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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.
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based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 10KE Embedded Programmable Logic Devices Data Sheet
f For more information on FLEX device configuration, see the following 
documents:

■ Configuration Devices for APEX & FLEX Devices Data Sheet
■ BitBlaster Serial Download Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ MasterBlaster Download Cable Data Sheet
■ Application Note 116 (Configuring APEX 20K, FLEX 10K, & FLEX 6000 

Devices)

FLEX 10KE devices are supported by the Altera development systems, 
which are integrated packages that offer schematic, text (including 
AHDL), and waveform design entry, compilation and logic synthesis, full 
simulation and worst-case timing analysis, and device configuration. The 
Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, 
and other interfaces for additional design entry and simulation support 
from other industry-standard PC- and UNIX workstation-based EDA 
tools. 

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains, which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development system includes DesignWare 
functions that are optimized for the FLEX 10KE architecture. 

The Altera development system runs on Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800.

f See the MAX+PLUS II Programmable Logic Development System & Software 
Data Sheet and the Quartus Programmable Logic Development System & 
Software Data Sheet for more information.
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EABs provide flexible options for driving and controlling clock signals. 
Different clocks and clock enables can be used for reading and writing to 
the EAB. Registers can be independently inserted on the data input, EAB 
output, write address, write enable signals, read address, and read enable 
signals. The global signals and the EAB local interconnect can drive write 
enable, read enable, and clock enable signals. The global signals, 
dedicated clock pins, and EAB local interconnect can drive the EAB clock 
signals. Because the LEs drive the EAB local interconnect, the LEs can 
control write enable, read enable, clear, clock, and clock enable signals. 

An EAB is fed by a row interconnect and can drive out to row and column 
interconnects. Each EAB output can drive up to two row channels and up 
to two column channels; the unused row channel can be driven by other 
LEs. This feature increases the routing resources available for EAB 
outputs (see Figures 2 and 4). The column interconnect, which is adjacent 
to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure to the FLEX 10KE architecture, facilitating 
efficient routing with optimum device utilization and high performance 
(see Figure 7). 
Altera Corporation 15 
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Figure 7. FLEX 10KE LAB

Notes:
(1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the 

row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26.
(2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, 

EPF10K130E, EPF10K200E, and EPF10K200S devices have 34.
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Each LAB provides four control signals with programmable inversion 
that can be used in all eight LEs. Two of these signals can be used as clocks, 
the other two can be used for clear/preset control. The LAB clocks can be 
driven by the dedicated clock input pins, global signals, I/O signals, or 
internal signals via the LAB local interconnect. The LAB preset and clear 
control signals can be driven by the global signals, I/O signals, or internal 
signals via the LAB local interconnect. The global control signals are 
typically used for global clock, clear, or preset signals because they 
provide asynchronous control with very low skew across the device. If 
logic is required on a control signal, it can be generated in one or more LE 
in any LAB and driven into the local interconnect of the target LAB. In 
addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the FLEX 10KE architecture, has a 
compact size that provides efficient logic utilization. Each LE contains a 
four-input LUT, which is a function generator that can quickly compute 
any function of four variables. In addition, each LE contains a 
programmable flipflop with a synchronous clock enable, a carry chain, 
and a cascade chain. Each LE drives both the local and the FastTrack 
Interconnect routing structure (see Figure 8).

Figure 8. FLEX 10KE Logic Element
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Cascade Chain

With the cascade chain, the FLEX 10KE architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE 
provides four more inputs to the effective width of a function. Cascade 
chain logic can be created automatically by the Altera Compiler during 
design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EPF10K50E device, the 
cascade chain stops at the eighteenth LAB and a new one begins at the 
nineteenth LAB). This break is due to the EAB’s placement in the middle 
of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to 
form functions with a wide fan-in. These examples show functions of 
4n variables implemented with n LEs. The LE delay is 0.9 ns; the cascade 
chain delay is 0.6 ns. With the cascade chain, 2.7 ns are needed to decode 
a 16-bit address.

Figure 10. FLEX 10KE Cascade Chain Operation
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FastTrack Interconnect Routing Structure

In the FLEX 10KE architecture, connections between LEs, EABs, and 
device I/O pins are provided by the FastTrack Interconnect routing 
structure, which is a series of continuous horizontal and vertical routing 
channels that traverses the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the 
segmented routing in FPGAs requires switch matrices to connect a 
variable number of routing paths, increasing the delays between logic 
resources and reducing performance.

The FastTrack Interconnect routing structure consists of row and column 
interconnect channels that span the entire device. Each row of LABs is 
served by a dedicated row interconnect. The row interconnect can drive 
I/O pins and feed other LABs in the row. The column interconnect routes 
signals between rows and can drive I/O pins.

