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Similar to the FLEX 10KE architecture, embedded gate arrays are the 
fastest-growing segment of the gate array market. As with standard gate 
arrays, embedded gate arrays implement general logic in a conventional 
“sea-of-gates” architecture. Additionally, embedded gate arrays have 
dedicated die areas for implementing large, specialized functions. By 
embedding functions in silicon, embedded gate arrays reduce die area 
and increase speed when compared to standard gate arrays. While 
embedded megafunctions typically cannot be customized, FLEX 10KE 
devices are programmable, providing the designer with full control over 
embedded megafunctions and general logic, while facilitating iterative 
design changes during debugging.

Each FLEX 10KE device contains an embedded array and a logic array. 
The embedded array is used to implement a variety of memory functions 
or complex logic functions, such as digital signal processing (DSP), wide 
data-path manipulation, microcontroller applications, and data-
transformation functions. The logic array performs the same function as 
the sea-of-gates in the gate array and is used to implement general logic 
such as counters, adders, state machines, and multiplexers. The 
combination of embedded and logic arrays provides the high 
performance and high density of embedded gate arrays, enabling 
designers to implement an entire system on a single device.

FLEX 10KE devices are configured at system power-up with data stored 
in an Altera serial configuration device or provided by a system 
controller. Altera offers the EPC1, EPC2, and EPC16 configuration 
devices, which configure FLEX 10KE devices via a serial data stream. 
Configuration data can also be downloaded from system RAM or via the 
Altera BitBlasterTM, ByteBlasterMVTM, or MasterBlaster download cables. 
After a FLEX 10KE device has been configured, it can be reconfigured 
in-circuit by resetting the device and loading new data. Because 
reconfiguration requires less than 85 ms, real-time changes can be made 
during system operation.

FLEX 10KE devices contain an interface that permits microprocessors to 
configure FLEX 10KE devices serially or in-parallel, and synchronously or 
asynchronously. The interface also enables microprocessors to treat a 
FLEX 10KE device as memory and configure it by writing to a virtual 
memory location, making it easy to reconfigure the device.
6 Altera Corporation
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The EAB can also be used for bidirectional, dual-port memory 
applications where two ports read or write simultaneously. To implement 
this type of dual-port memory, two EABs are used to support two 
simultaneous read or writes.

Alternatively, one clock and clock enable can be used to control the input 
registers of the EAB, while a different clock and clock enable control the 
output registers (see Figure 2).

Figure 2. FLEX 10KE Device in Dual-Port RAM Mode       Notes (1)

Notes:
(1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
(2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, and 

EPF10K200E devices have 104 EAB local interconnect channels. 
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The EAB can also use Altera megafunctions to implement dual-port RAM 
applications where both ports can read or write, as shown in Figure 3.

Figure 3. FLEX 10KE EAB in Dual-Port RAM Mode

The FLEX 10KE EAB can be used in a single-port mode, which is useful for 
backward-compatibility with FLEX 10K designs (see Figure 4).
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12 Altera Corporation



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock, clear, and preset control signals on the flipflop can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the flipflop is bypassed and the output 
of the LUT drives the output of the LE. 

The LE has two outputs that drive the interconnect: one drives the local 
interconnect and the other drives either the row or column FastTrack 
Interconnect routing structure. The two outputs can be controlled 
independently. For example, the LUT can drive one output while the 
register drives the other output. This feature, called register packing, can 
improve LE utilization because the register and the LUT can be used for 
unrelated functions.

The FLEX 10KE architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports 
high-speed counters and adders and the cascade chain implements 
wide-input functions with minimum delay. Carry and cascade chains 
connect all LEs in a LAB as well as all LABs in the same row. Intensive use 
of carry and cascade chains can reduce routing flexibility. Therefore, the 
use of these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
FLEX 10KE architecture to implement high-speed counters, adders, and 
comparators of arbitrary width efficiently. Carry chain logic can be 
created automatically by the Altera Compiler during design processing, 
or manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EPF10K50E device, the carry chain stops at the eighteenth LAB and 
a new one begins at the nineteenth LAB.
18 Altera Corporation
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Altera Compiler automatically selects 
the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect routing 
structure at the same time. 

