
E·XFL

Altera - EPF10K200SBC600-1 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	470
Number of Gates	-
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	600-BGA
Supplier Device Package	600-BGA (45x45)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf10k200sbc600-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. FLEX 10KE Device Features							
Feature	EPF10K100E (2)	EPF10K130E	EPF10K200E EPF10K200S				
Typical gates (1)	100,000	130,000	200,000				
Maximum system gates	257,000	342,000	513,000				
Logic elements (LEs)	4,992	6,656	9,984				
EABs	12	16	24				
Total RAM bits	49,152	65,536	98,304				
Maximum user I/O pins	338	413	470				

Note to tables:

- (1) The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates.
- (2) New EPF10K100B designs should use EPF10K100E devices.

...and More

- Fabricated on an advanced process and operate with a 2.5-V internal supply voltage
- In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port
- ClockLock[™] and ClockBoost[™] options for reduced clock _ delay/skew and clock multiplication
- Built-in low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required
- Pull-up on I/O pins before and during configuration
- Flexible interconnect
 - FastTrack[®] Interconnect continuous routing structure for fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
 - Tri-state emulation that implements internal tri-state buses
 - Up to six global clock signals and four global clear signals
 - Powerful I/O pins
 - Individual tri-state output enable control for each pin
 - Open-drain option on each I/O pin
 - Programmable output slew-rate control to reduce switching noise
 - Clamp to V_{CCIO} user-selectable on a pin-by-pin basis
 - Supports hot-socketing

Table 5. FLEX TUKE Performance									
Application	Resource	es Used	Performance						
	LEs	EABs	-1 Speed Grade	-2 Speed Grade	-3 Speed Grade				
16-bit loadable counter	16	0	285	250	200	MHz			
16-bit accumulator	16	0	285	250	200	MHz			
16-to-1 multiplexer (1)	10	0	3.5	4.9	7.0	ns			
16-bit multiplier with 3-stage pipeline (2)	592	0	156	131	93	MHz			
256×16 RAM read cycle speed (2)	0	1	196	154	118	MHz			
256×16 RAM write cycle speed (2)	0	1	185	143	106	MHz			

Table 5. FLEX 10KE Performance

Notes:

(1) This application uses combinatorial inputs and outputs.

(2) This application uses registered inputs and outputs.

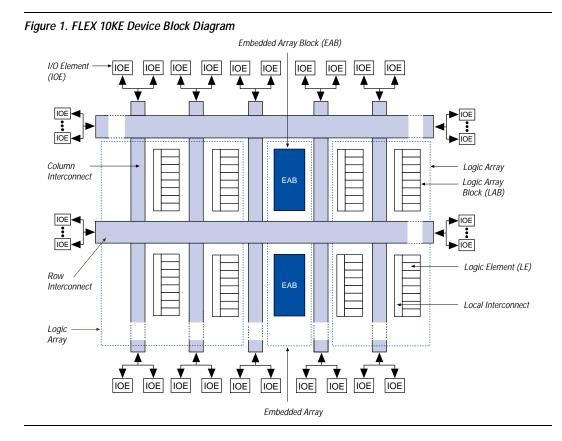

Table 6 shows FLEX 10KE performance for more complex designs. These designs are available as Altera MegaCore $^{\circ}$ functions.

Table 6. FLEX 10KE Performance for Complex Designs								
Application	LEs Used	Performance Units						
		-1 Speed Grade	-2 Speed Grade	-3 Speed Grade				
8-bit, 16-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS			
8-bit, 512-point fast Fourier	1,854	23.4	28.7	38.9	µs (1)			
transform (FFT) function		113	92	68	MHz			
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz			

Note:

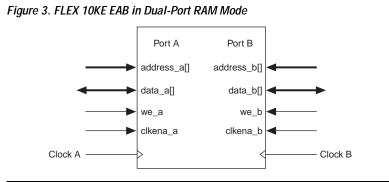
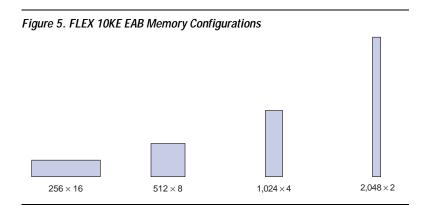

(1) These values are for calculation time. Calculation time = number of clocks required / f_{max} . Number of clocks required = ceiling [log 2 (points)/2] × [points +14 + ceiling]

Figure 1 shows a block diagram of the FLEX 10KE architecture. Each group of LEs is combined into an LAB; groups of LABs are arranged into rows and columns. Each row also contains a single EAB. The LABs and EABs are interconnected by the FastTrack Interconnect routing structure. IOEs are located at the end of each row and column of the FastTrack Interconnect routing structure.


