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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Figure 4. FLEX 10KE Device in Single-Port RAM Mode 

Note:
(1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 88 EAB local interconnect channels; EPF10K100E, 

EPF10K130E, EPF10K200E, and EPF10K200S devices have 104 EAB local interconnect channels. 

EABs can be used to implement synchronous RAM, which is easier to use 
than asynchronous RAM. A circuit using asynchronous RAM must 
generate the RAM write enable signal, while ensuring that its data and 
address signals meet setup and hold time specifications relative to the 
write enable signal. In contrast, the EAB’s synchronous RAM generates its 
own write enable signal and is self-timed with respect to the input or write 
clock. A circuit using the EAB’s self-timed RAM must only meet the setup 
and hold time specifications of the global clock.
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Each LAB provides four control signals with programmable inversion 
that can be used in all eight LEs. Two of these signals can be used as clocks, 
the other two can be used for clear/preset control. The LAB clocks can be 
driven by the dedicated clock input pins, global signals, I/O signals, or 
internal signals via the LAB local interconnect. The LAB preset and clear 
control signals can be driven by the global signals, I/O signals, or internal 
signals via the LAB local interconnect. The global control signals are 
typically used for global clock, clear, or preset signals because they 
provide asynchronous control with very low skew across the device. If 
logic is required on a control signal, it can be generated in one or more LE 
in any LAB and driven into the local interconnect of the target LAB. In 
addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the FLEX 10KE architecture, has a 
compact size that provides efficient logic utilization. Each LE contains a 
four-input LUT, which is a function generator that can quickly compute 
any function of four variables. In addition, each LE contains a 
programmable flipflop with a synchronous clock enable, a carry chain, 
and a cascade chain. Each LE drives both the local and the FastTrack 
Interconnect routing structure (see Figure 8).

Figure 8. FLEX 10KE Logic Element
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The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock, clear, and preset control signals on the flipflop can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the flipflop is bypassed and the output 
of the LUT drives the output of the LE. 

The LE has two outputs that drive the interconnect: one drives the local 
interconnect and the other drives either the row or column FastTrack 
Interconnect routing structure. The two outputs can be controlled 
independently. For example, the LUT can drive one output while the 
register drives the other output. This feature, called register packing, can 
improve LE utilization because the register and the LUT can be used for 
unrelated functions.

The FLEX 10KE architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports 
high-speed counters and adders and the cascade chain implements 
wide-input functions with minimum delay. Carry and cascade chains 
connect all LEs in a LAB as well as all LABs in the same row. Intensive use 
of carry and cascade chains can reduce routing flexibility. Therefore, the 
use of these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
FLEX 10KE architecture to implement high-speed counters, adders, and 
comparators of arbitrary width efficiently. Carry chain logic can be 
created automatically by the Altera Compiler during design processing, 
or manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EPF10K50E device, the carry chain stops at the eighteenth LAB and 
a new one begins at the nineteenth LAB.
18 Altera Corporation
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Figure 9 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for an accumulator function. Another portion of the LUT and the carry 
chain logic generates the carry-out signal, which is routed directly to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it can be used as a general-purpose signal. 

Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder)
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Altera Compiler automatically selects 
the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function; the other generates a carry output. As 
shown in Figure 11 on page 22, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Use 2 three-input LUTs: one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
Altera Corporation 23 
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In addition to the six clear and preset modes, FLEX 10KE devices provide 
a chip-wide reset pin that can reset all registers in the device. Use of this 
feature is set during design entry. In any of the clear and preset modes, the 
chip-wide reset overrides all other signals. Registers with asynchronous 
presets may be preset when the chip-wide reset is asserted. Inversion can 
be used to implement the asynchronous preset. Figure 12 shows examples 
of how to setup the preset and clear inputs for the desired functionality.