Row channels drive into the LAB or EAB local interconnect. The row 
signal is buffered at every LAB or EAB to reduce the effect of fan-out on 
delay. A row channel can be driven by an LE or by one of three column 
channels. These four signals feed dual 4-to-1 multiplexers that connect to 
two specific row channels. These multiplexers, which are connected to 
each LE, allow column channels to drive row channels even when all eight 
LEs in a LAB drive the row interconnect. 

Each column of LABs or EABs is served by a dedicated column 
interconnect. The column interconnect that serves the EABs has twice as 
many channels as other column interconnects. The column interconnect 
can then drive I/O pins or another row’s interconnect to route the signals 
to other LABs or EABs in the device. A signal from the column 
interconnect, which can be either the output of a LE or an input from an 
I/O pin, must be routed to the row interconnect before it can enter a LAB 
or EAB. Each row channel that is driven by an IOE or EAB can drive one 
specific column channel.

Access to row and column channels can be switched between LEs in 
adjacent pairs of LABs. For example, a LE in one LAB can drive the row 
and column channels normally driven by a particular LE in the adjacent 
LAB in the same row, and vice versa. This flexibility enables routing 
resources to be used more efficiently (see Figure 13).
Altera Corporation 27 
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Figure 13. FLEX 10KE LAB Connections to Row & Column Interconnect     
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Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column 
channels. When an IOE is used as an output, the signal is driven by a 
multiplexer that selects a signal from the column channels. Two IOEs 
connect to each side of the column channels. Each IOE can be driven by 
column channels via a multiplexer. The set of column channels is different 
for each IOE (see Figure 17).

Figure 17. FLEX 10KE Column-to-IOE Connections   

Table 11 lists the FLEX 10KE column-to-IOE interconnect resources. 
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The values for m and n are provided in Table 11.

Table 11. FLEX 10KE Column-to-IOE Interconnect Resources

Device Channels per Column (n) Column Channels per Pin (m)

EPF10K30E 24 16

EPF10K50E
EPF10K50S

24 16

EPF10K100E 24 16

EPF10K130E 32 24

EPF10K200E
EPF10K200S

48 40
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PCI Pull-Up Clamping Diode Option

FLEX 10KE devices have a pull-up clamping diode on every I/O, 
dedicated input, and dedicated clock pin. PCI clamping diodes clamp the 
signal to the VCCIO value and are required for 3.3-V PCI compliance. 
Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When VCCIO is 
3.3 V, a pin that has the clamping diode option turned on can be driven by 
a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When VCCIO is 2.5 V, a pin 
that has the clamping diode option turned on can be driven by a 2.5-V 
signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can 
be activated for a subset of pins, which would allow a device to bridge 
between a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can 
be configured for low-noise or high-speed performance. A slower slew 
rate reduces system noise and adds a maximum delay of 4.3 ns. The fast 
slew rate should be used for speed-critical outputs in systems that are 
adequately protected against noise. Designers can specify the slew rate 
pin-by-pin or assign a default slew rate to all pins on a device-wide basis. 
The slow slew rate setting affects the falling edge of the output.

Open-Drain Output Option

FLEX 10KE devices provide an optional open-drain output (electrically 
equivalent to open-collector output) for each I/O pin. This open-drain 
output enables the device to provide system-level control signals (e.g., 
interrupt and write enable signals) that can be asserted by any of several 
devices. It can also provide an additional wired-OR plane. 

MultiVolt I/O Interface 

The FLEX 10KE device architecture supports the MultiVolt I/O interface 
feature, which allows FLEX 10KE devices in all packages to interface with 
systems of differing supply voltages. These devices have one set of VCC 
pins for internal operation and input buffers (VCCINT), and another set for 
I/O output drivers (VCCIO). 
42 Altera Corporation
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Notes:
(1) The most significant bit (MSB) is on the left.
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

FLEX 10KE devices include weak pull-up resistors on the JTAG pins.

f For more information, see the following documents:

■ Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in 
Altera Devices) 

■ BitBlaster Serial Download Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ Jam Programming & Test Language Specification

Table 17. 32-Bit IDCODE for FLEX 10KE Devices Note (1)

Device IDCODE (32 Bits)

Version 
(4 Bits)

Part Number (16 Bits) Manufacturer’s
Identity (11 Bits)

1 (1 Bit) 
(2)

EPF10K30E 0001 0001 0000 0011 0000 00001101110 1

EPF10K50E
EPF10K50S

0001 0001 0000 0101 0000 00001101110 1

EPF10K100E 0010 0000 0001 0000 0000 00001101110 1

EPF10K130E 0001 0000 0001 0011 0000 00001101110 1

EPF10K200E
EPF10K200S

0001 0000 0010 0000 0000 00001101110 1
Altera Corporation 45 
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Figure 20 shows the timing requirements for the JTAG signals.