FLEX 10KE devices provide six dedicated inputs that drive the flipflops' control inputs and ensure the efficient distribution of high-speed, low-skew (less than 1.5 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect routing structure. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device.

The EAB can also use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3.

The FLEX 10KE EAB can be used in a single-port mode, which is useful for backward-compatibility with FLEX 10K designs (see Figure 4).

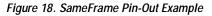
When used as RAM, each EAB can be configured in any of the following sizes: 256×16 , 512×8 , $1,024 \times 4$, or $2,048 \times 2$ (see Figure 5).

Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block; two 512×8 RAM blocks can be combined to form a 512×16 block (see Figure 6).

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. The Altera software automatically combines EABs to meet a designer's RAM specifications.

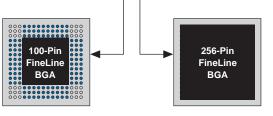
For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the fulllength channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row.

Table 7 summarizes the FastTrack Interconnect routing structure resources available in each FLEX 10KE device.

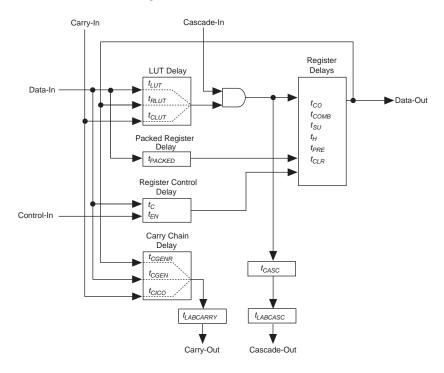

Table 7. FLEX 10KE FastTrack Interconnect Resources							
Device	Rows	Channels per Row	Columns	Channels per Column			
EPF10K30E	6	216	36	24			
EPF10K50E EPF10K50S	10	216	36	24			
EPF10K100E	12	312	52	24			
EPF10K130E	16	312	52	32			
EPF10K200E EPF10K200S	24	312	52	48			

In addition to general-purpose I/O pins, FLEX 10KE devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output enable and clock enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3.


SameFrame Pin-Outs FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ballcount packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K30E device in a 256-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 18).


Printed Circuit Board Designed for 672-Pin FineLine BGA Package

 256-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements)
 672-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

Figure 25. FLEX 10KE Device LE Timing Model

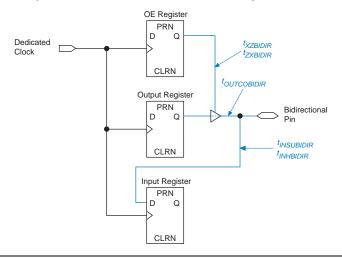


Figure 28. Synchronous Bidirectional Pin External Timing Model

Tables 24 through 28 describe the FLEX 10KE device internal timing parameters. Tables 29 through 30 describe the FLEX 10KE external timing parameters and their symbols.

Symbol	Parameter	Condition
t _{LUT}	LUT delay for data-in	
t _{CLUT}	LUT delay for carry-in	
t _{RLUT}	LUT delay for LE register feedback	
t _{PACKED}	Data-in to packed register delay	
t _{EN}	LE register enable delay	
t _{CICO}	Carry-in to carry-out delay	
t _{CGEN}	Data-in to carry-out delay	
t _{CGENR}	LE register feedback to carry-out delay	
t _{CASC}	Cascade-in to cascade-out delay	
t _C	LE register control signal delay	
t _{CO}	LE register clock-to-output delay	
t _{COMB}	Combinatorial delay	
t _{SU}	LE register setup time for data and enable signals before clock; LE register	
	recovery time after asynchronous clear, preset, or load	
t _H	LE register hold time for data and enable signals after clock	
t _{PRE}	LE register preset delay	

