device Package | 672-FBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k200ef672-1 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 4. FLEX | (10KE Pa | ckage Sizes | | | | | | | | |--|---------------------|-----------------|-------------------------|----------------------------|--------------------|----------------------------|----------------|--------------------|----------------------------| | Device | 144-
Pin
TQFP | 208-Pin
PQFP | 240-Pin
PQFP
RQFP | 256-Pin
FineLine
BGA | 356-
Pin
BGA | 484-Pin
FineLine
BGA | 599-Pin
PGA | 600-
Pin
BGA | 672-Pin
FineLine
BGA | | Pitch (mm) | 0.50 | 0.50 | 0.50 | 1.0 | 1.27 | 1.0 | - | 1.27 | 1.0 | | Area (mm²) | 484 | 936 | 1,197 | 289 | 1,225 | 529 | 3,904 | 2,025 | 729 | | $\begin{array}{c} \text{Length} \times \text{width} \\ \text{(mm} \times \text{mm)} \end{array}$ | 22 × 22 | 30.6 × 30.6 | 34.6 × 34.6 | 17×17 | 35×35 | 23 × 23 | 62.5 × 62.5 | 45×45 | 27 × 27 | # General Description Altera FLEX 10KE devices are enhanced versions of FLEX 10K devices. Based on reconfigurable CMOS SRAM elements, the FLEX architecture incorporates all features necessary to implement common gate array megafunctions. With up to 200,000 typical gates, FLEX 10KE devices provide the density, speed, and features to integrate entire systems, including multiple 32-bit buses, into a single device. The ability to reconfigure FLEX 10KE devices enables 100% testing prior to shipment and allows the designer to focus on simulation and design verification. FLEX 10KE reconfigurability eliminates inventory management for gate array designs and generation of test vectors for fault coverage. Table 5 shows FLEX 10KE performance for some common designs. All performance values were obtained with Synopsys DesignWare or LPM functions. Special design techniques are not required to implement the applications; the designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file. Figure 7. FLEX 10KE LAB ### Notes: - (1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26. - (2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 34. Figure 9 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal. Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder) #### Normal Mode The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Altera Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time. The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a three-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a four-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa. #### Arithmetic Mode The arithmetic mode offers 2 three-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 11 on page 22, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. ### **Up/Down Counter Mode** The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources. LE 1 LE 2 LE 8 To LAB Local Interconnect Row Channels At each intersection, six row channels can drive column channels. Each LE can drive two row channels. Each LE can switch interconnect access with an LE in the adjacent LAB. From Adjacent LAB To Adjacent LAB Figure 13. FLEX 10KE LAB Connections to Row & Column Interconnect 28 Altera Corporation To Other Rows On all FLEX 10KE devices (except EPF10K50E and EPF10K200E devices), the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. EPF10K50S and EPF10K200S devices also support this feature. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time or turn it off to minimize setup time. This feature is used to reduce setup time for complex pin-to-register paths (e.g., PCI designs). Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across the device and provides up to 12 peripheral control signals that can be allocated as follows: - Up to eight output enable signals - Up to six clock enable signals - Up to two clock signals - Up to two clear signals If more than six clock enable or eight output enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, a LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chipwide reset signal resets all IOE registers, overriding any other control signals. When a dedicated clock pin drives IOE registers, it can be inverted for all IOEs in the device. All IOEs must use the same sense of the clock. For example, if any IOE uses the inverted clock, all IOEs must use the inverted clock and no IOE can use the non-inverted clock. However, LEs can still use the true or complement of the clock on a LAB-by-LAB basis. The incoming signal may be inverted at the dedicated clock pin and will drive all IOEs. For the true and complement of a clock to be used to drive IOEs, drive it into both global clock pins. One global clock pin will supply the true, and the other will supply the complement. When the true and complement of a dedicated input drives IOE clocks, two signals on the peripheral control bus are consumed, one for each sense of the clock. ### SameFrame Pin-Outs FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K30E device in a 256-pin FineLine BGA package to an EPF10K200S device in a 672-pin FineLine BGA package. The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 18). Figure 18. SameFrame Pin-Out Example 256-Pin FineLine BGA Packag (Reduced I/O Count or Logic Reguirements) 672-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements) Tables 12 and 13 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively. | Table 12. | . ClockLock & ClockBoost Param | eters for -1 Speed-C | Grade Device | es | | | |-----------------------|---|----------------------|--------------|-----|------------|------| | Symbol | Parameter | Condition | Min | Тур | Max | Unit | | t_R | Input rise time | | | | 5 | ns | | t _F | Input fall time | | | | 5 | ns | | t _{INDUTY} | Input duty cycle | | 40 | | 60 | % | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | | 25 | | 180 | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | | 16 | | 90 | MHz | | f _{CLKDEV} | Input deviation from user specification in the MAX+PLUS II software (1) | | | | 25,000 (2) | PPM | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | | 100 | ps | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (3) | | | | 10 | μs | | t _{JITTER} | Jitter on ClockLock or ClockBoost- | $t_{INCLKSTB} < 100$ | | | 250 | ps | | | generated clock (4) | $t_{INCLKSTB} < 50$ | | | 200 (4) | ps | | t _{OUTDUTY} | Duty cycle for ClockLock or ClockBoost-generated clock | | 40 | 50 | 60 | % | | Symbol | Parameter | Condition | Min | Тур | Max | Unit | |-----------------------|---|----------------------|-----|-----|------------|------| | t_R | Input rise time | | | | 5 | ns | | t _F | Input fall time | | | | 5 | ns | | t _{INDUTY} | Input duty cycle | | 40 | | 60 | % | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | | 25 | | 75 | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | | 16 | | 37.5 | MHz | | f _{CLKDEV} | Input deviation from user specification in the MAX+PLUS II software (1) | | | | 25,000 (2) | PPM | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | | 100 | ps | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (3) | | | | 10 | μs | | t _{JITTER} | Jitter on ClockLock or ClockBoost- | $t_{INCLKSTB} < 100$ | | | 250 | ps | | | generated clock (4) | $t_{INCLKSTB} < 50$ | | | 200 (4) | ps | | t _{OUTDUTY} | Duty cycle for ClockLock or
