E·XFL

Intel - EPF10K200SFC484-2 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	1248
Number of Logic Elements/Cells	9984
Total RAM Bits	98304
Number of I/O	369
Number of Gates	513000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	484-BBGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k200sfc484-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. FLEX 10KE Device Features							
Feature	EPF10K100E (2)	EPF10K130E	EPF10K200E EPF10K200S				
Typical gates (1)	100,000	130,000	200,000				
Maximum system gates	257,000	342,000	513,000				
Logic elements (LEs)	4,992	6,656	9,984				
EABs	12	16	24				
Total RAM bits	49,152	65,536	98,304				
Maximum user I/O pins	338	413	470				

Note to tables:

- (1) The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates.
- (2) New EPF10K100B designs should use EPF10K100E devices.

...and More

- Fabricated on an advanced process and operate with a 2.5-V internal supply voltage
- In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port
- ClockLock[™] and ClockBoost[™] options for reduced clock _ delay/skew and clock multiplication
- Built-in low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required
- Pull-up on I/O pins before and during configuration
- Flexible interconnect
 - FastTrack[®] Interconnect continuous routing structure for fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
 - Tri-state emulation that implements internal tri-state buses
 - Up to six global clock signals and four global clear signals
 - Powerful I/O pins
 - Individual tri-state output enable control for each pin
 - Open-drain option on each I/O pin
 - Programmable output slew-rate control to reduce switching noise
 - Clamp to V_{CCIO} user-selectable on a pin-by-pin basis
 - Supports hot-socketing

- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800
- Flexible package options
 - Available in a variety of packages with 144 to 672 pins, including the innovative FineLine BGA[™] packages (see Tables 3 and 4)
 - SameFrame[™] pin-out compatibility between FLEX 10KA and FLEX 10KE devices across a range of device densities and pin counts
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic

Table 3. FLEX 10KE Package Options & I/O Pin Count Notes (1), (2)										
Device	144-Pin TQFP	208-Pin PQFP	240-Pin PQFP RQFP	256-Pin FineLine BGA	356-Pin BGA	484-Pin FineLine BGA	599-Pin PGA	600-Pin BGA	672-Pin FineLine BGA	
EPF10K30E	102	147		176		220			220 (3)	
EPF10K50E	102	147	189	191		254			254 (3)	
EPF10K50S	102	147	189	191	220	254			254 (3)	
EPF10K100E		147	189	191	274	338			338 (3)	
EPF10K130E			186		274	369		424	413	
EPF10K200E							470	470	470	
EPF10K200S			182		274	369	470	470	470	

Notes:

- (1) FLEX 10KE device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), pin-grid array (PGA), and ball-grid array (BGA) packages.
- (2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When planning device migration, use the I/O pins that are common to all devices.
- (3) This option is supported with a 484-pin FineLine BGA package. By using SameFrame pin migration, all FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin, 484-pin, and 672-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration is set.

TADIE J. FLEA TOKE FETTOTTIANCE								
Application	Resource	es Used		Performance				
	LEs	EABs	-1 Speed Grade	-2 Speed Grade	-3 Speed Grade			
16-bit loadable counter	16	0	285	250	200	MHz		
16-bit accumulator	16	0	285	250	200	MHz		
16-to-1 multiplexer (1)	10	0	3.5	4.9	7.0	ns		
16-bit multiplier with 3-stage pipeline (2)	592	0	156	131	93	MHz		
256×16 RAM read cycle speed (2)	0	1	196	154	118	MHz		
256×16 RAM write cycle speed (2)	0	1	185	143	106	MHz		

Table 5. FLEX 10KE Performance

Notes:

(1) This application uses combinatorial inputs and outputs.

(2) This application uses registered inputs and outputs.

Table 6 shows FLEX 10KE performance for more complex designs. These designs are available as Altera MegaCore $^{\circ}$ functions.

