E·XFL

Intel - EPF10K200SFC484-1N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	1248
Number of Logic Elements/Cells	9984
Total RAM Bits	98304
Number of I/O	369
Number of Gates	513000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	484-BBGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k200sfc484-1n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1 shows a block diagram of the FLEX 10KE architecture. Each group of LEs is combined into an LAB; groups of LABs are arranged into rows and columns. Each row also contains a single EAB. The LABs and EABs are interconnected by the FastTrack Interconnect routing structure. IOEs are located at the end of each row and column of the FastTrack Interconnect routing structure.

FLEX 10KE devices provide six dedicated inputs that drive the flipflops' control inputs and ensure the efficient distribution of high-speed, low-skew (less than 1.5 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect routing structure. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device.

The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous read or writes.

Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2).

Notes:

- (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
- (2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, and EPF10K200E devices have 104 EAB local interconnect channels.

Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is AND ed with a synchronous clear signal.

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.

During compilation, the Altera Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six modes chosen during design entry:

- Asynchronous clear
- Asynchronous preset
- Asynchronous clear and preset
- Asynchronous load with clear
- Asynchronous load with preset
- Asynchronous load without clear or preset

Figure 13. FLEX 10KE LAB Connections to Row & Column Interconnect

On all FLEX 10KE devices (except EPF10K50E and EPF10K200E devices), the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. EPF10K50S and EPF10K200S devices also support this feature. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time or turn it off to minimize setup time. This feature is used to reduce setup time for complex pin-to-register paths (e.g., PCI designs).

Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across the device and provides up to 12 peripheral control signals that can be allocated as follows:

- Up to eight output enable signals
- Up to six clock enable signals
- Up to two clock signals
- Up to two clear signals

If more than six clock enable or eight output enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, a LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chipwide reset signal resets all IOE registers, overriding any other control signals.

When a dedicated clock pin drives IOE registers, it can be inverted for all IOEs in the device. All IOEs must use the same sense of the clock. For example, if any IOE uses the inverted clock, all IOEs must use the inverted clock and no IOE can use the non-inverted clock. However, LEs can still use the true or complement of the clock on a LAB-by-LAB basis.

The incoming signal may be inverted at the dedicated clock pin and will drive all IOEs. For the true and complement of a clock to be used to drive IOEs, drive it into both global clock pins. One global clock pin will supply the true, and the other will supply the complement.

When the true and complement of a dedicated input drives IOE clocks, two signals on the peripheral control bus are consumed, one for each sense of the clock.

Table 13.	Table 13. ClockLock & ClockBoost Parameters for -2 Speed-Grade Devices											
Symbol	Parameter	Condition	Min	Тур	Max	Unit						
t _R	Input rise time				5	ns						
t _F	Input fall time				5	ns						
t _{INDUTY}	Input duty cycle		40		60	%						
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		75	MHz						
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		37.5	MHz						
f _{CLKDEV}	Input deviation from user specification in the MAX+PLUS II software (1)				25,000 (2)	PPM						
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps						
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs						
t _{JITTER}	Jitter on ClockLock or ClockBoost-	$t_{INCLKSTB} < 100$			250	ps						
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps						
toutduty	Duty cycle for ClockLock or ClockBoost-generated clock		40	50	60	%						

Notes to tables:

- (1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the input frequency. The Altera software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{ITTER} specification is measured under long-term observation. The maximum value for t_{ITTER} is 200 ps if t_{INCLKSTB} is lower than 50 ps.

I/O Configuration

This section discusses the peripheral component interconnect (PCI) pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera software logic options. The MultiVolt I/O interface is controlled by connecting V_{CCIO} to a different voltage than V_{CCINT} . Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu).

PCI Pull-Up Clamping Diode Option

FLEX 10KE devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the signal to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When V_{CCIO} is 3.3 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When V_{CCIO} is 2.5 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can be activated for a subset of pins, which would allow a device to bridge between a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of 4.3 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate pin-by-pin or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects the falling edge of the output.

