

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1248
Number of Logic Elements/Cells	9984
Total RAM Bits	98304
Number of I/O	470
Number of Gates	513000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k200sfi672-2x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

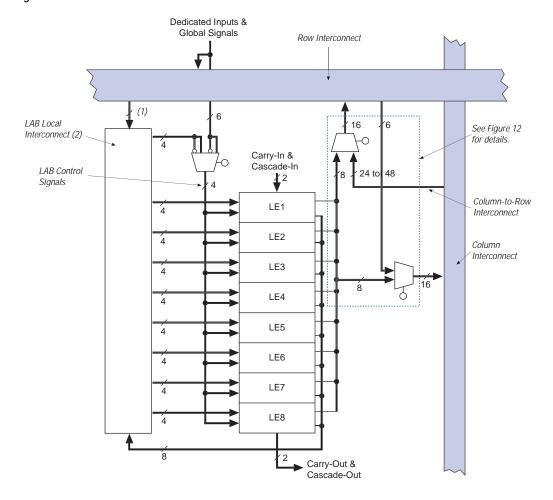
Table 2. FLEX 10KE Device Features							
Feature	EPF10K100E (2)	EPF10K130E	EPF10K200E EPF10K200S				
Typical gates (1)	100,000	130,000	200,000				
Maximum system gates	257,000	342,000	513,000				
Logic elements (LEs)	4,992	6,656	9,984				
EABs	12	16	24				
Total RAM bits	49,152	65,536	98,304				
Maximum user I/O pins	338	413	470				

Note to tables:

- (1) The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates.
- (2) New EPF10K100B designs should use EPF10K100E devices.

...and More Features

- Fabricated on an advanced process and operate with a 2.5-V internal supply voltage
- In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port
- ClockLockTM and ClockBoostTM options for reduced clock delay/skew and clock multiplication
- Built-in low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required
- Pull-up on I/O pins before and during configuration

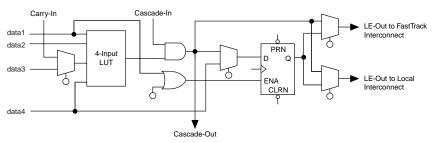

■ Flexible interconnect

- FastTrack® Interconnect continuous routing structure for fast, predictable interconnect delays
- Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
- Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
- Tri-state emulation that implements internal tri-state buses
- Up to six global clock signals and four global clear signals

■ Powerful I/O pins

- Individual tri-state output enable control for each pin
- Open-drain option on each I/O pin
- Programmable output slew-rate control to reduce switching noise
- Clamp to V_{CCIO} user-selectable on a pin-by-pin basis
- Supports hot-socketing

Figure 7. FLEX 10KE LAB


Notes:

- (1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26.
- (2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 34.

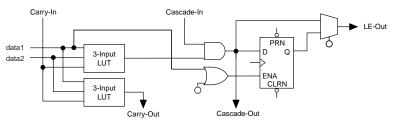
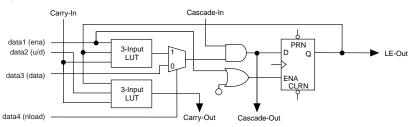
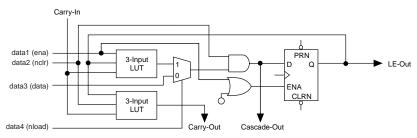

Figure 11 shows the LE operating modes.

Figure 11. FLEX 10KE LE Operating Modes


Normal Mode


Arithmetic Mode

Up/Down Counter Mode

Clearable Counter Mode

Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is ANDed with a synchronous clear signal.

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.

During compilation, the Altera Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six modes chosen during design entry:

- Asynchronous clear
- Asynchronous preset
- Asynchronous clear and preset
- Asynchronous load with clear
- Asynchronous load with preset
- Asynchronous load without clear or preset

For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row.

Table 7 summarizes the FastTrack Interconnect routing structure resources available in each FLEX 10KE device.

Table 7. FLEX 10KE FastTrack Interconnect Resources								
Device	Rows	Channels per Row	Columns	Channels per Column				
EPF10K30E	6	216	36	24				
EPF10K50E EPF10K50S	10	216	36	24				
EPF10K100E	12	312	52	24				
EPF10K130E	16	312	52	32				
EPF10K200E EPF10K200S	24	312	52	48				

In addition to general-purpose I/O pins, FLEX 10KE devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output enable and clock enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Figure 14 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3.

Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels is different for each IOE (see Figure 17).