The LUT and the register in the LE can be used independently (register 
packing). To support register packing, the LE has two outputs; one drives 
the local interconnect, and the other drives the FastTrack Interconnect 
routing structure. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect routing structure while the LUT drives 
the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function; the other generates a carry output. As 
shown in Figure 11 on page 22, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
Use 2 three-input LUTs: one generates the counter data, and the other 
generates the fast carry bit. A 2-to-1 multiplexer provides synchronous 
loading. Data can also be loaded asynchronously with the clear and preset 
register control signals without using the LUT resources.
Altera Corporation 23 
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Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this 
mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with 
an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 
asynchronously loads a one into the register. Alternatively, the Altera 
software can provide preset control by using the clear and inverting the 
input and output of the register. Inversion control is available for the 
inputs to both LEs and IOEs. Therefore, if a register is preset by only one 
of the two LABCTRL signals, the DATA3 input is not needed and can be 
used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls 
the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that 
asserting LABCTRL1 asynchronously loads a one into the register, 
effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear. LABCTRL2 implements the clear by 
controlling the register clear; LABCTRL2 does not have to feed the preset 
circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Asserting LABCTRL2 presets the 
register, while asserting LABCTRL1 loads the register. The Altera software 
inverts the signal that drives DATA3 to account for the inversion of the 
register’s output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear.
26 Altera Corporation
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Signals on the peripheral control bus can also drive the four global signals, 
referred to as GLOBAL0 through GLOBAL3 in Tables 8 and 9. An internally 
generated signal can drive a global signal, providing the same low-skew, 
low-delay characteristics as a signal driven by an input pin. An LE drives 
the global signal by driving a row line that drives the peripheral bus, 
which then drives the global signal. This feature is ideal for internally 
generated clear or clock signals with high fan-out. However, internally 
driven global signals offer no advantage over the general-purpose 
interconnect for routing data signals. The dedicated input pin should be 
driven to a known logic state (such as ground) and not be allowed to float.

The chip-wide output enable pin is an active-high pin (DEV_OE) that can 
be used to tri-state all pins on the device. This option can be set in the 
Altera software. On EPF10K50E and EPF10K200E devices, the built-in I/O 
pin pull-up resistors (which are active during configuration) are active 
when the chip-wide output enable pin is asserted. The registers in the IOE 
can also be reset by the chip-wide reset pin.

Table 9.  Peripheral Bus Sources for EPF10K100E, EPF10K130E, EPF10K200E & EPF10K200S Devices

Peripheral 
Control Signal

EPF10K100E EPF10K130E EPF10K200E
EPF10K200S

OE0 Row A Row C Row G

OE1 Row C Row E Row I

OE2 Row E Row G Row K

OE3 Row L Row N Row R

OE4 Row I Row K Row O

OE5 Row K Row M Row Q

CLKENA0/CLK0/GLOBAL0 Row F Row H Row L

CLKENA1/OE6/GLOBAL1 Row D Row F Row J

CLKENA2/CLR0 Row B Row D Row H

CLKENA3/OE7/GLOBAL2 Row H Row J Row N

CLKENA4/CLR1 Row J Row L Row P

CLKENA5/CLK1/GLOBAL3 Row G Row I Row M
34 Altera Corporation
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Figure 22 shows the required relationship between VCCIO and VCCINT for 
3.3-V PCI compliance.

Figure 22. Relationship between VCCIO & VCCINT for 3.3-V PCI Compliance

Figure 23 shows the typical output drive characteristics of FLEX 10KE 
devices with 3.3-V and 2.5-V VCCIO. The output driver is compliant to the 
3.3-V PCI Local Bus Specification, Revision 2.2 (when VCCIO pins are 
connected to 3.3 V). FLEX 10KE devices with a -1 speed grade also comply 
with the drive strength requirements of the PCI Local Bus Specification, 
Revision 2.2 (when VCCINT pins are powered with a minimum supply of 
2.375 V, and VCCIO pins are connected to 3.3 V). Therefore, these devices 
can be used in open 5.0-V PCI systems.
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Timing simulation and delay prediction are available with the Altera 
Simulator and Timing Analyzer, or with industry-standard EDA tools. 
The Simulator offers both pre-synthesis functional simulation to evaluate 
logic design accuracy and post-synthesis timing simulation with 0.1-ns 
resolution. The Timing Analyzer provides point-to-point timing delay 
information, setup and hold time analysis, and device-wide performance 
analysis.