Open-Drain Output Option

FLEX 10KE devices provide an optional open-drain output (electrically equivalent to open-collector output) for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

MultiVolt I/O Interface

The FLEX 10KE device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10KE devices in all packages to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

Generic Testing

Each FLEX 10KE device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10KE devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 21. FLEX 10KE AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V. devices or outputs.

Operating Conditions

Tables 19 through 23 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V FLEX 10KE devices.

Table 19. FLEX 10KE 2.5-V Device Absolute Maximum Ratings Note (1)											
Symbol	Parameter	Conditions	Min	Max	Unit						
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	3.6	V						
V _{CCIO}			-0.5	4.6	V						
VI	DC input voltage		-2.0	5.75	V						
IOUT	DC output current, per pin		-25	25	mA						
T _{STG}	Storage temperature	No bias	-65	150	°C						
T _{AMB}	Ambient temperature	Under bias	-65	135	°C						
TJ	Junction temperature	PQFP, TQFP, BGA, and FineLine BGA		135	°C						
		packages, under blas									
		Ceramic PGA packages, under bias		150	°C						

Figure 23. Output Drive Characteristics of FLEX 10KE Devices Note (1)

Note:

(1) These are transient (AC) currents.

Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay (*t*_{CO})
- Interconnect delay (t_{SAMEROW})
- **LE** look-up table delay (t_{LUT})
- **LE** register setup time (t_{SU})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

Figure 25. FLEX 10KE Device LE Timing Model

Figure 26. FLEX 10KE Device IOE Timing Model

Figure 27. FLEX 10KE Device EAB Timing Model

Figure 28. Synchronous Bidirectional Pin External Timing Model

Tables 24 through 28 describe the FLEX 10KE device internal timing parameters. Tables 29 through 30 describe the FLEX 10KE external timing parameters and their symbols.

Table 24. LE Timing Microparameters (Part 1 of 2) Note (1)							
Symbol	Parameter	Condition					
t _{LUT}	LUT delay for data-in						
t _{CLUT}	LUT delay for carry-in						
t _{RLUT}	LUT delay for LE register feedback						
t _{PACKED}	Data-in to packed register delay						
t _{EN}	LE register enable delay						
t _{CICO}	Carry-in to carry-out delay						
t _{CGEN}	Data-in to carry-out delay						
t _{CGENR}	LE register feedback to carry-out delay						
t _{CASC}	Cascade-in to cascade-out delay						
t _C	LE register control signal delay						
t _{CO}	LE register clock-to-output delay						
t _{COMB}	Combinatorial delay						
t _{SU}	LE register setup time for data and enable signals before clock; LE register						
	recovery time after asynchronous clear, preset, or load						
t _H	LE register hold time for data and enable signals after clock						
t _{PRE}	LE register preset delay						

Figures 29 and 30 show the asynchronous and synchronous timing waveforms, respectively, or the EAB macroparameters in Tables 26 and 27.

EAB Asynchronous Read WE _ a0 a2 Address a1 a3 – t_{EABAA}t_{EABRCCOMB} Data-Out d0 d3 d1 d2 **EAB Asynchronous Write** WE t_{EABWP} ► t_{EABWDH} t_{EABWDSU} × a din0 din1 Data-In t_{EABWASU} t_{EABWAH} t_{EABWCCOMB} Address a0 a1 a2 t_{EABDD} Data-Out din0 din1 dout2

Figure 29. EAB Asynchronous Timing Waveforms

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Write (EAB Output Registers Used)

Tables 31 through 37 show EPF10K30E device internal and external timing parameters.