Figure 12. FLEX 10KE LE Clear & Preset Modes
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Figure 14. FLEX 10KE Interconnect Resources

I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used 
either as an input register for external data that requires a fast setup time, 
or as an output register for data that requires fast clock-to-output 
performance. In some cases, using an LE register for an input register will 
result in a faster setup time than using an IOE register. IOEs can be used 
as input, output, or bidirectional pins. For bidirectional registered I/O 
implementation, the output register should be in the IOE, and the data 
input and output enable registers should be LE registers placed adjacent 
to the bidirectional pin. The Altera Compiler uses the programmable 
inversion option to invert signals from the row and column interconnect 
automatically where appropriate. Figure 15 shows the bidirectional I/O 
registers.
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When dedicated inputs drive non-inverted and inverted peripheral clears, 
clock enables, and output enables, two signals on the peripheral control 
bus will be used.

Tables 8 and 9 list the sources for each peripheral control signal, and show 
how the output enable, clock enable, clock, and clear signals share 
12 peripheral control signals. The tables also show the rows that can drive 
global signals.

Table 8. Peripheral Bus Sources for EPF10K30E, EPF10K50E & EPF10K50S Devices

Peripheral 
Control Signal

EPF10K30E EPF10K50E
EPF10K50S

OE0 Row A Row A

OE1 Row B Row B

OE2 Row C Row D

OE3 Row D Row F

OE4 Row E Row H

OE5 Row F Row J

CLKENA0/CLK0/GLOBAL0 Row A Row A

CLKENA1/OE6/GLOBAL1 Row B Row C

CLKENA2/CLR0 Row C Row E

CLKENA3/OE7/GLOBAL2 Row D Row G

CLKENA4/CLR1 Row E Row I

CLKENA5/CLK1/GLOBAL3 Row F Row J
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Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column 
channels. When an IOE is used as an output, the signal is driven by a 
multiplexer that selects a signal from the column channels. Two IOEs 
connect to each side of the column channels. Each IOE can be driven by 
column channels via a multiplexer. The set of column channels is different 
for each IOE (see Figure 17).

Figure 17. FLEX 10KE Column-to-IOE Connections   

Table 11 lists the FLEX 10KE column-to-IOE interconnect resources. 
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The values for m and n are provided in Table 11.

Table 11. FLEX 10KE Column-to-IOE Interconnect Resources

Device Channels per Column (n) Column Channels per Pin (m)

EPF10K30E 24 16

EPF10K50E
EPF10K50S

24 16

EPF10K100E 24 16

EPF10K130E 32 24

EPF10K200E
EPF10K200S

48 40
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ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the 
incoming clock must meet certain requirements. If these specifications are 
not met, the circuitry may not lock onto the incoming clock, which 
generates an erroneous clock within the device. The clock generated by 
the ClockLock and ClockBoost circuitry must also meet certain 
specifications. If the incoming clock meets these requirements during 
configuration, the ClockLock and ClockBoost circuitry will lock onto the 
clock during configuration. The circuit will be ready for use immediately 
after configuration. Figure 19 shows the incoming and generated clock 
specifications.

Figure 19. Specifications for Incoming & Generated Clocks
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nominal output clock period.

tR tF

tCLK1 tINDUTY tI ± fCLKDEV

tI tI ± tINCLKSTB

tOUTDUTY

tO tO + tJITTER tO – tJITTER

Input
Clock

ClockLock-
Generated
Clock
Altera Corporation 39 



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Notes to tables:
(1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the 

input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. 
The fCLKDEV parameter specifies how much the incoming clock can differ from the specified frequency during 
device operation. Simulation does not reflect this parameter.

(2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
(3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If 

the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during 
configuration because the tLOCK value is less than the time required for configuration.

(4) The tJITTER specification is measured under long-term observation. The maximum value for tJITTER is 200 ps if 
tINCLKSTB is lower than 50 ps.

I/O 
Configuration

This section discusses the peripheral component interconnect (PCI)
pull-up clamping diode option, slew-rate control, open-drain output 
option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI 
pull-up clamping diode, slew-rate control, and open-drain output options 
are controlled pin-by-pin via Altera software logic options. The MultiVolt 
I/O interface is controlled by connecting VCCIO to a different voltage than 
VCCINT. Its effect can be simulated in the Altera software via the Global 
Project Device Options dialog box (Assign menu).