Symbol	Parameter	Conditions
t _{EABDATA1}	Data or address delay to EAB for combinatorial input	
t _{EABDATA2}	Data or address delay to EAB for registered input	
t _{EABWE1}	Write enable delay to EAB for combinatorial input	
t _{EABWE2}	Write enable delay to EAB for registered input	
t _{EABRE1}	Read enable delay to EAB for combinatorial input	
t _{EABRE2}	Read enable delay to EAB for registered input	
t _{EABCLK}	EAB register clock delay	
t _{EABCO}	EAB register clock-to-output delay	
t _{EABBYPASS}	Bypass register delay	
t _{EABSU}	EAB register setup time before clock	
t _{EABH}	EAB register hold time after clock	
t _{EABCLR}	EAB register asynchronous clear time to output delay	
t _{AA}	Address access delay (including the read enable to output delay)	
t _{WP}	Write pulse width	
t _{RP}	Read pulse width	
t _{WDSU}	Data setup time before falling edge of write pulse	(5)
t _{WDH}	Data hold time after falling edge of write pulse	(5)
t _{WASU}	Address setup time before rising edge of write pulse	(5)
t _{WAH}	Address hold time after falling edge of write pulse	(5)
t _{RASU}	Address setup time with respect to the falling edge of the read enable	
t _{RAH}	Address hold time with respect to the falling edge of the read enable	
t _{WO}	Write enable to data output valid delay	
t _{DD}	Data-in to data-out valid delay	
t _{EABOUT}	Data-out delay	
t _{EABCH}	Clock high time	
t _{EABCL}	Clock low time	

Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{CGENR}		0.1		0.1		0.2	ns
t _{CASC}		0.6		0.8		1.0	ns
t _C		0.0		0.0		0.0	ns
t _{CO}		0.3		0.4		0.5	ns
t _{COMB}		0.4		0.4		0.6	ns
t _{SU}	0.4		0.6		0.6		ns
t _H	0.7		1.0		1.3		ns
PRE		0.8		0.9		1.2	ns
t _{CLR}		0.8		0.9		1.2	ns
сн	2.0		2.5		2.5		ns
ĊL	2.0		2.5		2.5		ns

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{IOD}		2.4		2.8		3.8	ns
t _{IOC}		0.3		0.4		0.5	ns
t _{IOCO}		1.0		1.1		1.6	ns
t _{IOCOMB}		0.0		0.0		0.0	ns
t _{IOSU}	1.2		1.4		1.9		ns
t _{IOH}	0.3		0.4		0.5		ns
t _{IOCLR}		1.0		1.1		1.6	ns
t _{OD1}		1.9		2.3		3.0	ns
t _{OD2}		1.4		1.8		2.5	ns
t _{OD3}		4.4		5.2		7.0	ns
t _{XZ}		2.7		3.1		4.3	ns
t _{ZX1}		2.7		3.1		4.3	ns
t _{ZX2}		2.2		2.6		3.8	ns
t _{ZX3}		5.2		6.0		8.3	ns
t _{INREG}		3.4		4.1		5.5	ns
t _{IOFD}		0.8		1.3		2.4	ns
t _{INCOMB}		0.8		1.3		2.4	ns

Symbol	-1 Spee	ed Grade	-2 Spee	-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.5		2.0		2.6	ns
t _{EABDATA1}		0.0		0.0		0.0	ns
t _{EABWE1}		1.5		2.0		2.6	ns
t _{EABWE2}		0.3		0.4		0.5	ns
t _{EABRE1}		0.3		0.4		0.5	ns
t _{EABRE2}		0.0		0.0		0.0	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.4		0.5	ns
t _{EABBYPASS}		0.1		0.1		0.2	ns
t _{EABSU}	0.8		1.0		1.4		ns
t _{EABH}	0.1		0.1		0.2		ns
t _{EABCLR}	0.3		0.4		0.5		ns
t _{AA}		4.0		5.1		6.6	ns
t _{WP}	2.7		3.5		4.7		ns
t _{RP}	1.0		1.3		1.7		ns
t _{WDSU}	1.0		1.3		1.7		ns
t _{WDH}	0.2		0.2		0.3		ns
t _{WASU}	1.6		2.1		2.8		ns
t _{WAH}	1.6		2.1		2.8		ns
t _{RASU}	3.0		3.9		5.2		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		1.5		2.0		2.6	ns
t _{DD}		1.5		2.0		2.6	ns
t _{EABOUT}		0.2		0.3		0.3	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.7		3.5		4.7		ns

