E·XFL

Altera - EPF10K30EFC256-1X Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	216
Number of Logic Elements/Cells	1728
Total RAM Bits	24576
Number of I/O	176
Number of Gates	119000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf10k30efc256-1x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 4. FLEX 10KE Package Sizes										
Device	144- Pin TQFP	208-Pin PQFP	240-Pin PQFP RQFP	256-Pin FineLine BGA	356- Pin BGA	484-Pin FineLine BGA	599-Pin PGA	600- Pin BGA	672-Pin FineLine BGA	
Pitch (mm)	0.50	0.50	0.50	1.0	1.27	1.0	-	1.27	1.0	
Area (mm ²)	484	936	1,197	289	1,225	529	3,904	2,025	729	
$\begin{array}{l} \text{Length} \times \text{width} \\ \text{(mm} \times \text{mm)} \end{array}$	22 × 22	30.6 × 30.6	34.6×34.6	17 × 17	35×35	23 × 23	62.5 × 62.5	45×45	27 × 27	

General Description

Altera FLEX 10KE devices are enhanced versions of FLEX 10K devices. Based on reconfigurable CMOS SRAM elements, the FLEX architecture incorporates all features necessary to implement common gate array megafunctions. With up to 200,000 typical gates, FLEX 10KE devices provide the density, speed, and features to integrate entire systems, including multiple 32-bit buses, into a single device.

The ability to reconfigure FLEX 10KE devices enables 100% testing prior to shipment and allows the designer to focus on simulation and design verification. FLEX 10KE reconfigurability eliminates inventory management for gate array designs and generation of test vectors for fault coverage.

Table 5 shows FLEX 10KE performance for some common designs. All performance values were obtained with Synopsys DesignWare or LPM functions. Special design techniques are not required to implement the applications; the designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file.

Application	Resource	es Used	Performance								
	LEs	EABs	-1 Speed Grade	-2 Speed Grade	-3 Speed Grade						
16-bit loadable counter	16	0	285	250	200	MHz					
16-bit accumulator	16	0	285	250	200	MHz					
16-to-1 multiplexer (1)	10	0	3.5	4.9	7.0	ns					
16-bit multiplier with 3-stage pipeline (2)	592	0	156	131	93	MHz					
256×16 RAM read cycle speed (2)	0	1	196	154	118	MHz					
256×16 RAM write cycle speed (2)	0	1	185	143	106	MHz					

Table 5. FLEX 10KE Performance

Notes:

(1) This application uses combinatorial inputs and outputs.

(2) This application uses registered inputs and outputs.

Table 6 shows FLEX 10KE performance for more complex designs. These designs are available as Altera MegaCore $^{\circ}$ functions.

Table 6. FLEX 10KE Performance for Complex Designs										
Application	LEs Used	Performance								
		-1 Speed Grade	-2 Speed Grade	-3 Speed Grade						
8-bit, 16-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS					
8-bit, 512-point fast Fourier	1,854	23.4	28.7	38.9	µs (1)					
transform (FFT) function		113	92	68	MHz					
a16450 universal asynchronous receiver/transmitter (UART)	342	36	28	20.5	MHz					

Note:

(1) These values are for calculation time. Calculation time = number of clocks required / f_{max} . Number of clocks required = ceiling [log 2 (points)/2] × [points +14 + ceiling]

The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous read or writes.

Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2).

Notes:

- (1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
- (2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, and EPF10K200E devices have 104 EAB local interconnect channels.

Each LAB provides four control signals with programmable inversion that can be used in all eight LEs. Two of these signals can be used as clocks, the other two can be used for clear/preset control. The LAB clocks can be driven by the dedicated clock input pins, global signals, I/O signals, or internal signals via the LAB local interconnect. The LAB preset and clear control signals can be driven by the global signals, I/O signals, or internal signals via the LAB local interconnect. The global control signals are typically used for global clock, clear, or preset signals because they provide asynchronous control with very low skew across the device. If logic is required on a control signal, it can be generated in one or more LE in any LAB and driven into the local interconnect of the target LAB. In addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the FLEX 10KE architecture, has a compact size that provides efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can quickly compute any function of four variables. In addition, each LE contains a programmable flipflop with a synchronous clock enable, a carry chain, and a cascade chain. Each LE drives both the local and the FastTrack Interconnect routing structure (see Figure 8).

In addition to the six clear and preset modes, FLEX 10KE devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality.