Figure 20. FLEX 10KE JTAG Waveforms

Table 18 shows the timing parameters and values for FLEX 10KE devices.

Table 18. FLEX 10KE JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time  50 ns

tJCL TCK clock low time  50 ns

tJPSU JTAG port setup time  20 ns

tJPH JTAG port hold time  45 ns

tJPCO JTAG port clock to output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock to output 35 ns

tJSZX Update register high impedance to valid output 35 ns

tJSXZ Update register valid output to high impedance 35 ns

TDO

TCK

tJPZX tJPCO

tJPH

t JPXZ
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 tJPSU t JCL tJCH
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Generic Testing Each FLEX 10KE device is functionally tested. Complete testing of each 
configurable static random access memory (SRAM) bit and all logic 
functionality ensures 100% yield. AC test measurements for FLEX 10KE 
devices are made under conditions equivalent to those shown in 
Figure 21. Multiple test patterns can be used to configure devices during 
all stages of the production flow.

Figure 21. FLEX 10KE AC Test Conditions

Operating 
Conditions

Tables 19 through 23 provide information on absolute maximum ratings, 
recommended operating conditions, DC operating conditions, and 
capacitance for 2.5-V FLEX 10KE devices.
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Device input
rise and fall
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[481    ]Ω
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VCCIO
Power supply transients can affect AC
measurements. Simultaneous transitions of 
multiple outputs should be avoided for 
accurate measurement. Threshold tests 
must not be performed under AC 
conditions. Large-amplitude, fast-ground-
current transients normally occur as the 
device outputs discharge the load 
capacitances. When these transients flow 
through the parasitic inductance between 
the device ground pin and the test system 
ground, significant reductions in 
observable noise immunity can result. 
Numbers in brackets are for 2.5-V devices 
or outputs. Numbers without brackets are 
for 3.3-V. devices or outputs.

Table 19. FLEX 10KE 2.5-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage With respect to ground (2) –0.5 3.6 V

VCCIO –0.5 4.6 V

VI DC input voltage –2.0 5.75 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, TQFP, BGA, and FineLine BGA 
packages, under bias

135 ° C

Ceramic PGA packages, under bias 150 ° C
Altera Corporation 47 
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents 

less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(6) Typical values are for TA = 25° C, VCCINT = 2.5 V, and VCCIO = 2.5 V or 3.3 V.
(7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
(8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS 

signals. Additionally, the input buffers are 3.3-V PCI compliant when VCCIO and VCCINT meet the relationship shown 
in Figure 22.

(9) The IOH parameter refers to high-level TTL, PCI, or CMOS output current.
(10) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(11) This value is specified for normal device operation. The value may vary during power-up.
(12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial 

temperature devices.
(13) Pin pull-up resistance values will be lower if the pin is driven higher than VCCIO by an external source.
(14) Capacitance is sample-tested only.

Table 23. FLEX 10KE Device Capacitance Note (14)

Symbol Parameter Conditions Min Max Unit

CIN Input capacitance VIN = 0 V, f = 1.0 MHz 10 pF

CINCLK Input capacitance on 
dedicated clock pin

VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 10 pF
50 Altera Corporation
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Table 41. EPF10K50E Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 6.4 7.6 10.2 ns

tEABRCOMB 6.4 7.6 10.2 ns

tEABRCREG 4.4 5.1 7.0 ns

tEABWP 2.5 2.9 3.9 ns

tEABWCOMB 6.0 7.0 9.5 ns

tEABWCREG 6.8 7.8 10.6 ns

tEABDD 5.7 6.7 9.0 ns

tEABDATACO 0.8 0.9 1.3 ns

tEABDATASU 1.5 1.7 2.3 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 1.3 1.4 2.0 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.5 1.7 2.3 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.0 3.6 4.8 ns

tEABWAH 0.5 0.5 0.8 ns

tEABWO 5.1 6.0 8.1 ns

Table 42. EPF10K50E Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 3.5 4.3 5.6 ns

tDIN2LE 2.1 2.5 3.4 ns

tDIN2DATA 2.2 2.4 3.1 ns

tDCLK2IOE 2.9 3.5 4.7 ns

tDCLK2LE 2.1 2.5 3.4 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.1 1.1 1.5 ns

tSAMECOLUMN 0.8 1.0 1.3 ns

tDIFFROW 1.9 2.1 2.8 ns

tTWOROWS 3.0 3.2 4.3 ns

tLEPERIPH 3.1 3.3 3.7 ns

tLABCARRY 0.1 0.1 0.2 ns

tLABCASC 0.3 0.3 0.5 ns
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Tables 52 through 58 show EPF10K130E device internal and external 
timing parameters.   

