E·XFL

Altera - EPF10K200EFC672-1 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1248
Number of Logic Elements/Cells	9984
Total RAM Bits	98304
Number of I/O	470
Number of Gates	513000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf10k200efc672-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. FLEX 10KE Device Features							
Feature	EPF10K100E (2)	EPF10K130E	EPF10K200E EPF10K200S				
Typical gates (1)	100,000	130,000	200,000				
Maximum system gates	257,000	342,000	513,000				
Logic elements (LEs)	4,992	6,656	9,984				
EABs	12	16	24				
Total RAM bits	49,152	65,536	98,304				
Maximum user I/O pins	338	413	470				

Note to tables:

- (1) The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates.
- (2) New EPF10K100B designs should use EPF10K100E devices.

...and More

- Fabricated on an advanced process and operate with a 2.5-V internal supply voltage
- In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port
- ClockLock[™] and ClockBoost[™] options for reduced clock _ delay/skew and clock multiplication
- Built-in low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required
- Pull-up on I/O pins before and during configuration
- Flexible interconnect
 - FastTrack[®] Interconnect continuous routing structure for fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
 - Tri-state emulation that implements internal tri-state buses
 - Up to six global clock signals and four global clear signals
 - Powerful I/O pins
 - Individual tri-state output enable control for each pin
 - Open-drain option on each I/O pin
 - Programmable output slew-rate control to reduce switching noise
 - Clamp to V_{CCIO} user-selectable on a pin-by-pin basis
 - Supports hot-socketing

The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous read or writes.

Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2).

Notes:

- (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
- (2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, and EPF10K200E devices have 104 EAB local interconnect channels.

The EAB can also use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3.

The FLEX 10KE EAB can be used in a single-port mode, which is useful for backward-compatibility with FLEX 10K designs (see Figure 4).

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Altera Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time.

The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a three-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a four-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 11 on page 22, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources.

Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

Figure 13. FLEX 10KE LAB Connections to Row & Column Interconnect

I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time, or as an output register for data that requires fast clock-to-output performance. In some cases, using an LE register for an input register will result in a faster setup time than using an IOE register. IOEs can be used as input, output, or bidirectional pins. For bidirectional registered I/O implementation, the output register should be in the IOE, and the data input and output enable registers should be LE registers placed adjacent to the bidirectional pin. The Altera Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Figure 15 shows the bidirectional I/O registers. Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row channels. The signal is accessible by all LEs within that row. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the row channels. Up to eight IOEs connect to each side of each row channel (see Figure 16).

Figure 16. FLEX 10KE Row-to-IOE Connections The values for m and n are provided in Table 10.

IOE1 m Row FastTrack

Table 10 lists the	FLEX 10KE row-to	o-IOE interconnect resources.
--------------------	------------------	-------------------------------

Table 10. FLEX 10KE Row-to-IOE Interconnect Resources						
Device	Channels per Row (n)	Row Channels per Pin (m)				
EPF10K30E	216	27				
EPF10K50E	216	27				
EPF10K50S						
EPF10K100E	312	39				
EPF10K130E	312	39				
EPF10K200E EPF10K200S	312	39				

 \bigcirc

Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels is different for each IOE (see Figure 17).

The values for m and n are provided in Table 11.

Table 11 lists the FLEX 10KE column-to-IOE interconnect resources.

Table 11. FLEX 10KE Column-to-IOE Interconnect Resources						
Device	Channels per Column (n)	Column Channels per Pin (m)				
EPF10K30E	24	16				
EPF10K50E EPF10K50S	24	16				
EPF10K100E	24	16				
EPF10K130E	32	24				
EPF10K200E EPF10K200S	48	40				

PCI Pull-Up Clamping Diode Option

FLEX 10KE devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the signal to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When V_{CCIO} is 3.3 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When V_{CCIO} is 2.5 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can be activated for a subset of pins, which would allow a device to bridge between a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of 4.3 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate pin-by-pin or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects the falling edge of the output.

Open-Drain Output Option

FLEX 10KE devices provide an optional open-drain output (electrically equivalent to open-collector output) for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

MultiVolt I/O Interface

The FLEX 10KE device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10KE devices in all packages to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCINT pins must always be connected to a 2.5-V power supply. With a 2.5-V V_{CCINT} level, input voltages are compatible with 2.5-V, 3.3-V, and 5.0-V inputs. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V_{CCIO} levels higher than 3.0 V achieve a faster timing delay of t_{OD2} instead of t_{OD1} .