Table 6. FLEX 10KE Performance for Complex Designs								
Application	LEs Used		Performance					
		-1 Speed Grade	-2 Speed Grade	-3 Speed Grade				
8-bit, 16-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS			
8-bit, 512-point fast Fourier	1,854	23.4	28.7	38.9	µs (1)			
transform (FFT) function		113	92	68	MHz			
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz			

Note:

(1) These values are for calculation time. Calculation time = number of clocks required / f_{max} . Number of clocks required = ceiling [log 2 (points)/2] × [points +14 + ceiling]

Similar to the FLEX 10KE architecture, embedded gate arrays are the fastest-growing segment of the gate array market. As with standard gate arrays, embedded gate arrays implement general logic in a conventional "sea-of-gates" architecture. Additionally, embedded gate arrays have dedicated die areas for implementing large, specialized functions. By embedding functions in silicon, embedded gate arrays reduce die area and increase speed when compared to standard gate arrays. While embedded megafunctions typically cannot be customized, FLEX 10KE devices are programmable, providing the designer with full control over embedded megafunctions and general logic, while facilitating iterative design changes during debugging.

Each FLEX 10KE device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and datatransformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

FLEX 10KE devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers the EPC1, EPC2, and EPC16 configuration devices, which configure FLEX 10KE devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera BitBlasterTM, ByteBlasterMVTM, or MasterBlaster download cables. After a FLEX 10KE device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 85 ms, real-time changes can be made during system operation.

FLEX 10KE devices contain an interface that permits microprocessors to configure FLEX 10KE devices serially or in-parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat a FLEX 10KE device as memory and configure it by writing to a virtual memory location, making it easy to reconfigure the device.

Functional Description

Each FLEX 10KE device contains an enhanced embedded array to implement memory and specialized logic functions, and a logic array to implement general logic.

The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions, such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions.

The logic array consists of logic array blocks (LABs). Each LAB contains eight LEs and a local interconnect. An LE consists of a four-input look-up table (LUT), a programmable flipflop, and dedicated signal paths for carry and cascade functions. The eight LEs can be used to create medium-sized blocks of logic—such as 8-bit counters, address decoders, or state machines—or combined across LABs to create larger logic blocks. Each LAB represents about 96 usable gates of logic.

Signal interconnections within FLEX 10KE devices (as well as to and from device pins) are provided by the FastTrack Interconnect routing structure, which is a series of fast, continuous row and column channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect routing structure. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an output or input register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. As inputs, they provide setup times as low as 0.9 ns and hold times of 0 ns. As outputs, these registers provide clock-to-output times as low as 3.0 ns. IOEs provide a variety of features, such as JTAG BST support, slew-rate control, tri-state buffers, and open-drain outputs.

Figure 4. FLEX 10KE Device in Single-Port RAM Mode

Note:

(1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 104 EAB local interconnect channels.

EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB's synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB's self-timed RAM must only meet the setup and hold time specifications of the global clock. When used as RAM, each EAB can be configured in any of the following sizes: 256×16 , 512×8 , $1,024 \times 4$, or $2,048 \times 2$ (see Figure 5).

Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block; two 512×8 RAM blocks can be combined to form a 512×16 block (see Figure 6).

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. The Altera software automatically combines EABs to meet a designer's RAM specifications.

FastTrack Interconnect Routing Structure

In the FLEX 10KE architecture, connections between LEs, EABs, and device I/O pins are provided by the FastTrack Interconnect routing structure, which is a series of continuous horizontal and vertical routing channels that traverses the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect. The row interconnect can drive I/O pins and feed other LABs in the row. The column interconnect routes signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row signal is buffered at every LAB or EAB to reduce the effect of fan-out on delay. A row channel can be driven by an LE or by one of three column channels. These four signals feed dual 4-to-1 multiplexers that connect to two specific row channels. These multiplexers, which are connected to each LE, allow column channels to drive row channels even when all eight LEs in a LAB drive the row interconnect.

Each column of LABs or EABs is served by a dedicated column interconnect. The column interconnect that serves the EABs has twice as many channels as other column interconnects. The column interconnect can then drive I/O pins or another row's interconnect to route the signals to other LABs or EABs in the device. A signal from the column interconnect, which can be either the output of a LE or an input from an I/O pin, must be routed to the row interconnect before it can enter a LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one specific column channel.

