
E·XFL

Altera - EPF10K200SFC672-2 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	470
Number of Gates	-
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf10k200sfc672-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. FLEX 10KE Device Features									
Feature	EPF10K100E (2)	EPF10K130E	EPF10K200E EPF10K200S						
Typical gates (1)	100,000	130,000	200,000						
Maximum system gates	257,000	342,000	513,000						
Logic elements (LEs)	4,992	6,656	9,984						
EABs	12	16	24						
Total RAM bits	49,152	65,536	98,304						
Maximum user I/O pins	338	413	470						

Note to tables:

- (1) The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates.
- (2) New EPF10K100B designs should use EPF10K100E devices.

...and More

- Fabricated on an advanced process and operate with a 2.5-V internal supply voltage
- In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port
- ClockLock[™] and ClockBoost[™] options for reduced clock _ delay/skew and clock multiplication
- Built-in low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required
- Pull-up on I/O pins before and during configuration
- Flexible interconnect
 - FastTrack[®] Interconnect continuous routing structure for fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
 - Tri-state emulation that implements internal tri-state buses
 - Up to six global clock signals and four global clear signals
 - Powerful I/O pins
 - Individual tri-state output enable control for each pin
 - Open-drain option on each I/O pin
 - Programmable output slew-rate control to reduce switching noise
 - Clamp to V_{CCIO} user-selectable on a pin-by-pin basis
 - Supports hot-socketing

Table 5. FLEX TUKE Performance										
Application	Resources Used			Performance						
	LEs	EABs	-1 Speed Grade	-2 Speed Grade	-3 Speed Grade					
16-bit loadable counter	16	0	285	250	200	MHz				
16-bit accumulator	16	0	285	250	200	MHz				
16-to-1 multiplexer (1)	10	0	3.5	4.9	7.0	ns				
16-bit multiplier with 3-stage pipeline (2)	592	0	156	131	93	MHz				
256×16 RAM read cycle speed (2)	0	1	196	154	118	MHz				
256×16 RAM write cycle speed (2)	0	1	185	143	106	MHz				

Table 5. FLEX 10KE Performance

Notes:

(1) This application uses combinatorial inputs and outputs.

(2) This application uses registered inputs and outputs.

Table 6 shows FLEX 10KE performance for more complex designs. These designs are available as Altera MegaCore $^{\circ}$ functions.

Table 6. FLEX 10KE Performance for Complex Designs										
Application	LEs Used	Performance Uni								
		-1 Speed Grade	-2 Speed Grade	-3 Speed Grade						
8-bit, 16-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS					
8-bit, 512-point fast Fourier	1,854	23.4	28.7	38.9	µs (1)					
transform (FFT) function		113	92	68	MHz					
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz					

Note:

(1) These values are for calculation time. Calculation time = number of clocks required / f_{max} . Number of clocks required = ceiling [log 2 (points)/2] × [points +14 + ceiling]

Similar to the FLEX 10KE architecture, embedded gate arrays are the fastest-growing segment of the gate array market. As with standard gate arrays, embedded gate arrays implement general logic in a conventional "sea-of-gates" architecture. Additionally, embedded gate arrays have dedicated die areas for implementing large, specialized functions. By embedding functions in silicon, embedded gate arrays reduce die area and increase speed when compared to standard gate arrays. While embedded megafunctions typically cannot be customized, FLEX 10KE devices are programmable, providing the designer with full control over embedded megafunctions and general logic, while facilitating iterative design changes during debugging.

Each FLEX 10KE device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and datatransformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

FLEX 10KE devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers the EPC1, EPC2, and EPC16 configuration devices, which configure FLEX 10KE devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera BitBlasterTM, ByteBlasterMVTM, or MasterBlaster download cables. After a FLEX 10KE device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 85 ms, real-time changes can be made during system operation.

FLEX 10KE devices contain an interface that permits microprocessors to configure FLEX 10KE devices serially or in-parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat a FLEX 10KE device as memory and configure it by writing to a virtual memory location, making it easy to reconfigure the device.