Figure 17. FLEX 10KE Column-to-IOE Connections

The values for m and n are provided in Table 11.

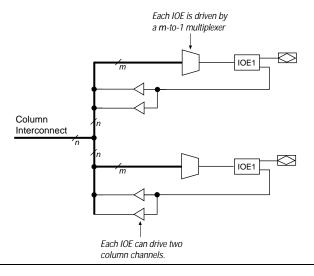


Table 11 lists the FLEX 10KE column-to-IOE interconnect resources.

Table 11. FLEX 10KE Column-to-IOE Interconnect Resources								
Device	Channels per Column (n)	Column Channels per Pin (m)						
EPF10K30E	24	16						
EPF10K50E EPF10K50S	24	16						
EPF10K100E	24	16						
EPF10K130E	32	24						
EPF10K200E EPF10K200S	48	40						

PCI Pull-Up Clamping Diode Option

FLEX 10KE devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the signal to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When $V_{\rm CCIO}$ is 3.3 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When $V_{\rm CCIO}$ is 2.5 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can be activated for a subset of pins, which would allow a device to bridge between a 3.3-V PCI bus and a 5.0-V device.

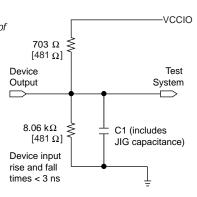
Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of 4.3 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate pin-by-pin or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects the falling edge of the output.

Open-Drain Output Option

FLEX 10KE devices provide an optional open-drain output (electrically equivalent to open-collector output) for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired- \mathbb{QR} plane.

MultiVolt I/O Interface


The FLEX 10KE device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10KE devices in all packages to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

Generic Testing

Each FLEX 10KE device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10KE devices are made under conditions equivalent to those shown in Figure 21. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 21. FLEX 10KE AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices or outputs. Numbers without brackets are for 3.3-V. devices or outputs.

Operating Conditions

Tables 19 through 23 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V FLEX 10KE devices.

Symbol	Parameter	Conditions	Min	Max	Unit
	1 di diffictor	Conditions	141111	IVIGA	Oiiit
V_{CCINT}	Supply voltage	With respect to ground (2)	-0.5	3.6	V
V _{CCIO}			-0.5	4.6	V
V _I	DC input voltage		-2.0	5.75	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	° C
T _{AMB}	Ambient temperature	Under bias	-65	135	°C
T _J	Junction temperature	PQFP, TQFP, BGA, and FineLine BGA		135	°C
		packages, under bias			
		Ceramic PGA packages, under bias		150	°C

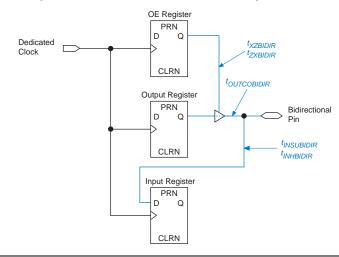


Figure 28. Synchronous Bidirectional Pin External Timing Model

Tables 24 through 28 describe the FLEX 10KE device internal timing parameters. Tables 29 through 30 describe the FLEX 10KE external timing parameters and their symbols.

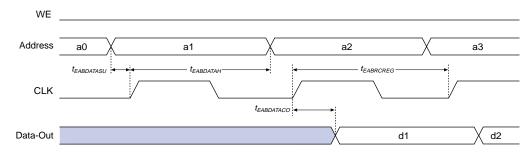

Symbol	Parameter	Condition
t _{LUT}	LUT delay for data-in	
t _{CLUT}	LUT delay for carry-in	
t _{RLUT}	LUT delay for LE register feedback	
t _{PACKED}	Data-in to packed register delay	
t _{EN}	LE register enable delay	
t _{CICO}	Carry-in to carry-out delay	
t _{CGEN}	Data-in to carry-out delay	
t _{CGENR}	LE register feedback to carry-out delay	
t _{CASC}	Cascade-in to cascade-out delay	
t_{C}	LE register control signal delay	
t _{CO}	LE register clock-to-output delay	
t _{COMB}	Combinatorial delay	
t _{SU}	LE register setup time for data and enable signals before clock; LE register recovery time after asynchronous clear, preset, or load	
t_H	LE register hold time for data and enable signals after clock	
t _{PRE}	LE register preset delay	

Table 24. LE Timing Microparameters (Part 2 of 2) Note (1)						
Symbol	Symbol Parameter Condition					
t _{CLR}	LE register clear delay					
t _{CH}	Minimum clock high time from clock pin					
t_{CL}	Minimum clock low time from clock pin					