Access to row and column channels can be switched between LEs in adjacent pairs of LABs. For example, a LE in one LAB can drive the row and column channels normally driven by a particular LE in the adjacent LAB in the same row, and vice versa. This flexibility enables routing resources to be used more efficiently (see Figure 13). Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row channels. The signal is accessible by all LEs within that row. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the row channels. Up to eight IOEs connect to each side of each row channel (see Figure 16).

Figure 16. FLEX 10KE Row-to-IOE Connections The values for m and n are provided in Table 10.

IOE1 m Row FastTrack

Table 10 lists the	FLEX 10KE row-to	o-IOE interconnect resources.
--------------------	------------------	-------------------------------

Table 10. FLEX 10KE Row-to-IOE Interconnect Resources						
Device	Channels per Row (n)	Row Channels per Pin (m)				
EPF10K30E	216	27				
EPF10K50E	216	27				
EPF10K50S						
EPF10K100E	312	39				
EPF10K130E	312	39				
EPF10K200E EPF10K200S	312	39				

 \bigcirc

ClockLock & ClockBoost Features

To support high-speed designs, FLEX 10KE devices offer optional ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by resource sharing within the device. The ClockBoost feature allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth.

All FLEX 10KE devices, except EPF10K50E and EPF10K200E devices, support ClockLock and ClockBoost circuitry. EPF10K50S and EPF10K200S devices support this circuitry. Devices that support Clock-Lock and ClockBoost circuitry are distinguished with an "X" suffix in the ordering code; for instance, the EPF10K200SFC672-1X device supports this circuit.

The ClockLock and ClockBoost features in FLEX 10KE devices are enabled through the Altera software. External devices are not required to use these features. The output of the ClockLock and ClockBoost circuits is not available at any of the device pins.

The ClockLock and ClockBoost circuitry locks onto the rising edge of the incoming clock. The circuit output can drive the clock inputs of registers only; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and ClockBoost circuitry. When the dedicated clock pin is driving the ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to the GCLK1 pin. In the Altera software, the GCLK1 pin can feed both the ClockLock and ClockBoost circuitry in the FLEX 10KE device. However, when both circuits are used, the other clock pin cannot be used.

Figure 20 shows the timing requirements for the JTAG signals.

Figure 20. FLEX 10KE JTAG Waveforms

Table 18 shows the timing parameters and values for FLEX 10KE devices.

Table 18. FLEX 10KE JTAG Timing Parameters & Values							
Symbol	Parameter	Min	Мах	Unit			
t _{JCP}	TCK clock period	100		ns			
t _{JCH}	TCK clock high time	50		ns			
t _{JCL}	TCK clock low time	50		ns			
t _{JPSU}	JTAG port setup time	20		ns			
t _{JPH}	JTAG port hold time	45		ns			
t _{JPCO}	JTAG port clock to output		25	ns			
t _{JPZX}	JTAG port high impedance to valid output		25	ns			
t _{JPXZ}	JTAG port valid output to high impedance		25	ns			
t _{JSSU}	Capture register setup time	20		ns			
t _{JSH}	Capture register hold time	45		ns			
t _{JSCO}	Update register clock to output		35	ns			
t _{JSZX}	Update register high impedance to valid output		35	ns			
t _{JSXZ}	Update register valid output to high impedance		35	ns			

Figures 29 and 30 show the asynchronous and synchronous timing waveforms, respectively, or the EAB macroparameters in Tables 26 and 27.