Table 14. FLEX 10KE MultiVolt I/O Support						
V _{CCIO} (V)	Input Signal (V) Output Signal (V)					
	2.5	3.3	5.0	2.5	3.3	5.0
2.5	~	✓(1)	✓ (1)	~		
3.3	\checkmark	\checkmark	✓ (1)	✓(2)	\checkmark	~

Table 14 summarizes FLEX 10KE MultiVolt I/O support.

Notes:

(1) The PCI clamping diode must be disabled to drive an input with voltages higher than $V_{\rm CCIO}$.

(2) When V_{CCIO} = 3.3 V, a FLEX 10KE device can drive a 2.5-V device that has 3.3-V tolerant inputs.

Open-drain output pins on FLEX 10KE devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

Power Sequencing & Hot-Socketing

Because FLEX 10KE devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order.

Signals can be driven into FLEX 10KE devices before and during power up without damaging the device. Additionally, FLEX 10KE devices do not drive out during power up. Once operating conditions are reached, FLEX 10KE devices operate as specified by the user.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All FLEX 10KE devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. FLEX 10KE devices can also be configured using the JTAG pins through the BitBlaster or ByteBlasterMV download cable, or via hardware that uses the Jam[™] STAPL programming and test language. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. FLEX 10KE devices support the JTAG instructions shown in Table 15.

Table 15. FLEX 10KE JTAG Instructions						
JTAG Instruction	Description					
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins.					
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.					
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.					
USERCODE	Selects the user electronic signature (USERCODE) register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.					
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.					
ICR Instructions	These instructions are used when configuring a FLEX 10KE device via JTAG ports with a BitBlaster or ByteBlasterMV download cable, or using a Jam File (.jam) or Jam Byte-Code File (.jbc) via an embedded processor.					

The instruction register length of FLEX 10KE devices is 10 bits. The USERCODE register length in FLEX 10KE devices is 32 bits; 7 bits are determined by the user, and 25 bits are pre-determined. Tables 16 and 17 show the boundary-scan register length and device IDCODE information for FLEX 10KE devices.

Table 16. FLEX 10KE Boundary-Scan Register Length						
Device	Boundary-Scan Register Length					
EPF10K30E	690					
EPF10K50E	798					
EPF10K50S						
EPF10K100E	1,050					
EPF10K130E	1,308					
EPF10K200E	1,446					
EPF10K200S						

Figure 20 shows the timing requirements for the JTAG signals.

Figure 20. FLEX 10KE JTAG Waveforms

Table 18 shows the timing parameters and values for FLEX 10KE devices.

Table 18. FLEX 10KE JTAG Timing Parameters & Values								
Symbol	Parameter	Min	Мах	Unit				
t _{JCP}	TCK clock period	100		ns				
t _{JCH}	TCK clock high time	50		ns				
t _{JCL}	TCK clock low time	50		ns				
t _{JPSU}	JTAG port setup time	20		ns				
t _{JPH}	JTAG port hold time	45		ns				
t _{JPCO}	JTAG port clock to output		25	ns				
t _{JPZX}	JTAG port high impedance to valid output		25	ns				
t _{JPXZ}	JTAG port valid output to high impedance		25	ns				
t _{JSSU}	Capture register setup time	20		ns				
t _{JSH}	Capture register hold time	45		ns				
t _{JSCO}	Update register clock to output		35	ns				
t _{JSZX}	Update register high impedance to valid output		35	ns				
t _{JSXZ}	Update register valid output to high impedance		35	ns				

Generic Testing

Each FLEX 10KE device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10KE devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 21. FLEX 10KE AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V. devices or outputs.

Operating Conditions

Tables 19 through 23 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V FLEX 10KE devices.

Table 19. FLEX 10KE 2.5-V Device Absolute Maximum Ratings Note (1)							
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	3.6	V		
V _{CCIO}			-0.5	4.6	V		
VI	DC input voltage		-2.0	5.75	V		
IOUT	DC output current, per pin		-25	25	mA		
T _{STG}	Storage temperature	No bias	-65	150	°C		
T _{AMB}	Ambient temperature	Under bias	-65	135	°C		
TJ	Junction temperature	PQFP, TQFP, BGA, and FineLine BGA		135	°C		
		Ceramic PGA packages, under bias		150	°C		