Figure 24 shows the overall timing model, which maps the possible paths 
to and from the various elements of the FLEX 10KE device.

Figure 24. FLEX 10KE Device Timing Model

Figures 25 through 28 show the delays that correspond to various paths 
and functions within the LE, IOE, EAB, and bidirectional timing models.
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Figure 26. FLEX 10KE Device IOE Timing Model

Figure 27. FLEX 10KE Device EAB Timing Model
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Figures 29 and 30 show the asynchronous and synchronous timing 
waveforms, respectively, or the EAB macroparameters in Tables 26 
and 27.

Figure 29. EAB Asynchronous Timing Waveforms
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Table 33. EPF10K30E Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.7 2.0 2.3 ns

tEABDATA1 0.6 0.7 0.8 ns

tEABWE1 1.1 1.3 1.4 ns

tEABWE2 0.4 0.4 0.5 ns

tEABRE1 0.8 0.9 1.0 ns

tEABRE2 0.4 0.4 0.5 ns

tEABCLK 0.0 0.0  0.0 ns

tEABCO 0.3 0.3 0.4 ns

tEABBYPASS 0.5 0.6 0.7 ns

tEABSU 0.9 1.0 1.2 ns

tEABH 0.4 0.4 0.5 ns

tEABCLR 0.3 0.3 0.3 ns

tAA 3.2 3.8 4.4 ns

tWP 2.5 2.9 3.3 ns

tRP 0.9 1.1 1.2 ns

tWDSU 0.9 1.0 1.1 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.7 2.0 2.3 ns

tWAH 1.8 2.1 2.4 ns

tRASU 3.1 3.7 4.2 ns

tRAH 0.2 0.2 0.2 ns

tWO 2.5 2.9 3.3 ns

tDD 2.5 2.9 3.3 ns

tEABOUT 0.5 0.6 0.7 ns

tEABCH 1.5 2.0 2.3 ns

tEABCL 2.5 2.9 3.3 ns
Altera Corporation 65 
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 38 through 44 show EPF10K50E device internal and external 
timing parameters.  

Table 37. EPF10K30E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (3) 2.8 3.9 5.2 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 3.8 4.9 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 4.9 2.0 5.9 2.0 7.6 ns

tXZBIDIR (3) 6.1 7.5 9.7 ns

tZXBIDIR (3) 6.1 7.5 9.7 ns

tOUTCOBIDIR (4)  0.5 3.9 0.5 4.9 – – ns

tXZBIDIR (4) 5.1  6.5 – ns

tZXBIDIR (4) 5.1  6.5 – ns

Table 38. EPF10K50E Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.6 0.9 1.3 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.7 0.8 1.1 ns

tPACKED 0.4 0.5 0.6 ns

tEN 0.6 0.7 0.9 ns

tCICO 0.2 0.2 0.3 ns

tCGEN 0.5 0.5 0.8 ns

tCGENR 0.2 0.2 0.3 ns

tCASC 0.8 1.0 1.4 ns

tC 0.5 0.6 0.8 ns

tCO 0.7 0.7 0.9 ns

tCOMB 0.5 0.6 0.8 ns

tSU 0.7 0.7 0.8 ns
68 Altera Corporation
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.
(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Table 50. EPF10K100E External Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 9.0 12.0 16.0 ns

tINSU (3) 2.0 2.5 3.3 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0 5.2 2.0 6.9 2.0 9.1 ns

tINSU (4) 2.0 2.2 – ns

tINH (4) 0.0 0.0 – ns

tOUTCO (4) 0.5 3.0 0.5 4.6 – – ns

tPCISU 3.0 6.2 – ns

tPCIH 0.0 0.0 – ns

tPCICO 2.0 6.0 2.0 6.9 – – ns

Table 51. EPF10K100E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (3) 1.7 2.5 3.3 ns