For more information on FLEX device configuration, see the following documents:

- Configuration Devices for APEX & FLEX Devices Data Sheet
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- MasterBlaster Download Cable Data Sheet
- Application Note 116 (Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices)

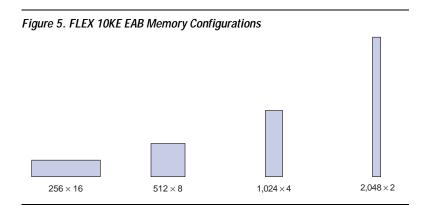
FLEX 10KE devices are supported by the Altera development systems, which are integrated packages that offer schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools.

The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use devicespecific features such as carry chains, which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development system includes DesignWare functions that are optimized for the FLEX 10KE architecture.

The Altera development system runs on Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800.

See the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet for more information.

Functional Description

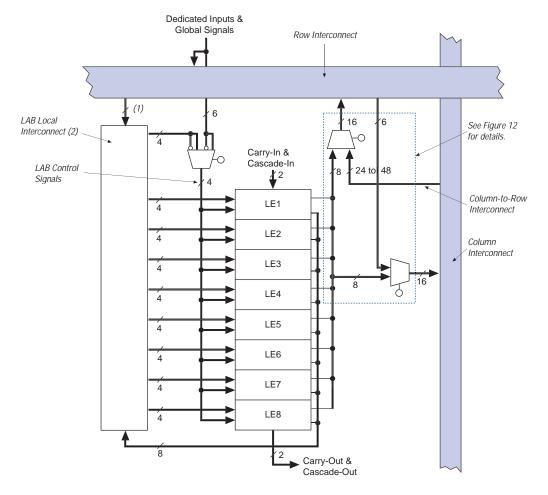

Each FLEX 10KE device contains an enhanced embedded array to implement memory and specialized logic functions, and a logic array to implement general logic.

The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions, such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions.

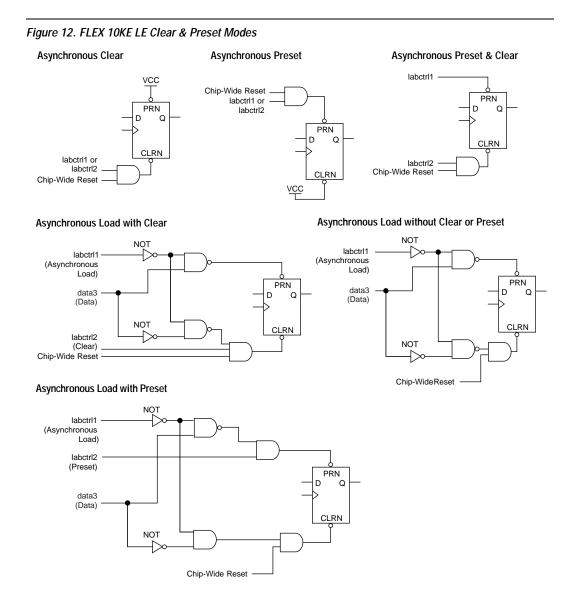
The logic array consists of logic array blocks (LABs). Each LAB contains eight LEs and a local interconnect. An LE consists of a four-input look-up table (LUT), a programmable flipflop, and dedicated signal paths for carry and cascade functions. The eight LEs can be used to create medium-sized blocks of logic—such as 8-bit counters, address decoders, or state machines—or combined across LABs to create larger logic blocks. Each LAB represents about 96 usable gates of logic.

Signal interconnections within FLEX 10KE devices (as well as to and from device pins) are provided by the FastTrack Interconnect routing structure, which is a series of fast, continuous row and column channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect routing structure. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an output or input register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. As inputs, they provide setup times as low as 0.9 ns and hold times of 0 ns. As outputs, these registers provide clock-to-output times as low as 3.0 ns. IOEs provide a variety of features, such as JTAG BST support, slew-rate control, tri-state buffers, and open-drain outputs. When used as RAM, each EAB can be configured in any of the following sizes: 256×16 , 512×8 , $1,024 \times 4$, or $2,048 \times 2$ (see Figure 5).


Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block; two 512×8 RAM blocks can be combined to form a 512×16 block (see Figure 6).

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. The Altera software automatically combines EABs to meet a designer's RAM specifications.


Figure 7. FLEX 10KE LAB

Notes:

- (1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26.
- (2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 34.

In addition to the six clear and preset modes, FLEX 10KE devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality.