Table 31. EPF10K30E Device LE Timing Microparameters (Part 1 of 2) Note (1)									
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{LUT}		0.7		0.8		1.1	ns		
t _{CLUT}		0.5		0.6		0.8	ns		
t _{RLUT}		0.6		0.7		1.0	ns		
t _{PACKED}		0.3		0.4		0.5	ns		
t _{EN}		0.6		0.8		1.0	ns		
t _{CICO}		0.1		0.1		0.2	ns		
t _{CGEN}		0.4		0.5		0.7	ns		

Table 34. EPF10K30E Device EAB Internal Timing Macroparameters Note (1)							
Symbol	-1 Spee	-1 Speed Grade		ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Мах	
t _{EABAA}		6.4		7.6		8.8	ns
t _{EABRCOMB}	6.4		7.6		8.8		ns
t _{EABRCREG}	4.4		5.1		6.0		ns
t _{EABWP}	2.5		2.9		3.3		ns
t _{EABWCOMB}	6.0		7.0		8.0		ns
t _{EABWCREG}	6.8		7.8		9.0		ns
t _{EABDD}		5.7		6.7		7.7	ns
t _{EABDATACO}		0.8		0.9		1.1	ns
t _{EABDATASU}	1.5		1.7		2.0		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	1.3		1.4		1.7		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.5		1.7		2.0		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.0		3.6		4.3		ns
t _{EABWAH}	0.5		0.5		0.4		ns
t _{EABWO}		5.1		6.0		6.8	ns

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)									
Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Speed Grade		Unit		
	Min	Мах	Min	Max	Min	Max			
t _{DRR}		8.5		10.0		13.5	ns		
t _{INSU}	2.7		3.2		4.3		ns		
t _{INH}	0.0		0.0		0.0		ns		
t _{оитсо}	2.0	4.5	2.0	5.2	2.0	7.3	ns		
t _{PCISU}	3.0		4.2		-		ns		
t _{PCIH}	0.0		0.0		-		ns		
t _{PCICO}	2.0	6.0	2.0	7.7	-	-	ns		

 Table 44. EPF10K50E External Bidirectional Timing Parameters
 Notes (1), (2)

Symbol	-1 Speed Grade		-2 Spee	eed Grade -3 Spee		d Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR}	2.7		3.2		4.3		ns	
t _{INHBIDIR}	0.0		0.0		0.0		ns	
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.2	2.0	7.3	ns	
t _{XZBIDIR}		6.8		7.8		10.1	ns	
tZXBIDIR		6.8		7.8		10.1	ns	

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external timing parameters.

Table 45. EPF10K100E Device LE Timing Microparameters Note (1)									
Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{LUT}		0.7		1.0		1.5	ns		
t _{CLUT}		0.5		0.7		0.9	ns		
t _{RLUT}		0.6		0.8		1.1	ns		
t _{PACKED}		0.3		0.4		0.5	ns		
t _{EN}		0.2		0.3		0.3	ns		
t _{CICO}		0.1		0.1		0.2	ns		
t _{CGEN}		0.4		0.5		0.7	ns		

Table 50. EPF10K100E External Timing Parameters Notes (1), (2)								
Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{DRR}		9.0		12.0		16.0	ns	
t _{INSU} (3)	2.0		2.5		3.3		ns	
t _{INH} (3)	0.0		0.0		0.0		ns	
t _{оитсо} (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns	
t _{INSU} (4)	2.0		2.2		-		ns	
t _{INH} (4)	0.0		0.0		-		ns	
t _{оитсо} (4)	0.5	3.0	0.5	4.6	-	-	ns	
t _{PCISU}	3.0		6.2		-		ns	
t _{PCIH}	0.0		0.0		-		ns	
t _{PCICO}	2.0	6.0	2.0	6.9	_	_	ns	

 Table 51. EPF10K100E External Bidirectional Timing Parameters
 Notes (1), (2)