ClockBoost-generated clock | | 40 | 50 | 60 | % | #### Notes to tables: - (1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter. - (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration. - (4) The t_{IITTER} specification is measured under long-term observation. The maximum value for t_{IITTER} is 200 ps if $t_{INCLKSTB}$ is lower than 50 ps. # I/O Configuration This section discusses the peripheral component interconnect (PCI) pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera software logic options. The MultiVolt I/O interface is controlled by connecting $V_{\rm CCIO}$ to a different voltage than $V_{\rm CCINT}.$ Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu). ### IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All FLEX 10KE devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. FLEX 10KE devices can also be configured using the JTAG pins through the BitBlaster or ByteBlasterMV download cable, or via hardware that uses the JamTM STAPL programming and test language. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. FLEX 10KE devices support the JTAG instructions shown in Table 15. | Table 15. FLEX 10KE | TTAG Instructions | |---------------------|--| | JTAG Instruction | Description | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | BYPASS | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation. | | USERCODE | Selects the user electronic signature (USERCODE) register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO. | | IDCODE | Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO. | | ICR Instructions | These instructions are used when configuring a FLEX 10KE device via JTAG ports with a BitBlaster or ByteBlasterMV download cable, or using a Jam File (.jam) or Jam Byte-Code File (.jbc) via an embedded processor. | The instruction register length of FLEX 10KE devices is 10 bits. The USERCODE register length in FLEX 10KE devices is 32 bits; 7 bits are determined by the user, and 25 bits are pre-determined. Tables 16 and 17 show the boundary-scan register length and device IDCODE information for FLEX 10KE devices. | Table 16. FLEX 10KE Boundary- | Table 16. FLEX 10KE Boundary-Scan Register Length | | | | | | | | |-------------------------------|---|--|--|--|--|--|--|--| | Device | Boundary-Scan Register Length | | | | | | | | | EPF10K30E | 690 | | | | | | | | | EPF10K50E
EPF10K50S | 798 | | | | | | | | | EPF10K100E | 1,050 | | | | | | | | | EPF10K130E | 1,308 | | | | | | | | | EPF10K200E
EPF10K200S | 1,446 | | | | | | | | Figure 28. Synchronous Bidirectional Pin External Timing Model Tables 24 through 28 describe the FLEX 10KE device internal timing parameters. Tables 29 through 30 describe the FLEX 10KE external timing parameters and their symbols. | Symbol | Parameter | Condition | |---------------------|--|-----------| | t _{LUT} | LUT delay for data-in | | | t _{CLUT} | LUT delay for carry-in | | | t _{RLUT} | LUT delay for LE register feedback | | | t _{PACKED} | Data-in to packed register delay | | | t _{EN} | LE register enable delay | | | t _{CICO} | Carry-in to carry-out delay | | | t _{CGEN} | Data-in to carry-out delay | | | t _{CGENR} | LE register feedback to carry-out delay | | | t _{CASC} | Cascade-in to cascade-out delay | | | t_{C} | LE register control signal delay | | | t _{CO} | LE register clock-to-output delay | | | t _{COMB} | Combinatorial delay | | | t _{SU} | LE register setup time for data and enable signals before clock; LE register recovery time after asynchronous clear, preset, or load | | | t_H | LE register hold time for data and enable signals after clock | | | t _{PRE} | LE register preset delay | | | Table 34. EPF10K30E Device EAB Internal Timing Macroparameters Note (1) | | | | | | | | | | | |---|----------------|-----|----------------|-----|----------------|-----|------|--|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{EABAA} | | 6.4 | | 7.6 | | 8.8 | ns | | | | | t _{EABRCOMB} | 6.4 | | 7.6 | | 8.8 | | ns | | | | | t _{EABRCREG} | 4.4 | | 5.1 | | 6.0 | | ns | | | | | t _{EABWP} | 2.5 | | 2.9 | | 3.3 | | ns | | | | | t _{EABWCOMB} | 6.0 | | 7.0 | | 8.0 | | ns | | | | | t _{EABWCREG} | 6.8 | | 7.8 | | 9.0 | | ns | | | | | t _{EABDD} | | 5.7 | | 6.7 | | 7.7 | ns | | | | | t _{EABDATA} CO | | 0.8 | | 0.9 | | 1.1 | ns | | | | | t _{EABDATASU} | 1.5 | | 1.7 | | 2.0 | | ns | | | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | | t _{EABWESU} | 1.3 | | 1.4 | | 1.7 | | ns | | | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | | t _{EABWDSU} | 1.5 | | 1.7 | | 2.0 | | ns | | | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | | t _{EABWASU} | 3.0 | | 3.6 | | 4.3 | | ns | | | | | t _{EABWAH} | 0.5 | | 0.5 | | 0.4 | | ns | | | | | t _{EABWO} | | 5.1 | | 6.0 | | 6.8 | ns | | | | | Symbol | -1 Spee | d Grade | -2 Speed Grade | | -3 Spee | ed Grade | Unit | |--------------------------|---------|---------|----------------|-----|---------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 1.8 | | 2.4 | | 2.9 | ns | | t _{DIN2LE} | | 1.5 | | 1.8 | | 2.4 | ns | | t _{DIN2DATA} | | 1.5 | | 1.8 | | 2.2 | ns | | t _{DCLK2IOE} | | 2.2 | | 2.6 | | 3.0 | ns | | t _{DCLK2LE} | | 1.5 | | 1.8 | | 2.4 | ns | | t _{SAMELAB} | | 0.1 | | 0.2 | | 0.3 | ns | | t _{SAMEROW} | | 2.0 | | 2.4 | | 2.7 | ns | | t _{SAME} COLUMN | | 0.7 | | 1.0 | | 0.8 | ns | | t _{DIFFROW} | | 2.7 | | 3.4 | | 3.5 | ns | | t _{TWOROWS} | | 4.7 | | 5.8 | | 6.2 | ns | | t _{LEPERIPH} | | 2.7 | | 3.4 | | 3.8 | ns | | t _{LABCARRY} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{LABCASC} | | 0.8 | | 0.8 | | 1.1 | ns | | Symbol | -1 Spec | -1 Speed Grade | | -2 Speed Grade | | d Grade | Unit | |------------------------|---------|----------------|-----|----------------|-----|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 8.0 | | 9.5 | | 12.5 | ns | | t _{INSU} (3) | 2.1 | | 2.5 | | 3.9 | | ns | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{оитсо} (3) | 2.0 | 4.9 | 2.0 | 5.9 | 2.0 | 7.6 | ns | | t _{INSU} (4) | 1.1 | | 1.5 | | - | | ns | | t _{INH} (4) | 0.0 | | 0.0 | | - | | ns | | ^t оитсо | 0.5 | 3.9 | 0.5 | 4.9 | - | - | ns | | t _{PCISU} | 3.0 | | 4.2 | | - | | ns | | рсін | 0.0 | | 0.0 | | - | | ns | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 7.5 | _ | _ | ns | | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | d Grade | Unit | |--------------------|----------------|-----|---------|----------------|-----|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{CGENR} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{CASC} | | 0.6 | | 0.9 | | 1.2 | ns | | t _C | | 0.8 | | 1.0 | | 1.4 | ns | | t _{CO} | | 0.6 | | 0.8 | | 1.1 | ns | | t _{COMB} | | 0.4 | | 0.5 | | 0.7 | ns | | t _{SU} | 0.4 | | 0.6 | | 0.7 | | ns | | t _H | 0.5 | | 0.7 | | 0.9 | | ns | | t _{PRE} | | 0.8 | | 1.0 | | 1.4 | ns | | t _{CLR} | | 0.8 | | 1.0 | | 1.4 | ns | | t _{CH} | 1.5 | | 2.0 | | 2.5 | | ns | | t_{CL} | 1.5 | | 2.0 | | 2.5 | | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Spee | ed Grade | Unit | |---------------------|----------------|-----|----------------|-----|---------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 1.7 | | 2.0 | | 2.6 | ns | | t_{IOC} | | 0.0 | | 0.0 | | 0.0 | ns | | t_{IOCO} | | 1.4 | | 1.6 | | 2.1 | ns | | t_{IOCOMB} | | 0.5 | | 0.7 | | 0.9 | ns | | t _{IOSU} | 0.8 | | 1.0 | | 1.3 | | ns | | t_{IOH} | 0.7 | | 0.9 | | 1.2 | | ns | | t _{IOCLR} | | 0.5 | | 0.7 | | 0.9 | ns | | t_{OD1} | | 3.0 | | 4.2 | | 5.6 | ns | | t_{OD2} | | 3.0 | | 4.2 | | 5.6 | ns | | t_{OD3} | | 4.0 | | 5.5 | | 7.3 | ns | | t_{XZ} | | 3.5 | | 4.6 | | 6.1 | ns | | t _{ZX1} | | 3.5 | | 4.6 | | 6.1 | ns | | t_{ZX2} | | 3.5 | - | 4.6 | - | 6.1 | ns | | t_{ZX3} | | 4.5 | - | 5.9 | - | 7.8 | ns | | t _{INREG} | | 2.0 | | 2.6 | | 3.5 | ns | | t _{IOFD} | | 0.5 | | 0.8 | | 1.2 | ns | | t _{INCOMB} | | 0.5 | | 0.8 | | 1.2 | ns | | Table 53. EPF10 | K130E Devic | e IOE Timing | Microparar | neters No | ote (1) | | | |---------------------|-------------|------------------|------------|-----------|----------------|-----|------| | Symbol | -1 Spec | ed Grade -2 Spee | | d Grade | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{OD3} | | 4.0 | | 5.6 | | 7.5 | ns | | t_{XZ} | | 2.8 | | 4.1 | | 5.5 | ns | | t_{ZX1} | | 2.8 | | 4.1 | | 5.5 | ns | | t_{ZX2} | | 2.8 | | 4.1 | | 5.5 | ns | | t_{ZX3} | | 4.0 | | 5.6 | | 7.5 | ns | | t _{INREG} | | 2.5 | | 3.0 | | 4.1 | ns | | t _{IOFD} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{INCOMB} | | 0.4 | | 0.5 | | 0.6 | ns | | Table 54. EPF10K | 130E Device | EAB Interna | al Micropara | imeters (Pa | ort 1 of 2) | Note (1) | | |------------------------|-------------|-------------|--------------|--------------------|-------------|----------|------| | Symbol | -1 Spee | d Grade | -2 Spee | -2 Speed Grade | | ed Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.5 | | 2.0 | | 2.6 | ns | | t _{EABDATA2} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABWE1} | | 1.5 | | 2.0 | | 2.6 | ns | | t _{EABWE2} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{EABRE1} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{EABRE2} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{EABBYPASS} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{EABSU} | 0.8 | | 1.0 | | 1.4 | | ns | | t _{EABH} | 0.1 | | 0.2 | | 0.2 | | ns | | t _{EABCLR} | 0.3 | | 0.4 | | 0.5 | | ns | | t_{AA} | | 4.0 | | 5.0 | | 6.6 | ns | | t_{WP} | 2.7 | | 3.5 | | 4.7 | | ns | | t_{RP} | 1.0 | | 1.3 | | 1.7 | | ns | | t _{WDSU} | 1.0 | | 1.3 | | 1.7 | | ns | | t _{WDH} | 0.2 | | 0.2 | | 0.3 | | ns | | t _{WASU} | 1.6 | | 2.1 | | 2.8 | | ns | | t _{WAH} | 1.6 | | 2.1 | | 2.8 | | ns | | t _{RASU} | 3.0 | | 3.9 | | 5.2 | | ns | | t _{RAH} | 0.1 | | 0.1 | | 0.2 | | ns | | t_{WO} | | 1.5 | | 2.0 | | 2.6 | ns | | Table 59. EPF10K | 200E Device | LE Timing | Microparam | eters (Part | 2 of 2) N | ote (1) | | |------------------|-------------|-----------------------|------------|-------------|-----------|---------|------| | Symbol | -1 Spee | d Grade -2 Speed Grad | | d Grade | -3 Spee | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t_H | 0.9 | | 1.1 | | 1.5 | | ns | | t _{PRE} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{CLR} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | t_{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | Table 60. EPF10I | K200E Device | e IOE Timing | Micropara | meters No | ote (1) | | | |---------------------|----------------|--------------|----------------|-----------|----------------|------|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 1.6 | | 1.9 | | 2.6 | ns | | t_{IOC} | | 0.3 | | 0.3 | | 0.5 | ns | | t _{IOCO} | | 1.6 | | 1.9 | | 2.6 | ns | | t _{IOCOMB} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{IOSU} | 0.8 | | 0.9 | | 1.2 | | ns | | t _{IOH} | 0.7 | | 0.8 | | 1.1 | | ns | | t _{IOCLR} | | 0.2 | | 0.2 | | 0.3 | ns | | t _{OD1} | | 0.6 | | 0.7 | | 0.9 | ns | | t _{OD2} | | 0.1 | | 0.2 | | 0.7 | ns | | t _{OD3} | | 2.5 | | 3.0 | | 3.9 | ns | | t_{XZ} | | 4.4 | | 5.3 | | 7.1 | ns | | t _{ZX1} | | 4.4 | | 5.3 | | 7.1 | ns | | t_{ZX2} | | 3.9 | | 