Table 13. ClockLock & ClockBoost Parameters for -2 Speed-Grade Devices

Symbol Parameter Condition Min Typ Max Unit
tR Input rise time 5 ns

tF Input fall time 5 ns

t INDUTY Input duty cycle 40 60 %

fCLK1 Input clock frequency (ClockBoost 

clock multiplication factor equals 1)

25 75 MHz

fCLK2 Input clock frequency (ClockBoost 

clock multiplication factor equals 2)

16 37.5 MHz

fCLKDEV Input deviation from user 

specification in the MAX+PLUS II 

software (1)

25,000 (2) PPM

t INCLKSTB Input clock stability (measured 

between adjacent clocks)

100 ps

tLOCK Time required for ClockLock or 

ClockBoost to acquire lock (3)
10 µs

tJITTER Jitter on ClockLock or ClockBoost-

generated clock (4)
t INCLKSTB < 100 250 ps

t INCLKSTB < 50 200 (4) ps

tOUTDUTY Duty cycle for ClockLock or 
ClockBoost-generated clock

40 50 60 %
Altera Corporation 41 
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Notes:
(1) The most significant bit (MSB) is on the left.
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

FLEX 10KE devices include weak pull-up resistors on the JTAG pins.

f For more information, see the following documents:

■ Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in 
Altera Devices) 

■ BitBlaster Serial Download Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ Jam Programming & Test Language Specification

Table 17. 32-Bit IDCODE for FLEX 10KE Devices Note (1)

Device IDCODE (32 Bits)

Version 
(4 Bits)

Part Number (16 Bits) Manufacturer’s
Identity (11 Bits)

1 (1 Bit) 
(2)

EPF10K30E 0001 0001 0000 0011 0000 00001101110 1

EPF10K50E
EPF10K50S

0001 0001 0000 0101 0000 00001101110 1

EPF10K100E 0010 0000 0001 0000 0000 00001101110 1

EPF10K130E 0001 0000 0001 0011 0000 00001101110 1

EPF10K200E
EPF10K200S

0001 0000 0010 0000 0000 00001101110 1
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Figure 23. Output Drive Characteristics of FLEX 10KE Devices Note (1)

Note:
(1) These are transient (AC) currents.

Timing Model The continuous, high-performance FastTrack Interconnect routing 
resources ensure predictable performance and accurate simulation and 
timing analysis. This predictable performance contrasts with that of 
FPGAs, which use a segmented connection scheme and therefore have 
unpredictable performance. 

Device performance can be estimated by following the signal path from a 
source, through the interconnect, to the destination. For example, the 
registered performance between two LEs on the same row can be 
calculated by adding the following parameters: 

■ LE register clock-to-output delay (tCO)
■ Interconnect delay (tSAMEROW)
■ LE look-up table delay (tLUT)
■ LE register setup time (tSU)

The routing delay depends on the placement of the source and destination 
LEs. A more complex registered path may involve multiple combinatorial 
LEs between the source and destination LEs. 
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Table 35. EPF10K30E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 1.8 2.4 2.9 ns

tDIN2LE 1.5 1.8 2.4 ns

tDIN2DATA 1.5 1.8 2.2 ns

tDCLK2IOE 2.2 2.6 3.0 ns

tDCLK2LE 1.5 1.8 2.4 ns

tSAMELAB 0.1 0.2 0.3 ns

tSAMEROW 2.0 2.4 2.7 ns

tSAMECOLUMN 0.7 1.0 0.8 ns

tDIFFROW 2.7 3.4 3.5 ns

tTWOROWS 4.7 5.8 6.2 ns

tLEPERIPH 2.7 3.4 3.8 ns

tLABCARRY 0.3 0.4 0.5 ns

tLABCASC 0.8 0.8 1.1 ns

Table 36. EPF10K30E External Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (3) 2.1 2.5 3.9 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0  4.9 2.0 5.9 2.0 7.6 ns

tINSU (4) 1.1 1.5 – ns

tINH (4) 0.0 0.0 – ns

tOUTCO (4) 0.5 3.9 0.5 4.9 – – ns

tPCISU 3.0 4.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 7.5 – – ns
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Table 40. EPF10K50E Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.7 2.0 2.7 ns