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	1.7		2.5		3.3		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	2.0		2.8		-		ns
t _{INHBIDIR} (4)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns
t _{XZBIDIR} (3)		5.6		7.5		10.1	ns
t _{ZXBIDIR} (3)		5.6		7.5		10.1	ns
t _{OUTCOBIDIR} (4)	0.5	3.0	0.5	4.6	-	-	ns
t _{XZBIDIR} (4)		4.6		6.5		-	ns
t _{ZXBIDIR} (4)		4.6		6.5		-	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Table 59. EPF10K200E Device LE Timing Microparameters (Part 2 of 2) Note (1)									
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit		
	Min	Мах	Min	Max	Min	Max			
t _H	0.9		1.1		1.5		ns		
t _{PRE}		0.5		0.6		0.8	ns		
t _{CLR}		0.5		0.6		0.8	ns		
t _{CH}	2.0		2.5		3.0		ns		
t _{CL}	2.0		2.5		3.0		ns		

Table 60. EPF10K200E Device IOE Timing Microparameters Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{IOD}		1.6		1.9		2.6	ns	
t _{IOC}		0.3		0.3		0.5	ns	
t _{IOCO}		1.6		1.9		2.6	ns	
t _{IOCOMB}		0.5		0.6		0.8	ns	
t _{IOSU}	0.8		0.9		1.2		ns	
t _{IOH}	0.7		0.8		1.1		ns	
t _{IOCLR}		0.2		0.2		0.3	ns	
t _{OD1}		0.6		0.7		0.9	ns	
t _{OD2}		0.1		0.2		0.7	ns	
t _{OD3}		2.5		3.0		3.9	ns	
t _{XZ}		4.4		5.3		7.1	ns	
t _{ZX1}		4.4		5.3		7.1	ns	
t _{ZX2}		3.9		4.8		6.9	ns	
t _{ZX3}		6.3		7.6		10.1	ns	
t _{INREG}		4.8		5.7		7.7	ns	
t _{IOFD}		1.5		1.8		2.4	ns	
t _{INCOMB}		1.5		1.8		2.4	ns	

Figure 31. FLEX 10KE I_{CCACTIVE} vs. Operating Frequency (Part 2 of 2)

Configuration & Operation

The FLEX 10KE architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The FLEX 10KE architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. The process of physically loading the SRAM data into the device is called *configuration*. Before configuration, as V_{CC} rises, the device initiates a Power-On Reset (POR). This POR event clears the device and prepares it for configuration. The FLEX 10KE POR time does not exceed 50 µs.

When configuring with a configuration device, refer to the respective configuration device data sheet for POR timing information.

Additionally, the Altera software offers several features that help plan for future device migration by preventing the use of conflicting I/O pins.

Table 81. I/O Counts for FLEX 10KA & FLEX 10KE Devices							
FLEX 10	KA	FLEX 10KE					
Device	I/O Count	Device	I/O Count				
EPF10K30AF256	191	EPF10K30EF256	176				
EPF10K30AF484	246	EPF10K30EF484	220				
EPF10K50VB356	274	EPF10K50SB356	220				
EPF10K50VF484	291	EPF10K50EF484	254				
EPF10K50VF484	291	EPF10K50SF484	254				
EPF10K100AF484	369	EPF10K100EF484	338				

Configuration Schemes

The configuration data for a FLEX 10KE device can be loaded with one of five configuration schemes (see Table 82), chosen on the basis of the target application. An EPC1, EPC2, or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of a FLEX 10KE device, allowing automatic configuration on system power-up.

Multiple FLEX 10KE devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Additional FLEX 10K, FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be configured in the same serial chain.

Table 82. Data Sources for FLEX 10KE Configuration				
Configuration Scheme	Data Source			
Configuration device	EPC1, EPC2, or EPC16 configuration device			
Passive serial (PS)	BitBlaster, ByteBlasterMV, or MasterBlaster download cables, or serial data source			
Passive parallel asynchronous (PPA)	Parallel data source			
Passive parallel synchronous (PPS)	Parallel data source			
JTAG	BitBlaster or ByteBlasterMV download cables, or microprocessor with a Jam STAPL file or JBC file			