EAB Asynchronous Read WE _ a0 a2 Address a1 a3 – t_{EABAA}t_{EABRCCOMB} Data-Out d0 d3 d1 d2 **EAB Asynchronous Write** WE t_{EABWP} ► t_{EABWDH} t_{EABWDSU} Þ. din0 din1 Data-In t_{EABWASU} t_{EABWAH} t_{EABWCCOMB} Address a0 a1 a2 t_{EABDD} Data-Out din0 din1 dout2

Figure 29. EAB Asynchronous Timing Waveforms

Table 37. EPF10K30E External Bidirectional Timing Parameters Notes (1), (2)								
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR} (3)	2.8		3.9		5.2		ns	
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns	
t _{INSUBIDIR} (4)	3.8		4.9		-		ns	
t _{INHBIDIR} (4)	0.0		0.0		-		ns	
t _{outcobidir} (3)	2.0	4.9	2.0	5.9	2.0	7.6	ns	
t _{XZBIDIR} (3)		6.1		7.5		9.7	ns	
t _{ZXBIDIR} (3)		6.1		7.5		9.7	ns	
t _{OUTCOBIDIR} (4)	0.5	3.9	0.5	4.9	-	_	ns	
t _{XZBIDIR} (4)		5.1		6.5		-	ns	
t _{ZXBIDIR} (4)		5.1		6.5		-	ns	

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 38 through 44 show EPF10K50E device internal and external timing parameters.

Table 38. EPF10K50E Device LE Timing Microparameters (Part 1 of 2) Note (1)							
Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.6		0.9		1.3	ns
t _{CLUT}		0.5		0.6		0.8	ns
t _{RLUT}		0.7		0.8		1.1	ns
t _{PACKED}		0.4		0.5		0.6	ns
t _{EN}		0.6		0.7		0.9	ns
t _{CICO}		0.2		0.2		0.3	ns
t _{CGEN}		0.5		0.5		0.8	ns
t _{CGENR}		0.2		0.2		0.3	ns
t _{CASC}		0.8		1.0		1.4	ns
t _C		0.5		0.6		0.8	ns
t _{CO}		0.7		0.7		0.9	ns
t _{COMB}		0.5		0.6		0.8	ns
t _{SU}	0.7		0.7		0.8		ns

FLEX 10KE Embedded Programmable	e Logic Devices	Data Sheet
---------------------------------	-----------------	------------

Table 41. EPF10K50E Device EAB Internal Timing Macroparameters Note (1)							
Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		6.4		7.6		10.2	ns
t _{EABRCOMB}	6.4		7.6		10.2		ns
t _{EABRCREG}	4.4		5.1		7.0		ns
t _{EABWP}	2.5		2.9		3.9		ns
t _{EABWCOMB}	6.0		7.0		9.5		ns
t _{EABWCREG}	6.8		7.8		10.6		ns
t _{EABDD}		5.7		6.7		9.0	ns
t _{EABDATACO}		0.8		0.9		1.3	ns
t _{EABDATASU}	1.5		1.7		2.3		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	1.3		1.4		2.0		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.5		1.7		2.3		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.0		3.6		4.8		ns
t _{EABWAH}	0.5		0.5		0.8		ns
t _{EABWO}		5.1		6.0		8.1	ns

Table 42. EPF10	(50E Device	Interconnec	t Timing Mie	croparamete	ers Note	(1)	
Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		3.5		4.3		5.6	ns
t _{DIN2LE}		2.1		2.5		3.4	ns
t _{DIN2DATA}		2.2		2.4		3.1	ns
t _{DCLK2IOE}		2.9		3.5		4.7	ns
t _{DCLK2LE}		2.1		2.5		3.4	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.1		1.1		1.5	ns
t _{SAMECOLUMN}		0.8		1.0		1.3	ns
t _{DIFFROW}		1.9		2.1		2.8	ns
t _{TWOROWS}		3.0		3.2		4.3	ns
t _{LEPERIPH}		3.1		3.3		3.7	ns
t _{LABCARRY}		0.1		0.1		0.2	ns
t _{LABCASC}		0.3		0.3		0.5	ns

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DRR}		8.5		10.0		13.5	ns
t _{INSU}	2.7		3.2		4.3		ns
t _{INH}	0.0		0.0		0.0		ns
t _{оитсо}	2.0	4.5	2.0	5.2	2.0	7.3	ns
t _{PCISU}	3.0		4.2		-		ns
t _{PCIH}	0.0		0.0		-		ns
t _{PCICO}	2.0	6.0	2.0	7.7	-	-	ns

 Table 44. EPF10K50E External Bidirectional Timing Parameters
 Notes (1), (2)

	r				-		
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	2.7		3.2		4.3		ns
t _{INHBIDIR}	0.0		0.0		0.0		ns
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.2	2.0	7.3	ns
t _{XZBIDIR}		6.8		7.8		10.1	ns
tZXBIDIR		6.8		7.8		10.1	ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external timing parameters.