Table 52. EPF10K130E Device LE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.6 0.9 1.3 ns

tCLUT 0.6 0.8 1.0 ns

tRLUT 0.7 0.9 0.2 ns

tPACKED 0.3 0.5 0.6 ns

tEN 0.2 0.3 0.4 ns

tCICO 0.1 0.1 0.2 ns

tCGEN 0.4 0.6 0.8 ns

tCGENR 0.1 0.1 0.2 ns

tCASC 0.6 0.9 1.2 ns

tC 0.3 0.5 0.6 ns

tCO 0.5 0.7 0.8 ns

tCOMB 0.3 0.5 0.6 ns

tSU 0.5 0.7 0.8 ns

tH 0.6 0.7 1.0 ns

tPRE 0.9 1.2 1.6 ns

tCLR 0.9 1.2 1.6 ns

tCH 1.5 1.5 2.5 ns

tCL 1.5 1.5 2.5 ns

Table 53. EPF10K130E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 1.3 1.5 2.0 ns

tIOC 0.0 0.0 0.0 ns

tIOCO 0.6 0.8 1.0 ns

tIOCOMB 0.6 0.8 1.0 ns

tIOSU 1.0 1.2 1.6 ns

tIOH 0.9 0.9 1.4 ns

tIOCLR 0.6 0.8 1.0 ns

tOD1 2.8 4.1 5.5 ns

tOD2 2.8 4.1 5.5 ns
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tOD3 4.0 5.6 7.5 ns

tXZ 2.8 4.1 5.5 ns

tZX1 2.8 4.1 5.5 ns

tZX2 2.8 4.1 5.5 ns

tZX3 4.0 5.6 7.5 ns

tINREG 2.5 3.0 4.1 ns

tIOFD 0.4 0.5 0.6 ns

tINCOMB 0.4 0.5 0.6 ns

Table 54. EPF10K130E Device EAB Internal Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.5 2.0 2.6 ns

tEABDATA2 0.0 0.0 0.0 ns

tEABWE1 1.5 2.0 2.6 ns

tEABWE2 0.3 0.4 0.5 ns

tEABRE1 0.3 0.4 0.5 ns

tEABRE2 0.0 0.0 0.0 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 0.3 0.4 0.5 ns

tEABBYPASS 0.1 0.1 0.2 ns

tEABSU 0.8 1.0 1.4 ns

tEABH 0.1 0.2 0.2 ns

tEABCLR 0.3 0.4 0.5 ns

tAA 4.0 5.0 6.6 ns

tWP 2.7 3.5 4.7 ns

tRP 1.0 1.3 1.7 ns

tWDSU 1.0 1.3 1.7 ns

tWDH 0.2 0.2 0.3 ns

tWASU 1.6 2.1 2.8 ns

tWAH 1.6 2.1 2.8 ns

tRASU 3.0 3.9 5.2 ns

tRAH 0.1 0.1 0.2 ns

tWO 1.5 2.0 2.6 ns

Table 53. EPF10K130E Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
78 Altera Corporation



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Notes to tables:
(1) All timing parameters are described in Tables 24 through 30 in this data sheet.
(2) These parameters are specified by characterization.

Tables 66 through 79 show EPF10K50S and EPF10K200S device external 
timing parameters.  

Table 64. EPF10K200E External Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 10.0 12.0 16.0 ns

tINSU 2.8 3.4 4.4 ns

tINH 0.0 0.0 0.0 ns

tOUTCO 2.0 4.5 2.0 5.3 2.0 7.8 ns

tPCISU  3.0  6.2 - ns

tPCIH  0.0  0.0 - ns

tPCICO  2.0  6.0  2.0  8.9 - - ns

Table 65. EPF10K200E External Bidirectional Timing Parameters Notes (1), (2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 3.0 4.0 5.5 ns

tINHBIDIR 0.0 0.0 0.0 ns

tOUTCOBIDIR 2.0 4.5 2.0 5.3 2.0 7.8 ns

tXZBIDIR 8.1 9.5 13.0 ns

tZXBIDIR 8.1  9.5                     13.0 ns

Table 66. EPF10K50S Device LE Timing Microparameters  (Part 1 of 2) Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.6 0.8 1.1 ns