Table 22. FLEX 10KE 2.5-V Device DC Operating Conditions Notes (6), (7)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{IH}	High-level input voltage		$1.7, 0.5 \times V_{CCIO}$ (8)		5.75	V		
V _{IL}	Low-level input voltage		-0.5		0.8, 0.3 × V _{CCIO} <i>(8)</i>	V		
V _{OH}	3.3-V high-level TTL output voltage	I _{OH} = -8 mA DC, V _{CCIO} = 3.00 V <i>(</i> 9 <i>)</i>	2.4			V		
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V <i>(</i> 9 <i>)</i>	V _{CCIO} – 0.2			V		
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V} (9)$	$0.9 imes V_{CCIO}$			V		
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V <i>(</i> 9 <i>)</i>	2.1			V		
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V <i>(9)</i>	2.0			V		
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (9)$	1.7			V		
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (10)			0.45	V		
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (10)			0.2	V		
	3.3-V low-level PCI output voltage	I_{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (10)			$0.1 \times V_{CCIO}$	V		
	2.5-V low-level output voltage	$I_{OL} = 0.1 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (10)$			0.2	V		
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (10)			0.4	V		
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (10)			0.7	V		
I _I	Input pin leakage current	$V_{I} = V_{CCIOmax}$ to 0 V (11)	-10		10	μA		
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = V_{CCIOmax}$ to 0 V (11)	-10		10	μA		
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load, no toggling inputs		5		mA		
		V _I = ground, no load, no toggling inputs <i>(12)</i>		10		mA		
R _{CONF}	Value of I/O pin pull-	V _{CCIO} = 3.0 V (13)	20		50	k¾		
	up resistor before and during configuration	$V_{CCIO} = 2.3 V (13)$	30		80	k¾		

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Table 47. EPF10K100E Device EAB Internal Microparameters Note (1)								
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Мах		
t _{EABDATA1}		1.5		2.0		2.6	ns	
t _{EABDATA1}		0.0		0.0		0.0	ns	
t _{EABWE1}		1.5		2.0		2.6	ns	
t _{EABWE2}		0.3		0.4		0.5	ns	
t _{EABRE1}		0.3		0.4		0.5	ns	
t _{EABRE2}		0.0		0.0		0.0	ns	
t _{EABCLK}		0.0		0.0		0.0	ns	
t _{EABCO}		0.3		0.4		0.5	ns	
t _{EABBYPASS}		0.1		0.1		0.2	ns	
t _{EABSU}	0.8		1.0		1.4		ns	
t _{EABH}	0.1		0.1		0.2		ns	
t _{EABCLR}	0.3		0.4		0.5		ns	
t _{AA}		4.0		5.1		6.6	ns	
t _{WP}	2.7		3.5		4.7		ns	
t _{RP}	1.0		1.3		1.7		ns	
t _{WDSU}	1.0		1.3		1.7		ns	
t _{WDH}	0.2		0.2		0.3		ns	
t _{WASU}	1.6		2.1		2.8		ns	
t _{WAH}	1.6		2.1		2.8		ns	
t _{RASU}	3.0		3.9		5.2		ns	
t _{RAH}	0.1		0.1		0.2		ns	
t _{WO}		1.5		2.0		2.6	ns	
t _{DD}		1.5		2.0		2.6	ns	
t _{EABOUT}		0.2		0.3		0.3	ns	
t _{EABCH}	1.5		2.0		2.5		ns	
t _{EABCL}	2.7		3.5		4.7		ns	

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters (Part 1 of

2)	Note	(1)
-/		· · /

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.9		7.6		9.9	ns
t _{EABRCOMB}	5.9		7.6		9.9		ns
t _{EABRCREG}	5.1		6.5		8.5		ns
t _{EABWP}	2.7		3.5		4.7		ns

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Table 53. EPF10K130E Device IOE Timing Microparameters Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{OD3}		4.0		5.6		7.5	ns		
t _{XZ}		2.8		4.1		5.5	ns		
t _{ZX1}		2.8		4.1		5.5	ns		
t _{ZX2}		2.8		4.1		5.5	ns		
t _{ZX3}		4.0		5.6		7.5	ns		
t _{INREG}		2.5		3.0		4.1	ns		
t _{IOFD}		0.4		0.5		0.6	ns		
t _{INCOMB}		0.4		0.5		0.6	ns		