tEABDATA1 0.6 0.7 0.9 ns

tEABWE1 1.1 1.3 1.8 ns

tEABWE2 0.4 0.4 0.6 ns

tEABRE1 0.8 0.9 1.2 ns

tEABRE2 0.4 0.4 0.6 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.3 0.5 ns

tEABBYPASS 0.5 0.6 0.8 ns

tEABSU 0.9 1.0 1.4 ns

tEABH 0.4 0.4 0.6 ns

tEABCLR 0.3 0.3 0.5 ns

tAA 3.2 3.8 5.1 ns

tWP 2.5 2.9 3.9 ns

tRP 0.9 1.1 1.5 ns

tWDSU 0.9 1.0 1.4 ns

tWDH 0.1 0.1 0.2 ns

tWASU 1.7 2.0 2.7 ns

tWAH 1.8 2.1 2.9 ns

tRASU 3.1 3.7 5.0 ns

tRAH 0.2 0.2 0.3 ns

tWO 2.5 2.9 3.9 ns

tDD 2.5 2.9 3.9 ns

tEABOUT 0.5 0.6 0.8 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 2.5 2.9 3.9 ns
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Table 56. EPF10K130E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 2.8 3.5 4.4 ns

tDIN2LE 0.7 1.2 1.6 ns

tDIN2DATA 1.6 1.9 2.2 ns

tDCLK2IOE 1.6 2.1 2.7 ns

tDCLK2LE 0.7 1.2 1.6 ns

tSAMELAB 0.1 0.2 0.2 ns

tSAMEROW 1.9 3.4 5.1 ns

tSAMECOLUMN 0.9 2.6 4.4 ns

tDIFFROW 2.8 6.0 9.5 ns

tTWOROWS 4.7 9.4 14.6 ns

tLEPERIPH 3.1 4.7 6.9 ns

tLABCARRY 0.6 0.8 1.0 ns

tLABCASC 0.9 1.2 1.6 ns

Table 57. EPF10K130E External Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR  9.0 12.0 16.0 ns

tINSU (3) 1.9  2.1 3.0 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0 5.0 2.0 7.0 2.0 9.2 ns

tINSU (4) 0.9 1.1 – ns

tINH (4) 0.0 0.0 – ns

tOUTCO (4) 0.5 4.0 0.5 6.0 – – ns

tPCISU 3.0 6.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 6.9 – – ns
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tEABWCOMB 6.7 8.1 10.7 ns

tEABWCREG 6.6 8.0 10.6 ns

tEABDD 4.0 5.1 6.7 ns

tEABDATACO 0.8 1.0 1.3 ns

tEABDATASU 1.3 1.6 2.1 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 0.9 1.1 1.5 ns

tEABWEH 0.4 0.5 0.6 ns

tEABWDSU 1.5 1.8 2.4 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.7 ns

tEABWAH 0.4 0.5 0.7 ns

tEABWO 3.4 4.4 5.8 ns

Table 63. EPF10K200E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 4.2 4.6 5.7 ns

tDIN2LE 1.7 1.7 2.0 ns

tDIN2DATA 1.9 2.1 3.0 ns

tDCLK2IOE 2.5 2.9 4.0 ns

tDCLK2LE 1.7 1.7 2.0 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 2.3 2.6 3.6 ns

tSAMECOLUMN 2.5 2.7 4.1 ns

tDIFFROW 4.8 5.3 7.7 ns

tTWOROWS 7.1 7.9 11.3 ns

tLEPERIPH 7.0 7.6 9.0 ns

tLABCARRY 0.1 0.1 0.2 ns

tLABCASC 0.9 1.0 1.4 ns

Table 62. EPF10K200E Device EAB Internal Timing Macroparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Table 69. EPF10K50S Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 3.7 5.2 7.0 ns