Altera Corporation

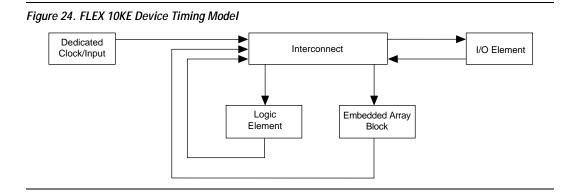
Figure 13. FLEX 10KE LAB Connections to Row & Column Interconnect

When dedicated inputs drive non-inverted and inverted peripheral clears, clock enables, and output enables, two signals on the peripheral control bus will be used.

Tables 8 and 9 list the sources for each peripheral control signal, and show how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals. The tables also show the rows that can drive global signals.

Table 8. Peripheral Bus Sources for EPF10K30E, EPF10K50E & EPF10K50S Devices								
Peripheral Control Signal	EPF10K30E	EPF10K50E EPF10K50S						
OEO	Row A	Row A						
OE1	Row B	Row B						
OE2	Row C	Row D						
OE3	Row D	Row F						
OE4	Row E	Row H						
OE5	Row F	Row J						
CLKENA0/CLK0/GLOBAL0	Row A	Row A						
CLKENA1/OE6/GLOBAL1	Row B	Row C						
CLKENA2/CLR0	Row C	Row E						
CLKENA3/OE7/GLOBAL2	Row D	Row G						
CLKENA4/CLR1	Row E	Row I						
CLKENA5/CLK1/GLOBAL3	Row F	Row J						

Г


Table 23. FLEX 10KE Device Capacitance Note (14)										
Symbol	Parameter	Conditions	Min	Max	Unit					
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF					
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF					
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF					

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
 (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS
- signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22.
- (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) This value is specified for normal device operation. The value may vary during power-up.
- (12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial temperature devices.
- (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (14) Capacitance is sample-tested only.

Timing simulation and delay prediction are available with the Altera Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis.

Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the FLEX 10KE device.

Figures 25 through 28 show the delays that correspond to various paths and functions within the LE, IOE, EAB, and bidirectional timing models.

Table 27. EAE	3 Timing Macroparameters Note (1), (6)						
Symbol	Parameter	Conditions					
t _{EABAA}	EAB address access delay						
t _{EABRCCOMB}	EAB asynchronous read cycle time						
t _{EABRCREG}	EAB synchronous read cycle time						
t _{EABWP}	EAB write pulse width						
t _{EABWCCOMB}	EAB asynchronous write cycle time						
t _{EABWCREG}	EAB synchronous write cycle time						
t _{EABDD}	EAB data-in to data-out valid delay						
t _{EABDATACO}	EAB clock-to-output delay when using output registers						
t _{EABDATASU}	EAB data/address setup time before clock when using input register						
t _{EABDATAH}	EAB data/address hold time after clock when using input register						
t _{EABWESU}	EAB WE setup time before clock when using input register						
t _{EABWEH}	EAB WE hold time after clock when using input register						
t _{EABWDSU}	EAB data setup time before falling edge of write pulse when not using input registers						
t _{EABWDH}	EAB data hold time after falling edge of write pulse when not using input registers						
t _{EABWASU}	EAB address setup time before rising edge of write pulse when not using input registers						
t _{EABWAH}	EAB address hold time after falling edge of write pulse when not using input registers						
t _{EABWO}	EAB write enable to data output valid delay						

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.0		2.3	ns
t _{EABDATA1}		0.6		0.7		0.8	ns
t _{EABWE1}		1.1		1.3		1.4	ns
t _{EABWE2}		0.4		0.4		0.5	ns
t _{EABRE1}		0.8		0.9		1.0	ns
t _{EABRE2}		0.4		0.4		0.5	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.3		0.4	ns
t _{EABBYPASS}		0.5		0.6		0.7	ns
t _{EABSU}	0.9		1.0		1.2		ns
t _{EABH}	0.4		0.4		0.5		ns
t _{EABCLR}	0.3		0.3		0.3		ns
t _{AA}		3.2		3.8		4.4	ns
t _{WP}	2.5		2.9		3.3		ns
t _{RP}	0.9		1.1		1.2		ns
t _{WDSU}	0.9		1.0		1.1		ns
t _{WDH}	0.1		0.1		0.1		ns
t _{WASU}	1.7		2.0		2.3		ns
t _{WAH}	1.8		2.1		2.4		ns
t _{RASU}	3.1		3.7		4.2		ns
t _{RAH}	0.2		0.2		0.2		ns
t _{WO}		2.5		2.9		3.3	ns
t _{DD}		2.5		2.9		3.3	ns
t _{EABOUT}		0.5		0.6		0.7	ns
t _{EABCH}	1.5		2.0		2.3		ns
t _{EABCL}	2.5		2.9		3.3		ns

