
E·XFL

Altera - EPF10K200SFC672-1X Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

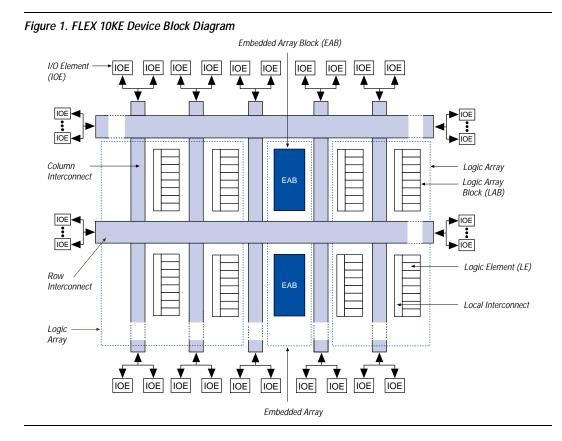
The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	470
Number of Gates	-
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf10k200sfc672-1x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Functional Description


Each FLEX 10KE device contains an enhanced embedded array to implement memory and specialized logic functions, and a logic array to implement general logic.

The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions, such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions.

The logic array consists of logic array blocks (LABs). Each LAB contains eight LEs and a local interconnect. An LE consists of a four-input look-up table (LUT), a programmable flipflop, and dedicated signal paths for carry and cascade functions. The eight LEs can be used to create medium-sized blocks of logic—such as 8-bit counters, address decoders, or state machines—or combined across LABs to create larger logic blocks. Each LAB represents about 96 usable gates of logic.

Signal interconnections within FLEX 10KE devices (as well as to and from device pins) are provided by the FastTrack Interconnect routing structure, which is a series of fast, continuous row and column channels that run the entire length and width of the device.

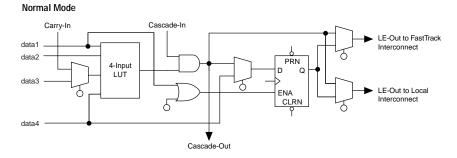
Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect routing structure. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an output or input register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. As inputs, they provide setup times as low as 0.9 ns and hold times of 0 ns. As outputs, these registers provide clock-to-output times as low as 3.0 ns. IOEs provide a variety of features, such as JTAG BST support, slew-rate control, tri-state buffers, and open-drain outputs. Figure 1 shows a block diagram of the FLEX 10KE architecture. Each group of LEs is combined into an LAB; groups of LABs are arranged into rows and columns. Each row also contains a single EAB. The LABs and EABs are interconnected by the FastTrack Interconnect routing structure. IOEs are located at the end of each row and column of the FastTrack Interconnect routing structure.

FLEX 10KE devices provide six dedicated inputs that drive the flipflops' control inputs and ensure the efficient distribution of high-speed, low-skew (less than 1.5 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect routing structure. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device.

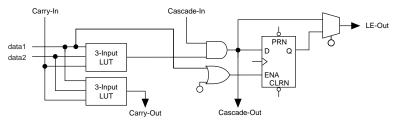
The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the output of the LUT drives the output of the LE.

The LE has two outputs that drive the interconnect: one drives the local interconnect and the other drives either the row or column FastTrack Interconnect routing structure. The two outputs can be controlled independently. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, can improve LE utilization because the register and the LUT can be used for unrelated functions.

The FLEX 10KE architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. The carry chain supports high-speed counters and adders and the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in a LAB as well as all LABs in the same row. Intensive use of carry and cascade chains can reduce routing flexibility. Therefore, the use of these chains should be limited to speed-critical portions of a design.


Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 10KE architecture to implement high-speed counters, adders, and comparators of arbitrary width efficiently. Carry chain logic can be created automatically by the Altera Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as LPM and DesignWare functions automatically take advantage of carry chains.


Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from oddnumbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EPF10K50E device, the carry chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB.