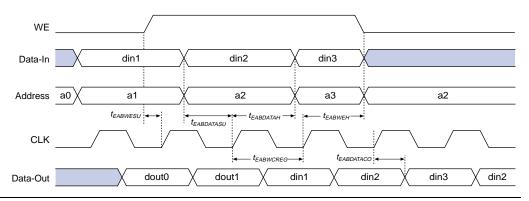

Table 25. IOE Timing Microparameters Note (1)							
Symbol	Parameter	Conditions					
t_{IOD}	IOE data delay						
t _{IOC}	IOE register control signal delay						
t _{IOCO}	IOE register clock-to-output delay						
t _{IOCOMB}	IOE combinatorial delay						
t _{IOSU}	IOE register setup time for data and enable signals before clock; IOE register recovery time after asynchronous clear						
t _{IOH}	IOE register hold time for data and enable signals after clock						
t _{IOCLR}	IOE register clear time						
t _{OD1}	Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 3.3 V	C1 = 35 pF (2)					
t _{OD2}	Output buffer and pad delay, slow slew rate = off, V _{CCIO} = 2.5 V	C1 = 35 pF (3)					
t _{OD3}	Output buffer and pad delay, slow slew rate = on	C1 = 35 pF (4)					
t_{XZ}	IOE output buffer disable delay						
t_{ZX1}	IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 3.3 V	C1 = 35 pF (2)					
t_{ZX2}	IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = 2.5 V	C1 = 35 pF (3)					
t _{ZX3}	IOE output buffer enable delay, slow slew rate = on	C1 = 35 pF (4)					
t _{INREG}	IOE input pad and buffer to IOE register delay						
t _{IOFD}	IOE register feedback delay						
t _{INCOMB}	IOE input pad and buffer to FastTrack Interconnect delay						

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Read

EAB Synchronous Write (EAB Output Registers Used)

Tables 31 through 37 show EPF10K30E device internal and external timing parameters.

Table 31. EPF10K30E Device LE Timing Microparameters (Part 1 of 2) Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t_{LUT}		0.7		0.8		1.1	ns	
t _{CLUT}		0.5		0.6		0.8	ns	
t _{RLUT}		0.6		0.7		1.0	ns	
t _{PACKED}		0.3		0.4		0.5	ns	
t_{EN}		0.6		0.8		1.0	ns	
t _{CICO}		0.1		0.1		0.2	ns	
t _{CGEN}		0.4		0.5		0.7	ns	

Table 31. EPF10K30E Device LE Timing Microparameters (Part 2 of 2) Note (1)								
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		ed Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{CGENR}		0.1		0.1		0.2	ns	
t _{CASC}		0.6		0.8		1.0	ns	
$t_{\mathbb{C}}$		0.0		0.0		0.0	ns	
t_{CO}		0.3		0.4		0.5	ns	
t _{COMB}		0.4		0.4		0.6	ns	
t_{SU}	0.4		0.6		0.6		ns	
t_H	0.7		1.0		1.3		ns	
t _{PRE}		0.8		0.9		1.2	ns	
t _{CLR}		0.8		0.9		1.2	ns	
t _{CH}	2.0		2.5		2.5		ns	
t_{CL}	2.0		2.5		2.5		ns	

Table 32. EPF10K30E Device IOE Timing Microparameters Note (1)								
Symbol	-1 Spec	ed Grade	-2 Spee	-2 Speed Grade		ed Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{IOD}		2.4		2.8		3.8	ns	
t _{IOC}		0.3		0.4		0.5	ns	
t _{IOCO}		1.0		1.1		1.6	ns	
t _{IOCOMB}		0.0		0.0		0.0	ns	
t _{IOSU}	1.2		1.4		1.9		ns	
t _{IOH}	0.3		0.4		0.5		ns	
t _{IOCLR}		1.0		1.1		1.6	ns	
t _{OD1}		1.9		2.3		3.0	ns	
t _{OD2}		1.4		1.8		2.5	ns	
t _{OD3}		4.4		5.2		7.0	ns	
t_{XZ}		2.7		3.1		4.3	ns	
t_{ZX1}		2.7		3.1		4.3	ns	
t_{ZX2}		2.2		2.6		3.8	ns	
t_{ZX3}		5.2		6.0		8.3	ns	
t _{INREG}		3.4		4.1		5.5	ns	
t _{IOFD}		0.8		1.3		2.4	ns	
t _{INCOMB}		0.8		1.3		2.4	ns	