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Max	Min	Мах	-
t _{EABDATA1}		1.5		2.0		2.6	ns
t _{EABDATA2}		0.0		0.0		0.0	ns
t _{EABWE1}		1.5		2.0		2.6	ns
t _{EABWE2}		0.3		0.4		0.5	ns
t _{EABRE1}		0.3		0.4		0.5	ns
t _{EABRE2}		0.0		0.0		0.0	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.4		0.5	ns
t _{EABBYPASS}		0.1		0.1		0.2	ns
t _{EABSU}	0.8		1.0		1.4		ns
t _{EABH}	0.1		0.2		0.2		ns
t _{EABCLR}	0.3		0.4		0.5		ns
t _{AA}		4.0		5.0		6.6	ns
t _{WP}	2.7		3.5		4.7		ns
t _{RP}	1.0		1.3		1.7		ns
t _{WDSU}	1.0		1.3		1.7		ns
t _{WDH}	0.2		0.2		0.3		ns
t _{WASU}	1.6		2.1		2.8		ns
t _{WAH}	1.6		2.1		2.8		ns
t _{RASU}	3.0		3.9		5.2		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{wo}		1.5		2.0		2.6	ns

Table 66. EPF10K50S Device LE Timing Microparameters (Part 2 of 2) Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{CGENR}		0.1		0.1		0.1	ns		
t _{CASC}		0.5		0.8		1.0	ns		
t _C		0.5		0.6		0.8	ns		
t _{CO}		0.6		0.6		0.7	ns		
t _{COMB}		0.3		0.4		0.5	ns		
t _{SU}	0.5		0.6		0.7		ns		
t _H	0.5		0.6		0.8		ns		
t _{PRE}		0.4		0.5		0.7	ns		
t _{CLR}		0.8		1.0		1.2	ns		
t _{CH}	2.0		2.5		3.0		ns		
t _{CL}	2.0		2.5		3.0		ns		

Table 67. EPF10K50S Device IOE Timing Microparameters Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{IOD}		1.3		1.3		1.9	ns	
t _{IOC}		0.3		0.4		0.4	ns	
t _{IOCO}		1.7		2.1		2.6	ns	
t _{IOCOMB}		0.5		0.6		0.8	ns	
t _{IOSU}	0.8		1.0		1.3		ns	
t _{IOH}	0.4		0.5		0.6		ns	
t _{IOCLR}		0.2		0.2		0.4	ns	
t _{OD1}		1.2		1.2		1.9	ns	
t _{OD2}		0.7		0.8		1.7	ns	
t _{OD3}		2.7		3.0		4.3	ns	
t _{XZ}		4.7		5.7		7.5	ns	
t _{ZX1}		4.7		5.7		7.5	ns	
t _{ZX2}		4.2		5.3		7.3	ns	
t _{ZX3}		6.2		7.5		9.9	ns	
t _{INREG}		3.5		4.2		5.6	ns	
t _{IOFD}		1.1		1.3		1.8	ns	
t _{INCOMB}		1.1		1.3		1.8	ns	

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Table 74. EPF10K200S Device IOE Timing Microparameters (Part 2 of 2) Note (1)									
Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{ZX2}		4.5		4.8		6.6	ns		
t _{ZX3}		6.6		7.6		10.1	ns		
t _{INREG}		3.7		5.7		7.7	ns		
t _{IOFD}		1.8		3.4		4.0	ns		
t _{INCOMB}		1.8		3.4		4.0	ns		

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Мах	
t _{EABDATA1}		1.8		2.4		3.2	ns
t _{EABDATA1}		0.4		0.5		0.6	ns
t _{EABWE1}		1.1		1.7		2.3	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0		0		0	ns
t _{EABRE2}		0.4		0.5		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		0.9		1.2	ns
t _{EABBYPASS}		0.0		0.1		0.1	ns
t _{EABSU}	0.7		1.1		1.5		ns
t _{EABH}	0.4		0.5		0.6		ns
t _{EABCLR}	0.8		0.9		1.2		ns
t _{AA}		2.1		3.7		4.9	ns
t _{WP}	2.1		4.0		5.3		ns
t _{RP}	1.1		1.1		1.5		ns
tWDSU	0.5		1.1		1.5		ns
t _{WDH}	0.1		0.1		0.1		ns
t _{WASU}	1.1		1.6		2.1		ns
t _{WAH}	1.6		2.5		3.3		ns
t _{RASU}	1.6		2.6		3.5		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		2.0		2.4		3.2	ns
t _{DD}		2.0		2.4		3.2	ns
t _{EABOUT}		0.0		0.1		0.1	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.1		2.8		3.8		ns

Altera Corporation

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit_reg@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending

applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation

100