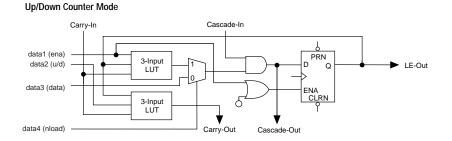
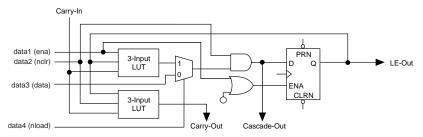


Figure 11. FLEX 10KE LE Operating Modes



Clearable Counter Mode

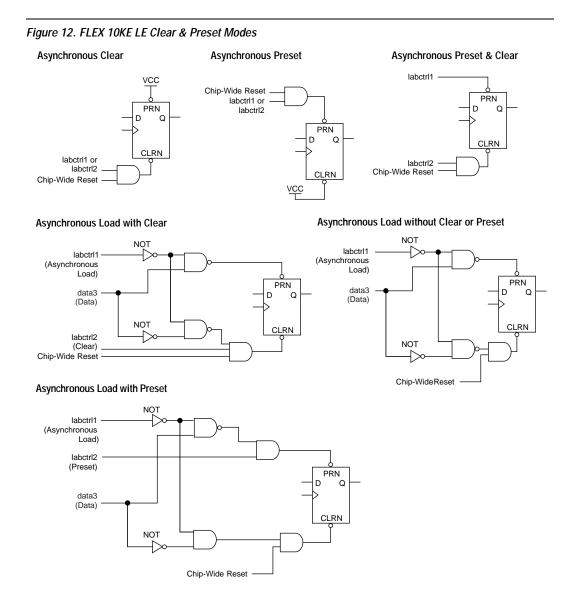
Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is AND ed with a synchronous clear signal.

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control


Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.

During compilation, the Altera Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six modes chosen during design entry:

- Asynchronous clear
- Asynchronous preset
- Asynchronous clear and preset
- Asynchronous load with clear
- Asynchronous load with preset
- Asynchronous load without clear or preset

In addition to the six clear and preset modes, FLEX 10KE devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality.

Altera Corporation

For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the fulllength channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row.

Table 7 summarizes the FastTrack Interconnect routing structure resources available in each FLEX 10KE device.

Table 7. FLEX 10KE FastTrack Interconnect Resources							
Device	Rows	Channels per Row	Columns	Channels per Column			
EPF10K30E	6	216	36	24			
EPF10K50E EPF10K50S	10	216	36	24			
EPF10K100E	12	312	52	24			
EPF10K130E	16	312	52	32			
EPF10K200E EPF10K200S	24	312	52	48			

In addition to general-purpose I/O pins, FLEX 10KE devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output enable and clock enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. Figure 20 shows the timing requirements for the JTAG signals.

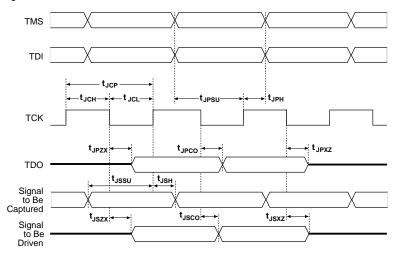


Figure 20. FLEX 10KE JTAG Waveforms

Table 18 shows the timing parameters and values for FLEX 10KE devices.

Sumbol	Parameter	Min	Max	Unit
Symbol	Parameter	IVIIII	IVIAX	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		35	ns
t _{JSZX}	Update register high impedance to valid output		35	ns
t _{JSXZ}	Update register valid output to high impedance		35	ns

Table 23. FLEX 10KE Device Capacitance Note (14)								
Symbol	Parameter	Conditions	Min	Max	Unit			
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF			
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF			
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF			

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
 (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS
- signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22.
- (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) This value is specified for normal device operation. The value may vary during power-up.
- (12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial temperature devices.
- (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (14) Capacitance is sample-tested only.