Table 38. EPF10K50E Device LE Timing Microparameters (Part 2 of 2) Note (1)								
Symbol	-1 Speed Grade		Symbol -1 Speed Grade -2 Speed Grade		d Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max		
t _H	0.9		1.0		1.4		ns	
t _{PRE}		0.5		0.6		0.8	ns	
t _{CLR}		0.5		0.6		0.8	ns	
t _{CH}	2.0		2.5		3.0		ns	
t_{CL}	2.0		2.5		3.0		ns	

Table 39. EPF10	K50E Device	IOE Timing	Microparam	neters No	te (1)		
Symbol	-1 Spec	ed Grade	-2 Spec	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t_{IOD}		2.2		2.4		3.3	ns
t _{IOC}		0.3		0.3		0.5	ns
t_{IOCO}		1.0		1.0		1.4	ns
t _{IOCOMB}		0.0		0.0		0.2	ns
t _{IOSU}	1.0		1.2		1.7		ns
t _{IOH}	0.3		0.3		0.5		ns
t _{IOCLR}		0.9		1.0		1.4	ns
t _{OD1}		0.8		0.9		1.2	ns
t _{OD2}		0.3		0.4		0.7	ns
t _{OD3}		3.0		3.5		3.5	ns
t_{XZ}		1.4		1.7		2.3	ns
t_{ZX1}		1.4		1.7		2.3	ns
t _{ZX2}		0.9		1.2		1.8	ns
t _{ZX3}		3.6		4.3		4.6	ns
t _{INREG}		4.9		5.8		7.8	ns
t _{IOFD}		2.8		3.3		4.5	ns
t _{INCOMB}		2.8	_	3.3	_	4.5	ns

Table 50. EPF10	K100E Extern	al Timing P	arameters	rameters Notes (1), (2)					
Symbol	-1 Spec	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit		
	Min	Max	Min	Max	Min	Max]		
t _{DRR}		9.0		12.0		16.0	ns		
t _{INSU} (3)	2.0		2.5		3.3		ns		
t _{INH} (3)	0.0		0.0		0.0		ns		
t _{оитсо} (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns		
t _{INSU} (4)	2.0		2.2		-		ns		
t _{INH} (4)	0.0		0.0		-		ns		
t _{OUTCO} (4)	0.5	3.0	0.5	4.6	-	-	ns		
t _{PCISU}	3.0		6.2		-		ns		
t _{PCIH}	0.0		0.0		_		ns		
t _{PCICO}	2.0	6.0	2.0	6.9	_	_	ns		

Table 51. EPF10K	100E Extern	al Bidirection	onal Timing	Parameters	Notes (1	1), (2)		
Symbol	-1 Spec	ed Grade	-2 Spee	ed Grade	-3 Spec	ed Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR} (3)	1.7		2.5		3.3		ns	
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns	
t _{INSUBIDIR} (4)	2.0		2.8		_		ns	
t _{INHBIDIR} (4)	0.0		0.0		_		ns	
toutcobidir (3)	2.0	5.2	2.0	6.9	2.0	9.1	ns	
t _{XZBIDIR} (3)		5.6		7.5		10.1	ns	
t _{ZXBIDIR} (3)		5.6		7.5		10.1	ns	
toutcobidir (4)	0.5	3.0	0.5	4.6	_	-	ns	
t _{XZBIDIR} (4)		4.6		6.5		-	ns	
t _{ZXBIDIR} (4)		4.6		6.5		-	ns	

Notes to tables:

- (1) All timing parameters are described in Tables 24 through 30 in this data sheet.
- (2) These parameters are specified by characterization.
- (3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
- (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Table 53. EPF10	K130E Devic	e IOE Timing	Microparar	Microparameters Note (1)					
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{OD3}		4.0		5.6		7.5	ns		
t_{XZ}		2.8		4.1		5.5	ns		
t_{ZX1}		2.8		4.1		5.5	ns		
t_{ZX2}		2.8		4.1		5.5	ns		
t_{ZX3}		4.0		5.6		7.5	ns		
t _{INREG}		2.5		3.0		4.1	ns		
t _{IOFD}		0.4		0.5		0.6	ns		
t _{INCOMB}		0.4		0.5		0.6	ns		