tCLUT 0.5 0.6 0.8 ns

tRLUT 0.6 0.7 0.9 ns

tPACKED 0.2 0.3 0.4 ns

tEN 0.6 0.7 0.9 ns

tCICO 0.1 0.1 0.1 ns

tCGEN 0.4 0.5 0.6 ns
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Table 69. EPF10K50S Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 3.7 5.2 7.0 ns

tEABRCCOMB 3.7 5.2 7.0 ns

tEABRCREG 3.5 4.9 6.6 ns

tEABWP 2.0 2.8 3.8 ns

tEABWCCOMB 4.5 6.3 8.6 ns

tEABWCREG 5.6 7.8 10.6 ns

tEABDD 3.8 5.3 7.2 ns

tEABDATACO 0.8 1.1 1.5 ns

tEABDATASU 1.1 1.6 2.1 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 0.7 1.0 1.3 ns

tEABWEH 0.4 0.6 0.8 ns

tEABWDSU 1.2 1.7 2.2 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 1.6 2.3 3.0 ns

tEABWAH 0.9 1.2 1.8 ns

tEABWO 3.1 4.3 5.9 ns

Table 70. EPF10K50S Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 3.1 3.7 4.6 ns

tDIN2LE 1.7 2.1 2.7 ns

tDIN2DATA 2.7 3.1 5.1 ns

tDCLK2IOE 1.6 1.9 2.6 ns

tDCLK2LE 1.7 2.1 2.7 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 1.5 1.7 2.4 ns

tSAMECOLUMN 1.0 1.3 2.1 ns

tDIFFROW 2.5 3.0 4.5 ns

tTWOROWS 4.0 4.7 6.9 ns

tLEPERIPH 2.6 2.9 3.4 ns

tLABCARRY 0.1 0.2 0.2 ns

tLABCASC 0.8 1.0 1.3 ns
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Notes to tables:
(1) All timing parameters are described in Tables 24 through 30.
(2) This parameter is measured without use of the ClockLock or ClockBoost circuits.
(3) This parameter is measured with use of the ClockLock or ClockBoost circuits

Table 71. EPF10K50S External Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 8.0 9.5 12.5 ns

tINSU (2) 2.4 2.9 3.9 ns

tINH (2) 0.0 0.0 0.0 ns

tOUTCO (2) 2.0 4.3 2.0  5.2 2.0 7.3 ns

tINSU (3) 2.4 2.9 ns

tINH (3) 0.0 0.0 ns

tOUTCO (3) 0.5 3.3 0.5 4.1 ns

tPCISU  2.4 2.9 – ns

tPCIH  0.0  0.0 – ns

tPCICO  2.0  6.0  2.0 7.7 – – ns

Table 72. EPF10K50S External Bidirectional Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR (2) 2.7 3.2 4.3 ns

tINHBIDIR (2) 0.0 0.0 0.0 ns

tINHBIDIR (3) 0.0 0.0 – ns

tINSUBIDIR (3) 3.7 4.2 – ns

tOUTCOBIDIR (2) 2.0 4.5 2.0 5.2 2.0 7.3 ns

tXZBIDIR (2) 6.8 7.8 10.1 ns

tZXBIDIR (2) 6.8 7.8 10.1 ns

tOUTCOBIDIR (3) 0.5 3.5 0.5 4.2 – –

tXZBIDIR (3) 6.8 8.4 – ns

tZXBIDIR (3) 6.8 8.4 – ns
Altera Corporation 89 



FLEX 10KE Embedded Programmable Logic Devices Data Sheet
Power 
Consumption

The supply power (P) for FLEX 10KE devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the 
application logic. This value is calculated based on the amount of current 
that each LE typically consumes. The PIO value, which depends on the 
device output load characteristics and switching frequency, can be 
calculated using the guidelines given in Application Note 74 (Evaluating 
Power for Altera Devices).

Compared to the rest of the device, the embedded array consumes a 
negligible amount of power. Therefore, the embedded array can be 
ignored when calculating supply current.

The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K × fMAX × N × togLC × 

Where:

fMAX = Maximum operating frequency in MHz
N = Total number of LEs used in the device
togLC = Average percent of LEs toggling at each clock 

(typically 12.5%)
K = Constant

Table 80 provides the constant (K) values for FLEX 10KE devices.

This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions.

Table 80. FLEX 10KE K Constant Values

Device K Value

EPF10K30E 4.5

EPF10K50E 4.8

EPF10K50S 4.5

EPF10K100E 4.5

EPF10K130E 4.6

EPF10K200E 4.8

EPF10K200S 4.6

µA
MHz LE×
---------------------------
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