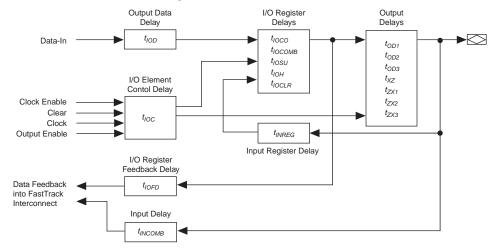
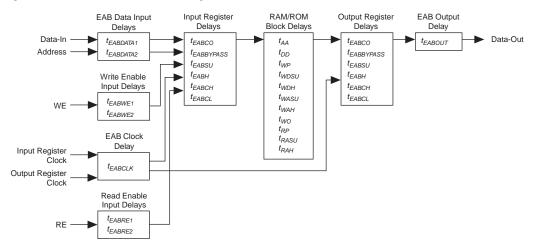



Figure 26. FLEX 10KE Device IOE Timing Model

Figure 27. FLEX 10KE Device EAB Timing Model

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		1.8		2.4		2.9	ns
t _{DIN2LE}		1.5		1.8		2.4	ns
t _{DIN2DATA}		1.5		1.8		2.2	ns
t _{DCLK2IOE}		2.2		2.6		3.0	ns
t _{DCLK2LE}		1.5		1.8		2.4	ns
t _{SAMELAB}		0.1		0.2		0.3	ns
t _{SAMEROW}		2.0		2.4		2.7	ns
t _{SAMECOLUMN}		0.7		1.0		0.8	ns
t _{DIFFROW}		2.7		3.4		3.5	ns
t _{TWOROWS}		4.7		5.8		6.2	ns
t _{LEPERIPH}		2.7		3.4		3.8	ns
t _{LABCARRY}		0.3		0.4		0.5	ns
t _{LABCASC}		0.8		0.8		1.1	ns

Table 36. EPF10	K30E Externa	l Timing Pa	rameters	Notes (1), ((2)			
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		ed Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{DRR}		8.0		9.5		12.5	ns	
t _{INSU} (3)	2.1		2.5		3.9		ns	
t _{INH} (3)	0.0		0.0		0.0		ns	
t оитсо (3)	2.0	4.9	2.0	5.9	2.0	7.6	ns	
t _{INSU} (4)	1.1		1.5		-		ns	
t _{INH} (4)	0.0		0.0		-		ns	
t оитсо (4)	0.5	3.9	0.5	4.9	-	-	ns	
t _{PCISU}	3.0		4.2		-		ns	
t _{PCIH}	0.0		0.0		-		ns	
t _{PCICO}	2.0	6.0	2.0	7.5	-	-	ns	

Table 37. EPF10K30E External Bidirectional Timing Parameters Notes (1), (2)									
Symbol	-1 Spee	d Grade -2 Speed Grade -3 Speed Grade		Unit					
	Min	Max	Min	Max	Min	Max			
t _{INSUBIDIR} (3)	2.8		3.9		5.2		ns		
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns		
t _{INSUBIDIR} (4)	3.8		4.9		-		ns		
t _{INHBIDIR} (4)	0.0		0.0		-		ns		
t _{OUTCOBIDIR} (3)	2.0	4.9	2.0	5.9	2.0	7.6	ns		
t _{XZBIDIR} (3)		6.1		7.5		9.7	ns		
t _{ZXBIDIR} (3)		6.1		7.5		9.7	ns		
t _{OUTCOBIDIR} (4)	0.5	3.9	0.5	4.9	-	-	ns		
t _{XZBIDIR} (4)		5.1		6.5		-	ns		
t _{ZXBIDIR} (4)		5.1		6.5		-	ns		

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 38 through 44 show EPF10K50E device internal and external timing parameters.

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Мах	Min	Мах	Min	Max	
t _{LUT}		0.6		0.9		1.3	ns
t _{CLUT}		0.5		0.6		0.8	ns
t _{RLUT}		0.7		0.8		1.1	ns
t _{PACKED}		0.4		0.5		0.6	ns
t _{EN}		0.6		0.7		0.9	ns
t _{CICO}		0.2		0.2		0.3	ns
t _{CGEN}		0.5		0.5		0.8	ns
t _{CGENR}		0.2		0.2		0.3	ns
t _{CASC}		0.8		1.0		1.4	ns
t _C		0.5		0.6		0.8	ns
t _{CO}		0.7		0.7		0.9	ns
t _{COMB}		0.5		0.6		0.8	ns
t _{SU}	0.7		0.7		0.8		ns