Table 54. EPF10K	130E Device	EAB Interna	al Micropara	imeters (Pa	ort 1 of 2)	Note (1)	
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.5		2.0		2.6	ns
t _{EABDATA2}		0.0		0.0		0.0	ns
t _{EABWE1}		1.5		2.0		2.6	ns
t _{EABWE2}		0.3		0.4		0.5	ns
t _{EABRE1}		0.3		0.4		0.5	ns
t _{EABRE2}		0.0		0.0		0.0	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.3		0.4		0.5	ns
t _{EABBYPASS}		0.1		0.1		0.2	ns
t _{EABSU}	0.8		1.0		1.4		ns
t _{EABH}	0.1		0.2		0.2		ns
t _{EABCLR}	0.3		0.4		0.5		ns
t_{AA}		4.0		5.0		6.6	ns
t_{WP}	2.7		3.5		4.7		ns
t_{RP}	1.0		1.3		1.7		ns
t _{WDSU}	1.0		1.3		1.7		ns
t _{WDH}	0.2		0.2		0.3		ns
t _{WASU}	1.6		2.1		2.8		ns
t _{WAH}	1.6		2.1		2.8		ns
t _{RASU}	3.0		3.9		5.2		ns
t _{RAH}	0.1		0.1		0.2		ns
t_{WO}		1.5		2.0		2.6	ns

Table 54. EPF10	K130E Device	EAB Interna	al Micropara	ameters (Pa	art 2 of 2)	Note (1)	
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t_{DD}		1.5		2.0		2.6	ns
t _{EABOUT}		0.2		0.3		0.3	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	2.7		3.5		4.7		ns

Table 55. EPF10	K130E Device	e EAB Intern	al Timing M	lacroparame	ters Note	e (1)	
Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		5.9		7.5		9.9	ns
t _{EABRCOMB}	5.9		7.5		9.9		ns
t _{EABRCREG}	5.1		6.4		8.5		ns
t _{EABWP}	2.7		3.5		4.7		ns
t _{EABWCOMB}	5.9		7.7		10.3		ns
t _{EABWCREG}	5.4		7.0		9.4		ns
t _{EABDD}		3.4		4.5		5.9	ns
t _{EABDATACO}		0.5		0.7		0.8	ns
t _{EABDATASU}	0.8		1.0		1.4		ns
t _{EABDATAH}	0.1		0.1		0.2		ns
t _{EABWESU}	1.1		1.4		1.9		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.0		1.3		1.7		ns
t _{EABWDH}	0.2		0.2		0.3		ns
t _{EABWASU}	4.1		5.1		6.8		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		3.4		4.5		5.9	ns

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (3)	2.2		2.4		3.2		ns
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns
t _{INSUBIDIR} (4)	2.8		3.0		-		ns
t _{INHBIDIR} (4)	0.0		0.0		-		ns
toutcobidir (3)	2.0	5.0	2.0	7.0	2.0	9.2	ns
t _{XZBIDIR} (3)		5.6		8.1		10.8	ns
t _{ZXBIDIR} (3)		5.6		8.1		10.8	ns
toutcobidir (4)	0.5	4.0	0.5	6.0	-	-	ns
xzbidir (4)		4.6		7.1		_	ns
t _{ZXBIDIR} (4)		4.6		7.1		-	ns

Notes to tables:

- (1) All timing parameters are described in Tables 24 through 30 in this data sheet.
- (2) These parameters are specified by characterization.
- (3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
- (4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 59 through 65 show EPF10K200E device internal and external timing parameters.

Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t_{LUT}		0.7		0.8		1.2	ns
t _{CLUT}		0.4		0.5		0.6	ns
t _{RLUT}		0.6		0.7		0.9	ns
t _{PACKED}		0.3		0.5		0.7	ns
t_{EN}		0.4		0.5		0.6	ns
t _{CICO}		0.2		0.2		0.3	ns
t _{CGEN}		0.4		0.4		0.6	ns
t _{CGENR}		0.2		0.2		0.3	ns
t _{CASC}		0.7		0.8		1.2	ns
t_{C}		0.5		0.6		0.8	ns
t _{CO}		0.5		0.6		0.8	ns
[†] СОМВ		0.4		0.6		0.8	ns
t _{su}	0.4		0.6		0.7		ns

Table 59. EPF10K	200E Device	LE Timing	Microparam	eters (Part	2 of 2) N	ote (1)	
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t_H	0.9		1.1		1.5		ns
t _{PRE}		0.5		0.6		0.8	ns
t _{CLR}		0.5		0.6		0.8	ns
t _{CH}	2.0		2.5		3.0		ns
t_{CL}	2.0		2.5		3.0		ns