Table 45. EPF10K100E Device LE Timing Microparameters Note (1)							
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.7		1.0		1.5	ns
t _{CLUT}		0.5		0.7		0.9	ns
t _{RLUT}		0.6		0.8		1.1	ns
t _{PACKED}		0.3		0.4		0.5	ns
t _{EN}		0.2		0.3		0.3	ns
t _{CICO}		0.1		0.1		0.2	ns
t _{CGEN}		0.4		0.5		0.7	ns

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Table 59. EPF10K.	200E Device	LE Timing	Microparam	eters (Part	2 of 2) N	ote (1)	
Symbol	-1 Spee	ed Grade -2 S		-2 Speed Grade		d Grade	Unit
	Min	Мах	Min	Max	Min	Max	
t _H	0.9		1.1		1.5		ns
t _{PRE}		0.5		0.6		0.8	ns
t _{CLR}		0.5		0.6		0.8	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns

Table 60. EPF10K200E Device IOE Timing Microparameters Note (1)							
Symbol	-1 Spee	ed Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{IOD}		1.6		1.9		2.6	ns
t _{IOC}		0.3		0.3		0.5	ns
t _{IOCO}		1.6		1.9		2.6	ns
t _{IOCOMB}		0.5		0.6		0.8	ns
t _{IOSU}	0.8		0.9		1.2		ns
t _{IOH}	0.7		0.8		1.1		ns
t _{IOCLR}		0.2		0.2		0.3	ns
t _{OD1}		0.6		0.7		0.9	ns
t _{OD2}		0.1		0.2		0.7	ns
t _{OD3}		2.5		3.0		3.9	ns
t _{XZ}		4.4		5.3		7.1	ns
t _{ZX1}		4.4		5.3		7.1	ns
t _{ZX2}		3.9		4.8		6.9	ns
t _{ZX3}		6.3		7.6		10.1	ns
t _{INREG}		4.8		5.7		7.7	ns
t _{IOFD}		1.5		1.8		2.4	ns
t _{INCOMB}		1.5		1.8		2.4	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.4		3.2	ns
t _{EABDATA2}		0.4		0.6		0.8	ns
t _{EABWE1}		1.0		1.4		1.9	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0.0		0.0		0.0	
t _{EABRE2}		0.4		0.6		0.8	
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		1.1		1.5	ns
t _{EABBYPASS}		0.0		0.0		0.0	ns
t _{EABSU}	0.7		1.0		1.3		ns
t _{EABH}	0.4		0.6		0.8		ns
t _{EABCLR}	0.8		1.1		1.5		
t _{AA}		2.0		2.8		3.8	ns
t _{WP}	2.0		2.8		3.8		ns
t _{RP}	1.0		1.4		1.9		
t _{WDSU}	0.5		0.7		0.9		ns
t _{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.0		1.4		1.9		ns
t _{WAH}	1.5		2.1		2.9		ns
t _{RASU}	1.5		2.1		2.8		
t _{RAH}	0.1		0.1		0.2		
t _{WO}		2.1		2.9		4.0	ns
t _{DD}		2.1		2.9		4.0	ns
t _{EABOUT}		0.0		0.0		0.0	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	1.5		2.0		2.5		ns