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters (Part 1 of

2)	Note	(1)
-/		V . V

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.9		7.6		9.9	ns
t _{EABRCOMB}	5.9		7.6		9.9		ns
t _{EABRCREG}	5.1		6.5		8.5		ns
t _{EABWP}	2.7		3.5		4.7		ns

Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{OD3}		4.0		5.6		7.5	ns
t _{XZ}		2.8		4.1		5.5	ns
t _{ZX1}		2.8		4.1		5.5	ns
t _{ZX2}		2.8		4.1		5.5	ns
t _{ZX3}		4.0		5.6		7.5	ns
t _{INREG}		2.5		3.0		4.1	ns
t _{IOFD}		0.4		0.5		0.6	ns
t _{INCOMB}		0.4		0.5		0.6	ns

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Мах	
t _{EABDATA1}		1.5		2.0		2.6	ns
t _{EABDATA2}		0.0		0.0		0.0	ns
t _{EABWE1}		1.5		2.0		2.6	ns
t _{EABWE2}		0.3		0.4		0.5	ns
t _{EABRE1}		0.3		0.4		0.5	ns
t _{EABRE2}		0.0		0.0		0.0	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.4		0.5	ns
t _{EABBYPASS}		0.1		0.1		0.2	ns
t _{EABSU}	0.8		1.0		1.4		ns
t _{EABH}	0.1		0.2		0.2		ns
t _{EABCLR}	0.3		0.4		0.5		ns
t _{AA}		4.0		5.0		6.6	ns
t _{WP}	2.7		3.5		4.7		ns
t _{RP}	1.0		1.3		1.7		ns
t _{WDSU}	1.0		1.3		1.7		ns
t _{WDH}	0.2		0.2		0.3		ns
t _{WASU}	1.6		2.1		2.8		ns
t _{WAH}	1.6		2.1		2.8		ns
t _{RASU}	3.0		3.9		5.2		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		1.5		2.0		2.6	ns

Table 54. EPF10K130E Device EAB Internal Microparameters (Part 2 of 2) Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{DD}		1.5		2.0		2.6	ns		
t _{EABOUT}		0.2		0.3		0.3	ns		
t _{EABCH}	1.5		2.0		2.5		ns		
t _{EABCL}	2.7		3.5		4.7		ns		

Table 55. EPF10K130E Device EAB Internal Timing Macroparameters Note (1)									
Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{EABAA}		5.9		7.5		9.9	ns		
t _{EABRCOMB}	5.9		7.5		9.9		ns		
t _{EABRCREG}	5.1		6.4		8.5		ns		
t _{EABWP}	2.7		3.5		4.7		ns		
t _{EABWCOMB}	5.9		7.7		10.3		ns		
t _{EABWCREG}	5.4		7.0		9.4		ns		
t _{EABDD}		3.4		4.5		5.9	ns		
t _{EABDATACO}		0.5		0.7		0.8	ns		
t _{EABDATASU}	0.8		1.0		1.4		ns		
t _{EABDATAH}	0.1		0.1		0.2		ns		
t _{EABWESU}	1.1		1.4		1.9		ns		
t _{EABWEH}	0.0		0.0		0.0		ns		
t _{EABWDSU}	1.0		1.3		1.7		ns		
t _{EABWDH}	0.2		0.2		0.3		ns		
t _{EABWASU}	4.1		5.1		6.8		ns		
t _{EABWAH}	0.0		0.0		0.0		ns		
t _{EABWO}		3.4		4.5		5.9	ns		