Table 60. EPF10I	K200E Device	e IOE Timing	Micropara	meters No	ote (1)		
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spec	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t_{IOD}		1.6		1.9		2.6	ns
t_{IOC}		0.3		0.3		0.5	ns
t _{IOCO}		1.6		1.9		2.6	ns
t _{IOCOMB}		0.5		0.6		0.8	ns
t _{IOSU}	0.8		0.9		1.2		ns
t _{IOH}	0.7		0.8		1.1		ns
t _{IOCLR}		0.2		0.2		0.3	ns
t _{OD1}		0.6		0.7		0.9	ns
t _{OD2}		0.1		0.2		0.7	ns
t _{OD3}		2.5		3.0		3.9	ns
t_{XZ}		4.4		5.3		7.1	ns
t _{ZX1}		4.4		5.3		7.1	ns
t_{ZX2}		3.9		4.8		6.9	ns
t_{ZX3}		6.3		7.6		10.1	ns
t _{INREG}		4.8		5.7		7.7	ns
t _{IOFD}		1.5		1.8		2.4	ns
t _{INCOMB}		1.5		1.8		2.4	ns

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.4		3.2	ns
t _{EABDATA2}		0.4		0.6		0.8	ns
t _{EABWE1}		1.0		1.4		1.9	ns
t _{EABWE2}		0.0		0.0		0.0	ns
t _{EABRE1}		0.0		0.0		0.0	
t _{EABRE2}		0.4		0.6		0.8	
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		0.8		1.1		1.5	ns
t _{EABBYPASS}		0.0		0.0		0.0	ns
t _{EABSU}	0.7		1.0		1.3		ns
t _{EABH}	0.4		0.6		0.8		ns
t _{EABCLR}	0.8		1.1		1.5		
t_{AA}		2.0		2.8		3.8	ns
t_{WP}	2.0		2.8		3.8		ns
t_{RP}	1.0		1.4		1.9		
t _{WDSU}	0.5		0.7		0.9		ns
t_{WDH}	0.1		0.1		0.2		ns
t _{WASU}	1.0		1.4		1.9		ns
t _{WAH}	1.5		2.1		2.9		ns
t _{RASU}	1.5		2.1		2.8		
t _{RAH}	0.1		0.1		0.2		
t_{WO}		2.1		2.9		4.0	ns
t_{DD}		2.1		2.9		4.0	ns
t _{EABOUT}		0.0		0.0		0.0	ns
t _{EABCH}	1.5		2.0		2.5		ns
t _{EABCL}	1.5		2.0		2.5		ns

Table 69. EPF10	K50S Device	EAB Interna	l Timing Ma	croparamet	ers Note	(1)	
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		3.7		5.2		7.0	ns
t _{EABRCCOMB}	3.7		5.2		7.0		ns
t _{EABRCREG}	3.5		4.9		6.6		ns
t _{EABWP}	2.0		2.8		3.8		ns
t _{EABWCCOMB}	4.5		6.3		8.6		ns
t _{EABWCREG}	5.6		7.8		10.6		ns
t _{EABDD}		3.8		5.3		7.2	ns
t _{EABDATACO}		0.8		1.1		1.5	ns
t _{EABDATASU}	1.1		1.6		2.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	0.7		1.0		1.3		ns
t _{EABWEH}	0.4		0.6		0.8		ns
t _{EABWDSU}	1.2		1.7		2.2		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	1.6		2.3		3.0		ns
t _{EABWAH}	0.9		1.2		1.8		ns
t _{EABWO}		3.1		4.3		5.9	ns

Table 70. EPF10K50S Device Interconnect Timing Microparameters Note (1)											
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit				
	Min	Max	Min	Max	Min	Max					
t _{DIN2IOE}		3.1		3.7		4.6	ns				
t _{DIN2LE}		1.7		2.1		2.7	ns				
t _{DIN2DATA}		2.7		3.1		5.1	ns				
t _{DCLK2IOE}		1.6		1.9		2.6	ns				
t _{DCLK2LE}		1.7		2.1		2.7	ns				
t _{SAMELAB}		0.1		0.1		0.2	ns				
t _{SAMEROW}		1.5		1.7		2.4	ns				
t _{SAME} COLUMN		1.0		1.3		2.1	ns				
t _{DIFFROW}		2.5		3.0		4.5	ns				
t _{TWOROWS}		4.0		4.7		6.9	ns				
t _{LEPERIPH}		2.6		2.9		3.4	ns				
t _{LABCARRY}		0.1		0.2		0.2	ns				
t _{LABCASC}		0.8		1.0		1.3	ns				