Table 69. EPF10	K50S Device	EAB Interna	l Timing Ma	ocroparamet	ers Note	e (1)	
Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Мах	Min	Max	
t _{EABAA}		3.7		5.2		7.0	ns
t _{EABRCCOMB}	3.7		5.2		7.0		ns
t _{EABRCREG}	3.5		4.9		6.6		ns
t _{EABWP}	2.0		2.8		3.8		ns
t _{EABWCCOMB}	4.5		6.3		8.6		ns
t _{EABWCREG}	5.6		7.8		10.6		ns
t _{EABDD}		3.8		5.3		7.2	ns
t _{EABDATACO}		0.8		1.1		1.5	ns
t _{EABDATASU}	1.1		1.6		2.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	0.7		1.0		1.3		ns
t _{EABWEH}	0.4		0.6		0.8		ns
t _{EABWDSU}	1.2		1.7		2.2		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	1.6		2.3		3.0		ns
t _{EABWAH}	0.9		1.2		1.8		ns
t _{EABWO}		3.1		4.3		5.9	ns

Table 70. EPF10K50S Device Interconnect Timing Microparameters Note (1)							
Symbol	-1 Spee	ed Grade	-2 Spee	-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Мах	
t _{DIN2IOE}		3.1		3.7		4.6	ns
t _{DIN2LE}		1.7		2.1		2.7	ns
t _{DIN2DATA}		2.7		3.1		5.1	ns
t _{DCLK2IOE}		1.6		1.9		2.6	ns
t _{DCLK2LE}		1.7		2.1		2.7	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.5		1.7		2.4	ns
t _{SAMECOLUMN}		1.0		1.3		2.1	ns
t _{DIFFROW}		2.5		3.0		4.5	ns
t _{TWOROWS}		4.0		4.7		6.9	ns
t _{LEPERIPH}		2.6		2.9		3.4	ns
t _{LABCARRY}		0.1		0.2		0.2	ns
t _{LABCASC}		0.8		1.0		1.3	ns

Power Consumption	The supply power (P) for FLEX 10KE devices can be calculated with the following equation:					
oonoumption	$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTI})$	$_{\rm VE}$) $ imes$ V _{CC} + P _{IO}				
	The $I_{CCACTIVE}$ value depends on the sw application logic. This value is calculated that each LE typically consumes. The P_{IC} device output load characteristics and so calculated using the guidelines given in <i>Power for Altera Devices</i>).	itching frequency and the d based on the amount of current o value, which depends on the witching frequency, can be <i>Application Note 74 (Evaluating</i>				
	Compared to the rest of the device, the energigible amount of power. Therefore, ignored when calculating supply current	embedded array consumes a the embedded array can be t.				
	The I_{CCACTIVE} value can be calculated with the following equation:					
	$I_{CCACTIVE} = \mathbf{K} \times \mathbf{f}_{\mathbf{MAX}} \times \mathbf{N} \times \mathbf{tog}_{\mathbf{LC}} \times \frac{\mu \mathbf{A}}{\mathbf{MHz} \times \mathbf{LE}}$					
	Where:					
	 f_{MAX} = Maximum operating freque N = Total number of LEs used i tog_{LC} = Average percent of LEs tog (typically 12.5%) K = Constant 	 f_{MAX} = Maximum operating frequency in MHz N = Total number of LEs used in the device tog_{LC} = Average percent of LEs toggling at each clock (typically 12.5%) K = Constant 				
	Table 80 provides the constant (K) value	S IOF FLEX TUKE devices.				
	Table 80. FLEX 10KE K Constant Values					
	Device	K Value				
	EPF10K30E	4.5				
	EPF10K50E	4.8				
	EPF10K50S	4.5				
	EPF10K100E	4.5				
	EPF10K130E	4.6				
	EPF10K200E	4.8				

EPF10K200S

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

4.6

Device Pin-Outs	See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information.
Revision History	The information contained in the <i>FLEX 10KE Embedded Programmable Logic Data Sheet</i> version 2.5 supersedes information published in previous versions.
	Version 2.5
	The following changes were made to the <i>FLEX 10KE Embedded Programmable Logic Data Sheet</i> version 2.5:
	 <i>Note (1)</i> added to Figure 23. Text added to "I/O Element" section on page 34. Updated Table 22.
	Version 2.4
	The following changes were made to the FLEX 10KE Embedded

Programmable Logic Data Sheet version 2.4: updated text on page 34 and page 63.