tINHBIDIR (3) 0.0 0.0 0.0 ns

tINSUBIDIR (4) 2.0 2.8 – ns

tINHBIDIR (4) 0.0 0.0 – ns

tOUTCOBIDIR (3) 2.0 5.2 2.0 6.9 2.0 9.1 ns

tXZBIDIR (3) 5.6 7.5 10.1 ns

tZXBIDIR (3) 5.6 7.5  10.1 ns

tOUTCOBIDIR (4) 0.5 3.0 0.5 4.6 – – ns

tXZBIDIR (4) 4.6 6.5 – ns

tZXBIDIR (4) 4.6  6.5 – ns
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Table 61. EPF10K200E Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 2.0 2.4 3.2 ns

tEABDATA1 0.4 0.5 0.6 ns

tEABWE1 1.4 1.7 2.3 ns

tEABWE2 0.0 0.0 0.0 ns

tEABRE1 0 0 0 ns

tEABRE2 0.4 0.5 0.6 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.8 0.9 1.2 ns

tEABBYPASS 0.0 0.1 0.1 ns

tEABSU 0.9 1.1 1.5 ns

tEABH 0.4 0.5 0.6 ns

tEABCLR 0.8 0.9 1.2 ns

tAA 3.1 3.7 4.9 ns

tWP 3.3 4.0 5.3 ns

tRP 0.9 1.1 1.5 ns

tWDSU 0.9 1.1 1.5 ns

tWDH 0.1 0.1 0.1 ns

tWASU 1.3 1.6 2.1 ns

tWAH 2.1 2.5 3.3 ns

tRASU 2.2 2.6 3.5 ns

tRAH 0.1 0.1 0.2 ns

tWO 2.0 2.4 3.2 ns

tDD 2.0 2.4 3.2 ns

tEABOUT 0.0 0.1 0.1 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 3.3 4.0 5.3 ns

Table 62. EPF10K200E Device EAB Internal Timing Macroparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 5.1 6.4 8.4 ns

tEABRCOMB 5.1 6.4 8.4 ns

tEABRCREG 4.8 5.7 7.6 ns

tEABWP 3.3 4.0 5.3 ns
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Table 68. EPF10K50S Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.7 2.4 3.2 ns

tEABDATA2 0.4 0.6 0.8 ns

tEABWE1 1.0 1.4 1.9 ns

tEABWE2 0.0 0.0 0.0 ns

tEABRE1 0.0 0.0 0.0

tEABRE2 0.4 0.6 0.8

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.8 1.1 1.5 ns

tEABBYPASS 0.0 0.0 0.0 ns

tEABSU 0.7 1.0 1.3 ns

tEABH 0.4 0.6 0.8 ns

tEABCLR 0.8 1.1 1.5

tAA 2.0 2.8 3.8 ns

tWP 2.0 2.8 3.8 ns

tRP 1.0 1.4 1.9

tWDSU 0.5 0.7 0.9 ns

tWDH 0.1 0.1 0.2 ns

tWASU 1.0 1.4 1.9 ns

tWAH 1.5 2.1 2.9 ns

tRASU 1.5 2.1 2.8

tRAH 0.1 0.1 0.2

tWO 2.1 2.9 4.0 ns

tDD 2.1 2.9 4.0 ns

tEABOUT 0.0 0.0 0.0 ns

tEABCH 1.5 2.0 2.5 ns

tEABCL 1.5 2.0 2.5 ns
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Table 69. EPF10K50S Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 3.7 5.2 7.0 ns

tEABRCCOMB 3.7 5.2 7.0 ns

tEABRCREG 3.5 4.9 6.6 ns

tEABWP 2.0 2.8 3.8 ns

tEABWCCOMB 4.5 6.3 8.6 ns

tEABWCREG 5.6 7.8 10.6 ns

tEABDD 3.8 5.3 7.2 ns

tEABDATACO 0.8 1.1 1.5 ns

tEABDATASU 1.1 1.6 2.1 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 0.7 1.0 1.3 ns

tEABWEH 0.4 0.6 0.8 ns

tEABWDSU 1.2 1.7 2.2 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 1.6 2.3 3.0 ns

tEABWAH 0.9 1.2 1.8 ns

tEABWO 3.1 4.3 5.9 ns

Table 70. EPF10K50S Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 3.1 3.7 4.6 ns

tDIN2LE 1.7 2.1 2.7 ns

tDIN2DATA 2.7 3.1 5.1 ns

tDCLK2IOE 1.6 1.9 2.6 ns

tDCLK2LE 1.7 2.1 2.7 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.5 1.7 2.4 ns