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		1.8		2.4		2.9	ns
t _{DIN2LE}		1.5		1.8		2.4	ns
t _{DIN2DATA}		1.5		1.8		2.2	ns
t _{DCLK2IOE}		2.2		2.6		3.0	ns
t _{DCLK2LE}		1.5		1.8		2.4	ns
t _{SAMELAB}		0.1		0.2		0.3	ns
t _{SAMEROW}		2.0		2.4		2.7	ns
t _{SAMECOLUMN}		0.7		1.0		0.8	ns
t _{DIFFROW}		2.7		3.4		3.5	ns
t _{TWOROWS}		4.7		5.8		6.2	ns
t _{LEPERIPH}		2.7		3.4		3.8	ns
t _{LABCARRY}		0.3		0.4		0.5	ns
t _{LABCASC}		0.8		0.8		1.1	ns

Symbol	-1 Spee	ed Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DRR}		8.0		9.5		12.5	ns
t _{INSU} (3)	2.1		2.5		3.9		ns
t _{INH} (3)	0.0		0.0		0.0		ns
^t оитсо ⁽³⁾	2.0	4.9	2.0	5.9	2.0	7.6	ns
t _{INSU} (4)	1.1		1.5		-		ns
t _{INH} (4)	0.0		0.0		-		ns
t _{оитсо} (4)	0.5	3.9	0.5	4.9	-	-	ns
t _{PCISU}	3.0		4.2		-		ns
t _{PCIH}	0.0		0.0		-		ns
t _{PCICO}	2.0	6.0	2.0	7.5	_	-	ns

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		2.8		3.5		4.4	ns
t _{DIN2LE}		0.7		1.2		1.6	ns
t _{DIN2DATA}		1.6		1.9		2.2	ns
t _{DCLK2IOE}		1.6		2.1		2.7	ns
t _{DCLK2LE}		0.7		1.2		1.6	ns
t _{SAMELAB}		0.1		0.2		0.2	ns
t _{SAMEROW}		1.9		3.4		5.1	ns
t _{SAMECOLUMN}		0.9		2.6		4.4	ns
t _{DIFFROW}		2.8		6.0		9.5	ns
t _{TWOROWS}		4.7		9.4		14.6	ns
t _{LEPERIPH}		3.1		4.7		6.9	ns
t _{LABCARRY}		0.6		0.8		1.0	ns
t _{LABCASC}		0.9		1.2		1.6	ns

Table 57. EPF10K130E External Timing Parameters Notes (1), (2)									
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		d Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{DRR}		9.0		12.0		16.0	ns		
t _{INSU} (3)	1.9		2.1		3.0		ns		
t _{INH} (3)	0.0		0.0		0.0		ns		
t оитсо (3)	2.0	5.0	2.0	7.0	2.0	9.2	ns		
t _{INSU} (4)	0.9		1.1		-		ns		
t _{INH} (4)	0.0		0.0		-		ns		
t оитсо <i>(4)</i>	0.5	4.0	0.5	6.0	-	-	ns		
t _{PCISU}	3.0		6.2		-		ns		
t _{PCIH}	0.0		0.0		-		ns		
t _{PCICO}	2.0	6.0	2.0	6.9	-	-	ns		

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Мах	
t _{EABWCOMB}	6.7		8.1		10.7		ns
t _{EABWCREG}	6.6		8.0		10.6		ns
t _{EABDD}		4.0		5.1		6.7	ns
t _{EABDATACO}		0.8		1.0		1.3	ns
t _{EABDATASU}	1.3		1.6		2.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	0.9		1.1		1.5		ns
t _{EABWEH}	0.4		0.5		0.6		ns
t _{EABWDSU}	1.5		1.8		2.4		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.0		3.6		4.7		ns
t _{EABWAH}	0.4		0.5		0.7		ns
t _{EABWO}		3.4		4.4		5.8	ns