tEABRCCOMB 3.7 5.2 7.0 ns

tEABRCREG 3.5 4.9 6.6 ns

tEABWP 2.0 2.8 3.8 ns

tEABWCCOMB 4.5 6.3 8.6 ns

tEABWCREG 5.6 7.8 10.6 ns

tEABDD 3.8 5.3 7.2 ns

tEABDATACO 0.8 1.1 1.5 ns

tEABDATASU 1.1 1.6 2.1 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 0.7 1.0 1.3 ns

tEABWEH 0.4 0.6 0.8 ns

tEABWDSU 1.2 1.7 2.2 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 1.6 2.3 3.0 ns

tEABWAH 0.9 1.2 1.8 ns

tEABWO 3.1 4.3 5.9 ns

Table 70. EPF10K50S Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 3.1 3.7 4.6 ns

tDIN2LE 1.7 2.1 2.7 ns

tDIN2DATA 2.7 3.1 5.1 ns

tDCLK2IOE 1.6 1.9 2.6 ns

tDCLK2LE 1.7 2.1 2.7 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.5 1.7 2.4 ns

tSAMECOLUMN 1.0 1.3 2.1 ns

tDIFFROW 2.5 3.0 4.5 ns

tTWOROWS 4.0 4.7 6.9 ns

tLEPERIPH 2.6 2.9 3.4 ns

tLABCARRY 0.1 0.2 0.2 ns

tLABCASC 0.8 1.0 1.3 ns
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(3) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

tLABCASC 0.5 1.0 1.4 ns

Table 78. EPF10K200S External Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 9.0 12.0 16.0 ns

tINSU (2) 3.1 3.7 4.7 ns

tINH (2) 0.0 0.0 0.0 ns

tOUTCO (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns

tINSU(3) 2.1 2.7 – ns

tINH (3) 0.0 0.0 – ns

tOUTCO(3) 0.5 2.7 0.5 3.4 – – ns

tPCISU 3.0 4.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 8.9 – – ns

Table 79. EPF10K200S External Bidirectional Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (2) 2.3 3.4 4.4 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tINSUBIDIR (3) 3.3 4.4 – ns

tINHBIDIR (3) 0.0 0.0 – ns

tOUTCOBIDIR (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns

tXZBIDIR (2) 6.9 7.6 9.2 ns

tZXBIDIR (2) 5.9 6.6 – ns

tOUTCOBIDIR (3) 0.5 2.7 0.5 3.4 – – ns

tXZBIDIR (3) 6.9 7.6 9.2 ns

tZXBIDIR (3) 5.9 6.6 – ns

Table 77. EPF10K200S Device Interconnect Timing Microparameters  (Part 2 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Additionally, the Altera software offers several features that help plan for 
future device migration by preventing the use of conflicting I/O pins.

Configuration Schemes

The configuration data for a FLEX 10KE device can be loaded with one of 
five configuration schemes (see Table 82), chosen on the basis of the target 
application. An EPC1, EPC2, or EPC16 configuration device, intelligent 
controller, or the JTAG port can be used to control the configuration of a 
FLEX 10KE device, allowing automatic configuration on system 
power-up.

Multiple FLEX 10KE devices can be configured in any of the five 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device. Additional 
FLEX 10K, FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be 
configured in the same serial chain.

Table 81. I/O Counts for FLEX 10KA & FLEX 10KE Devices

FLEX 10KA FLEX 10KE

Device I/O Count Device I/O Count

EPF10K30AF256 191 EPF10K30EF256 176

EPF10K30AF484 246 EPF10K30EF484 220

EPF10K50VB356 274 EPF10K50SB356 220

EPF10K50VF484 291 EPF10K50EF484 254

EPF10K50VF484 291 EPF10K50SF484 254

EPF10K100AF484 369 EPF10K100EF484 338

Table 82. Data Sources for FLEX 10KE Configuration

Configuration Scheme Data Source

Configuration device EPC1, EPC2, or EPC16 configuration device

Passive serial (PS) BitBlaster, ByteBlasterMV, or MasterBlaster download cables, 
or serial data source

Passive parallel asynchronous (PPA) Parallel data source

Passive parallel synchronous (PPS) Parallel data source

JTAG BitBlaster or ByteBlasterMV download cables, or 
microprocessor with a Jam STAPL file or JBC file
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