4.8 | | 6.9 | ns | | t_{ZX3} | | 6.3 | | 7.6 | | 10.1 | ns | | t _{INREG} | | 4.8 | | 5.7 | | 7.7 | ns | | t _{IOFD} | | 1.5 | | 1.8 | | 2.4 | ns | | t _{INCOMB} | | 1.5 | | 1.8 | | 2.4 | ns | | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | ed Grade | Unit | |-------------------------|----------------|-----|---------|----------------|------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABWCOMB} | 6.7 | | 8.1 | | 10.7 | | ns | | t _{EABWCREG} | 6.6 | | 8.0 | | 10.6 | | ns | | t _{EABDD} | | 4.0 | | 5.1 | | 6.7 | ns | | t _{EABDATA} CO | | 0.8 | | 1.0 | | 1.3 | ns | | t _{EABDATASU} | 1.3 | | 1.6 | | 2.1 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 0.9 | | 1.1 | | 1.5 | | ns | | t _{EABWEH} | 0.4 | | 0.5 | | 0.6 | | ns | | t _{EABWDSU} | 1.5 | | 1.8 | | 2.4 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 3.0 | | 3.6 | | 4.7 | | ns | | t _{EABWAH} | 0.4 | | 0.5 | | 0.7 | | ns | | t _{EABW} O | | 3.4 | | 4.4 | | 5.8 | ns | | Table 63. EPF10k | K200E Device | Interconne | ct Timing M | licroparame | ters No | te (1) | | |-------------------------|----------------|------------|-------------|-------------|----------------|--------|------| | Symbol | -1 Speed Grade | | -2 Spec | ed Grade | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 4.2 | | 4.6 | | 5.7 | ns | | t _{DIN2LE} | | 1.7 | | 1.7 | | 2.0 | ns | | t _{DIN2DATA} | | 1.9 | | 2.1 | | 3.0 | ns | | t _{DCLK2IOE} | | 2.5 | | 2.9 | | 4.0 | ns | | t _{DCLK2LE} | | 1.7 | | 1.7 | | 2.0 | ns | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{SAMEROW} | | 2.3 | | 2.6 | | 3.6 | ns | | t _{SAMECOLUMN} | | 2.5 | | 2.7 | | 4.1 | ns | | t _{DIFFROW} | | 4.8 | | 5.3 | | 7.7 | ns | | t _{TWOROWS} | | 7.1 | | 7.9 | | 11.3 | ns | | t _{LEPERIPH} | | 7.0 | | 7.6 | | 9.0 | ns | | t _{LABCARRY} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{LABCASC} | | 0.9 | | 1.0 | | 1.4 | ns | | Table 64. EPF10 | K200E Extern | al Timing Pa | arameters | Notes (1), | (2) | | | |--------------------|--------------|--------------|-----------|------------|---------|---------|------| | Symbol | -1 Spec | ed Grade | -2 Spee | d Grade | -3 Spee | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 10.0 | | 12.0 | | 16.0 | ns | | t _{INSU} | 2.8 | | 3.4 | | 4.4 | | ns | | t _{INH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{оитсо} | 2.0 | 4.5 | 2.0 | 5.3 | 2.0 | 7.8 | ns | | t _{PCISU} | 3.0 | | 6.2 | | - | | ns | | t _{PCIH} | 0.0 | | 0.0 | | - | | ns | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 8.9 | - | - | ns | | Table 65. EPF10K | 200E Extern | al Bidirectio | nal Timing | Parameters | Notes (1) |), (2) | | |-------------------------|-------------|---------------|------------|------------|-----------|---------|------| | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 3.0 | | 4.0 | | 5.5 | | ns | | t _{INHBIDIR} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} | 2.0 | 4.5 | 2.0 | 5.3 | 2.0 | 7.8 | ns | | t _{XZBIDIR} | | 8.1 | | 9.5 | | 13.0 | ns | | t _{ZXBIDIR} | | 8.1 | | 9.5 | | 13.0 | ns | ### Notes to tables: - (1) All timing parameters are described in Tables 24 through 30 in this data sheet. - (2) These parameters are specified by characterization. Tables 66 through 79 show EPF10K50S and EPF10K200S device external timing parameters. | Table 66. EPF10k | (50S Device | LE Timing N | 1icroparame | eters (Part 1 | of 2) No | ote (1) | | |---------------------|-------------|-------------|-------------|----------------|----------|---------|------| | Symbol | -1 Spec | ed Grade | -2 Spee | -2 Speed Grade | | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t_{LUT} | | 0.6 | | 0.8 | | 1.1 | ns | | t _{CLUT} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{RLUT} | | 0.6 | | 0.7 | | 0.9 | ns | | t _{PACKED} | | 0.2 | | 0.3 | | 0.4 | ns | | t_{EN} | | 0.6 | | 0.7 | | 0.9 | ns | | t _{CICO} | | 0.1 | | 0.1 | | 0.1 | ns | | t _{CGEN} | | 0.4 | | 0.5 | | 0.6 | ns | | Table 66. EPF101 | K50S Device | LE Timing N | Aicroparame | eters (Part 2 | ? of 2) N | ote (1) | | |--------------------|-------------|----------------|-------------|----------------|-----------|---------|------| | Symbol | -1 Spec | -1 Speed Grade | | -2 Speed Grade | | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{CGENR} | | 0.1 | | 0.1 | | 0.1 | ns | | t _{CASC} | | 0.5 | | 0.8 | | 1.0 | ns | | $t_{\mathbb{C}}$ | | 0.5 | | 0.6 | | 0.8 | ns | | t_{CO} | | 0.6 | | 0.6 | | 0.7 | ns | | t _{COMB} | | 0.3 | | 0.4 | | 0.5 | ns | | t_{SU} | 0.5 | | 0.6 | | 0.7 | | ns | | t_H | 0.5 | | 0.6 | | 0.8 | | ns | | t _{PRE} | | 0.4 | | 0.5 | | 0.7 | ns | | t _{CLR} | | 0.8 | | 1.0 | | 1.2 | ns | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | t_{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | Table 67. EPF10 | K50S Device | IOE Timing | Microparam | neters \ | lote (1) | | | |---------------------|----------------|------------|------------|----------------|----------|----------|------| | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | ed Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 1.3 | | 1.3 | | 1.9 | ns | | t_{IOC} | | 0.3 | | 0.4 | | 0.4 | ns | | t _{IOCO} | | 1.7 | | 2.1 | | 2.6 | ns | | t _{IOCOMB} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{IOSU} | 0.8 | | 1.0 | | 1.3 | | ns | | t _{IOH} | 0.4 | | 0.5 | | 0.6 | | ns | | t _{IOCLR} | | 0.2 | | 0.2 | | 0.4 | ns | | t _{OD1} | | 1.2 | | 1.2 | | 1.9 | ns | | t _{OD2} | | 0.7 | | 0.8 | | 1.7 | ns | | t_{OD3} | | 2.7 | | 3.0 | | 4.3 | ns | | t_{XZ} | | 4.7 | | 5.7 | | 7.5 | ns | | t_{ZX1} | | 4.7 | | 5.7 | | 7.5 | ns | | t_{ZX2} | | 4.2 | | 5.3 | | 7.3 | ns | | t_{ZX3} | | 6.2 | | 7.5 | | 9.9 | ns | | t _{INREG} | | 3.5 | | 4.2 | | 5.6 | ns | | t _{IOFD} | | 1.1 | | 1.3 | | 1.8 | ns | | t_{INCOMB} | | 1.1 | | 1.3 | | 1.8 | ns | | Symbol | -1 Spec | d Grade | -2 Spee | d Grade | -3 Spee | d Grade | Unit | |------------------------|---------|---------|---------|---------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 8.0 | | 9.5 | | 12.5 | ns | | t _{INSU} (2) | 2.4 | | 2.9 | | 3.9 | | ns | | t _{INH} (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{оитсо} (2) | 2.0 | 4.3 | 2.0 | 5.2 | 2.0 | 7.3 | ns | | t _{INSU} (3) | 2.4 | | 2.9 | | | | ns | | t _{INH} (3) | 0.0 | | 0.0 | | | | ns | | t _{оитсо} (3) | 0.5 | 3.3 | 0.5 | 4.1 | | | ns | | t _{PCISU} | 2.4 | | 2.9 | | _ | | ns | | t _{PCIH} | 0.0 | | 0.0 | | _ | | ns | | t _{PCICO} | 2.0 | 6.0 | 2.0 | 7.7 | _ | - | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |----------------------------|----------------|-----|----------------|-----|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (2) | 2.7 | | 3.2 | | 4.3 | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{INHBIDIR} (3) | 0.0 | | 0.0 | | - | | ns | | t _{INSUBIDIR} (3) | 3.7 | | 4.2 | | - | | ns | | toutcobidir (2) | 2.0 | 4.5 | 2.0 | 5.2 | 2.0 | 7.3 | ns | | t _{XZBIDIR} (2) | | 6.8 | | 7.8 | | 10.1 | ns | | t _{ZXBIDIR} (2) | | 6.8 | | 7.8 | | 10.1 | ns | | toutcobidir (3) | 0.5 | 3.5 | 0.5 | 4.2 | - | - | | | xzbidir (3) | | 6.8 | | 8.4 | | - | ns | | t _{ZXBIDIR} (3) | | 6.8 | | 8.4 | | _ | ns | ### Notes to tables: - All timing parameters are described in Tables 24 through 30. This parameter is measured without use of the ClockLock or ClockBoost circuits. - This parameter is measured with use of the ClockLock or ClockBoost circuits (3)