 Table 63. EPF10K200E Device Interconnect Timing Microparameters
 Note (1)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		4.2		4.6		5.7	ns
t _{DIN2LE}		1.7		1.7		2.0	ns
t _{DIN2DATA}		1.9		2.1		3.0	ns
t _{DCLK2IOE}		2.5		2.9		4.0	ns
t _{DCLK2LE}		1.7		1.7		2.0	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		2.3		2.6		3.6	ns
t _{SAMECOLUMN}		2.5		2.7		4.1	ns
t _{DIFFROW}		4.8		5.3		7.7	ns
t _{TWOROWS}		7.1		7.9		11.3	ns
t _{LEPERIPH}		7.0		7.6		9.0	ns
t _{LABCARRY}		0.1		0.1		0.2	ns
t _{LABCASC}		0.9		1.0		1.4	ns

Table 74. EPF10K200S Device IOE Timing Microparameters (Part 2 of 2) Note (1)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{ZX2}		4.5		4.8		6.6	ns
t _{ZX3}		6.6		7.6		10.1	ns
t _{INREG}		3.7		5.7		7.7	ns
t _{IOFD}		1.8		3.4		4.0	ns
t _{INCOMB}		1.8		3.4		4.0	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.8		2.4		3.2	ns
t _{EABDATA1}		0.4		0.5		0.6	ns
t _{EABWE1}		1.1		1.7		2.3	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0		0		0	ns
t _{EABRE2}		0.4		0.5		0.6	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		0.9		1.2	ns
t _{EABBYPASS}		0.0		0.1		0.1	ns
t _{EABSU}	0.7		1.1		1.5		ns
t _{EABH}	0.4		0.5		0.6		ns
t _{EABCLR}	0.8		0.9		1.2		ns
t _{AA}		2.1		3.7		4.9	ns
t _{WP}	2.1		4.0		5.3		ns
t _{RP}	1.1		1.1		1.5		ns
t _{WDSU}	0.5		1.1		1.5		ns
t _{WDH}	0.1		0.1		0.1		ns
twasu	1.1		1.6		2.1		ns
t _{WAH}	1.6		2.5		3.3		ns
t _{RASU}	1.6		2.6		3.5		ns
t _{RAH}	0.1		0.1		0.2		ns
t _{WO}		2.0		2.4		3.2	ns
t _{DD}		2.0		2.4		3.2	ns
t _{EABOUT}		0.0		0.1		0.1	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.1		2.8		3.8		ns

Altera Corporation

Power Consumption	The supply power (P) for FLEX 10KE devices can be calculated with the following equation:						
oonoumption	$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$						
	 The I_{CCACTIVE} value depends on the switching frequency and the application logic. This value is calculated based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in <i>Application Note 74 (Evaluating Power for Altera Devices)</i>. Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current. 						
						The $I_{CCACTIVE}$ value can be calculated with the following equation:	
	$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$						
		Where:					
	f _{MAX} = Maximum operating frequency in MHz N = Total number of LEs used in the device tog _{LC} = Average percent of LEs toggling at each clock (typically 12.5%) K = Constant						
	Table 80 provides the constant (K) values for FLEX 10KE devices.						
	Table 80. FLEX 10KE K Constant Values						
	Device	K Value					
	EPF10K30E	4.5					
	EPF10K50E 4.8						
	EPF10K50S 4.5						
	EPF10K100E 4.5						
	EPF10K130E 4.6						
	EPF10K200E	4.8					

EPF10K200S

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

4.6

To better reflect actual designs, the power model (and the constant K in the power calculation equations) for continuous interconnect FLEX devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results when compared to measured power consumption for actual designs in segmented FPGAs.

Figure 31 shows the relationship between the current and operating frequency of FLEX 10KE devices.

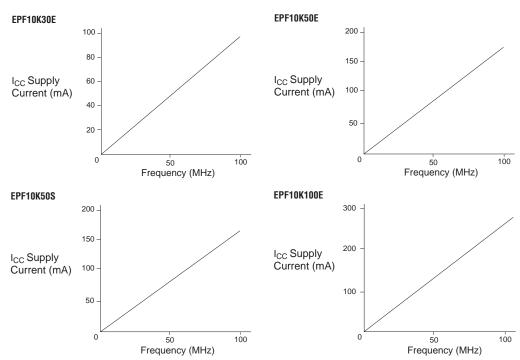


Figure 31. FLEX 10KE I_{CCACTIVE} vs. Operating Frequency (Part 1 of 2)