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Мах	
t _{EABWCOMB}	6.7		8.1		10.7		ns
t _{EABWCREG}	6.6		8.0		10.6		ns
t _{EABDD}		4.0		5.1		6.7	ns
t _{EABDATACO}		0.8		1.0		1.3	ns
t _{EABDATASU}	1.3		1.6		2.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	0.9		1.1		1.5		ns
t _{EABWEH}	0.4		0.5		0.6		ns
t _{EABWDSU}	1.5		1.8		2.4		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.0		3.6		4.7		ns
t _{EABWAH}	0.4		0.5		0.7		ns
t _{EABWO}		3.4		4.4		5.8	ns

 Table 63. EPF10K200E Device Interconnect Timing Microparameters
 Note (1)

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		4.2		4.6		5.7	ns
t _{DIN2LE}		1.7		1.7		2.0	ns
t _{DIN2DATA}		1.9		2.1		3.0	ns
t _{DCLK2IOE}		2.5		2.9		4.0	ns
t _{DCLK2LE}		1.7		1.7		2.0	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		2.3		2.6		3.6	ns
t _{SAMECOLUMN}		2.5		2.7		4.1	ns
t _{DIFFROW}		4.8		5.3		7.7	ns
t _{TWOROWS}		7.1		7.9		11.3	ns
t _{LEPERIPH}		7.0		7.6		9.0	ns
t _{LABCARRY}		0.1		0.1		0.2	ns
t _{LABCASC}		0.9		1.0		1.4	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.4		3.2	ns
t _{EABDATA2}		0.4		0.6		0.8	ns
t _{EABWE1}		1.0		1.4		1.9	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0.0		0.0		0.0	
t _{EABRE2}		0.4		0.6		0.8	
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		1.1		1.5	ns
t _{EABBYPASS}		0.0		0.0		0.0	ns
t _{EABSU}	0.7		1.0		1.3		ns
t _{EABH}	0.4		0.6		0.8		ns
t _{EABCLR}	0.8		1.1		1.5		
t _{AA}		2.0		2.8		3.8	ns
t _{WP}	2.0		2.8		3.8		ns
t _{RP}	1.0		1.4		1.9		
t _{WDSU}	0.5		0.7		0.9		ns
t _{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.0		1.4		1.9		ns
t _{WAH}	1.5		2.1		2.9		ns
t _{RASU}	1.5		2.1		2.8		
t _{RAH}	0.1		0.1		0.2		
t _{WO}		2.1		2.9		4.0	ns
t _{DD}		2.1		2.9		4.0	ns
t _{EABOUT}		0.0		0.0		0.0	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	1.5		2.0		2.5	İ	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.7		0.8		1.2	ns
t _{CLUT}		0.4		0.5		0.6	ns
t _{RLUT}		0.5		0.7		0.9	ns
t _{PACKED}		0.4		0.5		0.7	ns
t _{EN}		0.6		0.5		0.6	ns
tcico		0.1		0.2		0.3	ns
t _{CGEN}		0.3		0.4		0.6	ns
t _{CGENR}		0.1		0.2		0.3	ns
t _{CASC}		0.7		0.8		1.2	ns
t _C		0.5		0.6		0.8	ns
^t co		0.5		0.6		0.8	ns
t _{COMB}		0.3		0.6		0.8	ns
t _{SU}	0.4		0.6		0.7		ns
tн	1.0		1.1		1.5		ns
t _{PRE}		0.4		0.6		0.8	ns
t _{CLR}		0.5		0.6		0.8	ns
^t CH	2.0		2.5		3.0		ns
ĊL	2.0		2.5		3.0		ns

 Table 74. EPF10K200S Device IOE Timing Microparameters (Part 1 of 2)
 Note (1)

Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Мах	Min	Max	
t _{IOD}		1.8		1.9		2.6	ns
t _{IOC}		0.3		0.3		0.5	ns
t _{IOCO}		1.7		1.9		2.6	ns
t _{IOCOMB}		0.5		0.6		0.8	ns
t _{IOSU}	0.8		0.9		1.2		ns
t _{IOH}	0.4		0.8		1.1		ns
t _{IOCLR}		0.2		0.2		0.3	ns
t _{OD1}		1.3		0.7		0.9	ns
t _{OD2}		0.8		0.2		0.4	ns
t _{OD3}		2.9		3.0		3.9	ns
t _{XZ}		5.0		5.3		7.1	ns
t _{ZX1}		5.0		5.3		7.1	ns