tSAMECOLUMN 1.0 1.3 2.1 ns

tDIFFROW 2.5 3.0 4.5 ns

tTWOROWS 4.0 4.7 6.9 ns

tLEPERIPH 2.6 2.9 3.4 ns

tLABCARRY 0.1 0.2 0.2 ns

tLABCASC 0.8 1.0 1.3 ns
88 Altera Corporation



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
   

Table 73. EPF10K200S Device Internal & External Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.7 0.8 1.2 ns

tCLUT 0.4 0.5 0.6 ns

tRLUT 0.5 0.7 0.9 ns

tPACKED 0.4 0.5 0.7 ns

tEN 0.6 0.5 0.6 ns

tCICO 0.1 0.2 0.3 ns

tCGEN 0.3 0.4 0.6 ns

tCGENR 0.1 0.2 0.3 ns

tCASC 0.7 0.8 1.2 ns

tC 0.5 0.6 0.8 ns

tCO 0.5 0.6 0.8 ns

tCOMB 0.3 0.6 0.8 ns

tSU 0.4 0.6 0.7 ns

tH 1.0 1.1 1.5 ns

tPRE 0.4 0.6 0.8 ns

tCLR 0.5 0.6 0.8 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

Table 74. EPF10K200S Device IOE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 1.8 1.9 2.6 ns

tIOC 0.3 0.3 0.5 ns

tIOCO 1.7 1.9 2.6 ns

tIOCOMB 0.5 0.6 0.8 ns

tIOSU 0.8 0.9 1.2 ns

tIOH 0.4 0.8 1.1 ns

tIOCLR 0.2 0.2 0.3 ns

tOD1 1.3 0.7 0.9 ns

tOD2 0.8 0.2 0.4 ns

tOD3 2.9 3.0 3.9 ns

tXZ 5.0 5.3 7.1 ns

tZX1 5.0 5.3 7.1 ns
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Additionally, the Altera software offers several features that help plan for 
future device migration by preventing the use of conflicting I/O pins.

Configuration Schemes

The configuration data for a FLEX 10KE device can be loaded with one of 
five configuration schemes (see Table 82), chosen on the basis of the target 
application. An EPC1, EPC2, or EPC16 configuration device, intelligent 
controller, or the JTAG port can be used to control the configuration of a 
FLEX 10KE device, allowing automatic configuration on system 
power-up.

Multiple FLEX 10KE devices can be configured in any of the five 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device. Additional 
FLEX 10K, FLEX 10KA, FLEX 10KE, and FLEX 6000 devices can be 
configured in the same serial chain.

Table 81. I/O Counts for FLEX 10KA & FLEX 10KE Devices

FLEX 10KA FLEX 10KE

Device I/O Count Device I/O Count

EPF10K30AF256 191 EPF10K30EF256 176

EPF10K30AF484 246 EPF10K30EF484 220

EPF10K50VB356 274 EPF10K50SB356 220

EPF10K50VF484 291 EPF10K50EF484 254

EPF10K50VF484 291 EPF10K50SF484 254

EPF10K100AF484 369 EPF10K100EF484 338

Table 82. Data Sources for FLEX 10KE Configuration

Configuration Scheme Data Source

Configuration device EPC1, EPC2, or EPC16 configuration device

Passive serial (PS) BitBlaster, ByteBlasterMV, or MasterBlaster download cables, 
or serial data source

Passive parallel asynchronous (PPA) Parallel data source

Passive parallel synchronous (PPS) Parallel data source

JTAG BitBlaster or ByteBlasterMV download cables, or 
microprocessor with a Jam STAPL file or JBC file
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Device 
Pin-Outs 

See the Altera web site (http://www.altera.com) or the Altera Digital 
Library for pin-out information.

Revision 
History

The information contained in the FLEX 10KE Embedded Programmable Logic 
Data Sheet version 2.5 supersedes information published in previous 
versions.

Version 2.5

The following changes were made to the FLEX 10KE Embedded 
Programmable Logic Data Sheet version 2.5:

■ Note (1) added to Figure 23.
■ Text added to “I/O Element” section on page 34.
■ Updated Table 22.

Version 2.4

The following changes were made to the FLEX 10KE Embedded 
Programmable Logic Data Sheet version 2.4: updated text on page 34 and 
page 63.
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