Table 38. EPF10K	50E Device	LE Timing N	licroparame	eters (Part 2	? of 2) No	te (1)	
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _H	0.9		1.0		1.4		ns
t _{PRE}		0.5		0.6		0.8	ns
t _{CLR}		0.5		0.6		0.8	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns

Table 39. EPF10	1		- I		te (1)	i	
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{IOD}		2.2		2.4		3.3	ns
t _{IOC}		0.3		0.3		0.5	ns
t _{IOCO}		1.0		1.0		1.4	ns
t _{IOCOMB}		0.0		0.0		0.2	ns
t _{IOSU}	1.0		1.2		1.7		ns
t _{IOH}	0.3		0.3		0.5		ns
t _{IOCLR}		0.9		1.0		1.4	ns
t _{OD1}		0.8		0.9		1.2	ns
t _{OD2}		0.3		0.4		0.7	ns
t _{OD3}		3.0		3.5		3.5	ns
t _{XZ}		1.4		1.7		2.3	ns
t _{ZX1}		1.4		1.7		2.3	ns
t _{ZX2}		0.9		1.2		1.8	ns
t _{ZX3}		3.6		4.3		4.6	ns
t _{INREG}		4.9		5.8		7.8	ns
t _{IOFD}		2.8		3.3		4.5	ns
t _{INCOMB}		2.8		3.3		4.5	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.5		2.0		2.6	ns
t _{EABDATA1}		0.0		0.0		0.0	ns
t _{EABWE1}		1.5		2.0		2.6	ns
t _{EABWE2}		0.3		0.4		0.5	ns
t _{EABRE1}		0.3		0.4		0.5	ns
t _{EABRE2}		0.0		0.0		0.0	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.4		0.5	ns
t _{EABBYPASS}		0.1		0.1		0.2	ns
t _{EABSU}	0.8		1.0		1.4		ns
t _{EABH}	0.1		0.1		0.2		ns
t _{EABCLR}	0.3		0.4		0.5		ns
t _{AA}		4.0		5.1		6.6	ns
t _{WP}	2.7		3.5		4.7		ns
t _{RP}	1.0		1.3		1.7		ns
t _{WDSU}	1.0		1.3		1.7		ns
t _{WDH}	0.2		0.2		0.3		ns
t _{WASU}	1.6		2.1		2.8		ns
t _{WAH}	1.6		2.1		2.8		ns
t _{RASU}	3.0		3.9		5.2		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		1.5		2.0		2.6	ns
t _{DD}		1.5		2.0		2.6	ns
t _{EABOUT}		0.2		0.3		0.3	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.7		3.5		4.7		ns

Table 48. EPF10K100E Device EAB Internal Timing Macroparameters (Part 1 of

2)	Note	(1)
-/		V . V

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.9		7.6		9.9	ns
t _{EABRCOMB}	5.9		7.6		9.9		ns
t _{EABRCREG}	5.1		6.5		8.5		ns
t _{EABWP}	2.7		3.5		4.7		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		2.0		2.4		3.2	ns
t _{EABDATA1}		0.4		0.5		0.6	ns
t _{EABWE1}		1.4		1.7		2.3	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0		0		0	ns
t _{EABRE2}		0.4		0.5		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		0.9		1.2	ns
t _{EABBYPASS}		0.0		0.1		0.1	ns
t _{EABSU}	0.9		1.1		1.5		ns
t _{EABH}	0.4		0.5		0.6		ns
t _{EABCLR}	0.8		0.9		1.2		ns
t _{AA}		3.1		3.7		4.9	ns
t _{WP}	3.3		4.0		5.3		ns
t _{RP}	0.9		1.1		1.5		ns
t _{WDSU}	0.9		1.1		1.5		ns
t _{WDH}	0.1		0.1		0.1		ns
t _{WASU}	1.3		1.6		2.1		ns
t _{WAH}	2.1		2.5		3.3		ns
t _{RASU}	2.2		2.6		3.5		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		2.0		2.4		3.2	ns
t _{DD}		2.0		2.4		3.2	ns
t _{EABOUT}		0.0		0.1		0.1	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	3.3		4.0		5.3	İ	ns