Table 77. EPF10K200S Device Interconnect Timing Microparameters (Part 2 of 2) Note (1)									
Symbol	-1 Spee	d Grade -2 Speed Grade		-3 Spee	d Grade	Unit			
	Min	Мах	Min	Max	Min	Max			
t _{LABCASC}		0.5		1.0		1.4	ns		

 Table 78. EPF10K200S External Timing Parameters
 Note (1)

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DRR}		9.0		12.0		16.0	ns
t _{INSU} (2)	3.1		3.7		4.7		ns
t _{INH} (2)	0.0		0.0		0.0		ns
t _{оитсо} (2)	2.0	3.7	2.0	4.4	2.0	6.3	ns
t _{INSU} (3)	2.1		2.7		-		ns
t _{INH} (3)	0.0		0.0		-		ns
t оитсо ⁽³⁾	0.5	2.7	0.5	3.4	_	-	ns
t _{PCISU}	3.0		4.2		-		ns
t _{PCIH}	0.0		0.0		-		ns
t _{PCICO}	2.0	6.0	2.0	8.9	-	_	ns

Table 79. EPF10K200S External Bidirectional Timing Parameters Note (1) Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit Min Max Min Max Min Max t_{INSUBIDIR} (2) 2.3 3.4 4.4 ns 0.0 t_{INHBIDIR} (2) 0.0 0.0 ns tINSUBIDIR (3) 3.3 4.4 _ ns t_{INHBIDIR} (3) 0.0 0.0 _ ns toutcobidir (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns t_{XZBIDIR} (2) 6.9 7.6 9.2 ns t_{ZXBIDIR} (2) 5.9 6.6 _ ns toutcobidir (3) 0.5 2.7 0.5 3.4 _ _ ns t_{XZBIDIR} (3) 6.9 7.6 9.2 ns t_{ZXBIDIR} (3) 6.6 5.9 _ ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(3) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Altera Corporation

Additionally, the Altera software offers several features that help plan for future device migration by preventing the use of conflicting I/O pins.

Table 81. I/O Counts	for FLEX 10KA &	FLEX 10KE Devices				
FLEX 10	KA	FLEX 10KE				
Device	I/O Count	Device	I/O Count			
EPF10K30AF256	191	EPF10K30EF256	176			
EPF10K30AF484	246	EPF10K30EF484	220			
EPF10K50VB356	274	EPF10K50SB356	220			
EPF10K50VF484	291	EPF10K50EF484	254			
EPF10K50VF484	291	EPF10K50SF484	254			
EPF10K100AF484	369	EPF10K100EF484	338			

Configuration Schemes

The configuration data for a FLEX 10KE device can be loaded with one of five configuration schemes (see Table 82), chosen on the basis of the target application. An EPC1, EPC2, or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of a FLEX 10KE device, allowing automatic configuration on system power-up.

Multiple FLEX 10KE devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Additional FLEX 10K, FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be configured in the same serial chain.

Table 82. Data Sources for FLEX 10KE Configuration	
Configuration Scheme	Data Source
Configuration device	EPC1, EPC2, or EPC16 configuration device
Passive serial (PS)	BitBlaster, ByteBlasterMV, or MasterBlaster download cables, or serial data source
Passive parallel asynchronous (PPA)	Parallel data source
Passive parallel synchronous (PPS)	Parallel data source
JTAG	BitBlaster or ByteBlasterMV download cables, or microprocessor with a Jam STAPL file or JBC file

Device Pin-Outs	See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information.	
Revision History	The information contained in the <i>FLEX 10KE Embedded Programmable Logic Data Sheet</i> version 2.5 supersedes information published in previous versions.	
	Version 2.5	
	The following changes were made to the <i>FLEX 10KE Embedded Programmable Logic Data Sheet</i> version 2.5:	
	 <i>Note (1)</i> added to Figure 23. Text added to "I/O Element" section on page 34. Updated Table 22. 	
	Version 2.4	
	The following changes were made to the FLEX 10KE Embedded	

Programmable Logic Data Sheet version 2.4: updated text on page 34 and page 63.