Table 62. EPF10K200E Device EAB Internal Timing Macroparameters (Part 1 of 2)

Note	(1)
	(1)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.1		6.4		8.4	ns
t _{EABRCOMB}	5.1		6.4		8.4		ns
t _{EABRCREG}	4.8		5.7		7.6		ns
t _{EABWP}	3.3		4.0		5.3		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		3.7		5.2		7.0	ns
t _{EABRCCOMB}	3.7		5.2		7.0		ns
t _{EABRCREG}	3.5		4.9		6.6		ns
t _{EABWP}	2.0		2.8		3.8		ns
t _{EABWCCOMB}	4.5		6.3		8.6		ns
t _{EABWCREG}	5.6		7.8		10.6		ns
t _{EABDD}		3.8		5.3		7.2	ns
t _{EABDATACO}		0.8		1.1		1.5	ns
t _{EABDATASU}	1.1		1.6		2.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	0.7		1.0		1.3		ns
t _{EABWEH}	0.4		0.6		0.8		ns
t _{EABWDSU}	1.2		1.7		2.2		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	1.6		2.3		3.0		ns
t _{EABWAH}	0.9		1.2		1.8		ns
t _{EABWO}		3.1		4.3		5.9	ns

Table 70. EPF10	K50S Device	Interconnec	t Timing Mi	croparamete	e rs Note	e (1)	
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		3.1		3.7		4.6	ns
t _{DIN2LE}		1.7		2.1		2.7	ns
t _{DIN2DATA}		2.7		3.1		5.1	ns
t _{DCLK2IOE}		1.6		1.9		2.6	ns
t _{DCLK2LE}		1.7		2.1		2.7	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		1.5		1.7		2.4	ns
t _{SAMECOLUMN}		1.0		1.3		2.1	ns
t _{DIFFROW}		2.5		3.0		4.5	ns
t _{TWOROWS}		4.0		4.7		6.9	ns
t _{LEPERIPH}		2.6		2.9		3.4	ns
t _{LABCARRY}		0.1		0.2		0.2	ns
t _{LABCASC}		0.8		1.0		1.3	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.7		0.8		1.2	ns
t _{CLUT}		0.4		0.5		0.6	ns
t _{RLUT}		0.5		0.7		0.9	ns
t _{PACKED}		0.4		0.5		0.7	ns
t _{EN}		0.6		0.5		0.6	ns
tcico		0.1		0.2		0.3	ns
t _{CGEN}		0.3		0.4		0.6	ns
t _{CGENR}		0.1		0.2		0.3	ns
t _{CASC}		0.7		0.8		1.2	ns
t _C		0.5		0.6		0.8	ns
^t co		0.5		0.6		0.8	ns
t _{COMB}		0.3		0.6		0.8	ns
t _{SU}	0.4		0.6		0.7		ns
tн	1.0		1.1		1.5		ns
t _{PRE}		0.4		0.6		0.8	ns
t _{CLR}		0.5		0.6		0.8	ns
^t CH	2.0		2.5		3.0		ns
ĊL	2.0		2.5		3.0		ns

 Table 74. EPF10K200S Device IOE Timing Microparameters (Part 1 of 2)
 Note (1)

Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Мах	Min	Max	
t _{IOD}		1.8		1.9		2.6	ns
t _{IOC}		0.3		0.3		0.5	ns
t _{IOCO}		1.7		1.9		2.6	ns
t _{IOCOMB}		0.5		0.6		0.8	ns
t _{IOSU}	0.8		0.9		1.2		ns
t _{IOH}	0.4		0.8		1.1		ns
t _{IOCLR}		0.2		0.2		0.3	ns
t _{OD1}		1.3		0.7		0.9	ns
t _{OD2}		0.8		0.2		0.4	ns
t _{OD3}		2.9		3.0		3.9	ns
t _{XZ}		5.0		5.3		7.1	ns
t _{ZX1}		5.0		5.3		7.1	ns

Table 77. EPF10K200S Device Interconnect Timing Microparameters (Part 2 of 2) Note (1)							
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Мах	Min	Max	Min	Max	
t _{LABCASC}		0.5		1.0		1.4	ns

 Table 78. EPF10K200S External Timing Parameters
 Note (1)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DRR}		9.0		12.0		16.0	ns
t _{INSU} (2)	3.1		3.7		4.7		ns
t _{INH} (2)	0.0		0.0		0.0		ns
t _{оитсо} (2)	2.0	3.7	2.0	4.4	2.0	6.3	ns
t _{INSU} (3)	2.1		2.7		-		ns
t _{INH} (3)	0.0		0.0		-		ns
t оитсо ⁽³⁾	0.5	2.7	0.5	3.4	_	-	ns
t _{PCISU}	3.0		4.2		-		ns
t _{PCIH}	0.0		0.0		-		ns
t _{PCICO}	2.0	6.0	2.0	8.9	-	_	ns

Table 79. EPF10K200S External Bidirectional Timing Parameters Note (1) Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit Min Max Min Max Min Max t_{INSUBIDIR} (2) 2.3 3.4 4.4 ns 0.0 t_{INHBIDIR} (2) 0.0 0.0 ns tINSUBIDIR (3) 3.3 4.4 _ ns t_{INHBIDIR} (3) 0.0 0.0 _ ns toutcobidir (2) 2.0 3.7 2.0 4.4 2.0 6.3 ns t_{XZBIDIR} (2) 6.9 7.6 9.2 ns t_{ZXBIDIR} (2) 5.9 6.6 _ ns toutcobidir (3) 0.5 2.7 0.5 3.4 _ _ ns t_{XZBIDIR} (3) 6.9 7.6 9.2 ns t_{ZXBIDIR} (3) 6.6 5.9 _ ns

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(3) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Altera Corporation

Power Consumption	The supply power (P) for FLEX 10KE de following equation:	vices can be calculated with the				
oonoumption	$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTI})$	$_{\rm VE}$) $ imes$ V _{CC} + P _{IO}				
	The $I_{CCACTIVE}$ value depends on the sw application logic. This value is calculated that each LE typically consumes. The P_{II} device output load characteristics and so calculated using the guidelines given in <i>Power for Altera Devices</i>).	d based on the amount of current $_{\rm D}$ value, which depends on the witching frequency, can be				
	Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current.					
	The $I_{\mbox{\scriptsize CCACTIVE}}$ value can be calculated with the following equation:					
	$I_{CCACTIVE} = K \times \mathbf{f}_{MAX} \times N \times \mathbf{tog}_{LC} \times \frac{\mu A}{MHz \times LE}$					
	Where:					
	 f_{MAX} = Maximum operating frequence N = Total number of LEs used in tog_{LC} = Average percent of LEs tog (typically 12.5%) K = Constant 	n the device gling at each clock				
	Table 80 provides the constant (K) value	S for FLEX TUKE devices.				
	Table 80. FLEX 10KE K Constant Values					
	Device	K Value				
	EPF10K30E	4.5				
	EPF10K50E	4.8				
	EPF10K50S	4.5				
	EPF10K100E	4.5				
	EPF10K130E	4.6				
	EPF10K200E 4.8					

EPF10K200S

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

4.6

Device Pin-Outs	See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information.
Revision History	The information contained in the <i>FLEX 10KE Embedded Programmable Logic Data Sheet</i> version 2.5 supersedes information published in previous versions.
	Version 2.5
	The following changes were made to the <i>FLEX 10KE Embedded Programmable Logic Data Sheet</i> version 2.5:
	 <i>Note (1)</i> added to Figure 23. Text added to "I/O Element" section on page 34. Updated Table 22.
	Version 2.4
	The following changes were made to the FLEX 10KE Embedded

Programmable Logic Data Sheet version 2.4: updated text on page 34 and page 63.