Table 9. Peripheral Bus Sources for EPF10K100E, EPF10K130E, EPF10K200E & EPF10K200S Devices										
Peripheral Control Signal	EPF10K100E	EPF10K130E	EPF10K200E EPF10K200S							
OE 0	Row A	Row C	Row G							
OE1	Row C	Row E	Row I							
OE 2	Row E	Row G	Row K							
OE 3	Row L	Row N	Row R							
OE4	Row I	Row K	Row O							
OE5	Row K	Row M	Row Q							
CLKENA0/CLK0/GLOBAL0	Row F	Row H	Row L							
CLKENA1/OE6/GLOBAL1	Row D	Row F	Row J							
CLKENA2/CLR0	Row B	Row D	Row H							
CLKENA3/OE7/GLOBAL2	Row H	Row J	Row N							
CLKENA4/CLR1	Row J	Row L	Row P							
CLKENA5/CLK1/GLOBAL3	Row G	Row I	Row M							

Signals on the peripheral control bus can also drive the four global signals, referred to as GLOBAL0 through GLOBAL3 in Tables 8 and 9. An internally generated signal can drive a global signal, providing the same low-skew, low-delay characteristics as a signal driven by an input pin. An LE drives the global signal by driving a row line that drives the peripheral bus, which then drives the global signal. This feature is ideal for internally generated clear or clock signals with high fan-out. However, internally driven global signals offer no advantage over the general-purpose interconnect for routing data signals. The dedicated input pin should be driven to a known logic state (such as ground) and not be allowed to float.

The chip-wide output enable pin is an active-high pin (DEV_OE) that can be used to tri-state all pins on the device. This option can be set in the Altera software. On EPF10K50E and EPF10K200E devices, the built-in I/O pin pull-up resistors (which are active during configuration) are active when the chip-wide output enable pin is asserted. The registers in the IOE can also be reset by the chip-wide reset pin.

SameFrame Pin-Outs FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ballcount packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K30E device in a 256-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 18).

Printed Circuit Board Designed for 672-Pin FineLine BGA Package

 256-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements)
 672-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

Tables 12 and 13 summarize the ClockLock and ClockBoost parameters for -1 and -2 speed-grade devices, respectively.

Table 12. ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices											
Symbol	Parameter	Condition	Min	Тур	Max	Unit					
t _R	Input rise time				5	ns					
t _F	Input fall time				5	ns					
t _{INDUTY}	Input duty cycle		40		60	%					
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)		25		180	MHz					
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)		16		90	MHz					
f _{CLKDEV}	Input deviation from user specification in the MAX+PLUS II software (1)				25,000 (2)	PPM					
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)				100	ps					
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (3)				10	μs					
t _{JITTER}	Jitter on ClockLock or ClockBoost-	$t_{INCLKSTB} < 100$			250	ps					
	generated clock (4)	$t_{INCLKSTB} < 50$			200 (4)	ps					
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost-generated clock		40	50	60	%					

PCI Pull-Up Clamping Diode Option

FLEX 10KE devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the signal to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis. When V_{CCIO} is 3.3 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When V_{CCIO} is 2.5 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can be activated for a subset of pins, which would allow a device to bridge between a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of 4.3 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate pin-by-pin or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects the falling edge of the output.

Open-Drain Output Option

FLEX 10KE devices provide an optional open-drain output (electrically equivalent to open-collector output) for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

MultiVolt I/O Interface

The FLEX 10KE device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10KE devices in all packages to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

Table 23. FLEX 10KE Device Capacitance Note (14)										
Symbol	Parameter	Conditions	Min	Max	Unit					
CIN	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF					
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF					
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF					

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under the FLEX 10KE Recommended Operating Conditions shown in Tables 20 and 21.
 (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V (LVTTL and LVCMOS), and 5.0-V TTL and CMOS
- signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 22.
- (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) This value is specified for normal device operation. The value may vary during power-up.
- (12) This parameter applies to -1 speed-grade commercial-temperature devices and -2 speed-grade-industrial temperature devices.
- (13) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (14) Capacitance is sample-tested only.

Figure 25. FLEX 10KE Device LE Timing Model

Table 34. EPF10K30E Device EAB Internal Timing Macroparameters Note (1)								
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Unit	
	Min	Max	Min	Max	Min	Мах		
t _{EABAA}		6.4		7.6		8.8	ns	
t _{EABRCOMB}	6.4		7.6		8.8		ns	
t _{EABRCREG}	4.4		5.1		6.0		ns	
t _{EABWP}	2.5		2.9		3.3		ns	
t _{EABWCOMB}	6.0		7.0		8.0		ns	
t _{EABWCREG}	6.8		7.8		9.0		ns	
t _{EABDD}		5.7		6.7		7.7	ns	
t _{EABDATACO}		0.8		0.9		1.1	ns	
t _{EABDATASU}	1.5		1.7		2.0		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	1.3		1.4		1.7		ns	
t _{EABWEH}	0.0		0.0		0.0		ns	
t _{EABWDSU}	1.5		1.7		2.0		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	3.0		3.6		4.3		ns	
t _{EABWAH}	0.5		0.5		0.4		ns	
t _{EABWO}		5.1		6.0		6.8	ns	

Table 37. EPF10K30E External Bidirectional Timing Parameters Notes (1), (2)									
Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		d Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{INSUBIDIR} (3)	2.8		3.9		5.2		ns		
t _{INHBIDIR} (3)	0.0		0.0		0.0		ns		
t _{INSUBIDIR} (4)	3.8		4.9		-		ns		
t _{INHBIDIR} (4)	0.0		0.0		-		ns		
t _{outcobidir} (3)	2.0	4.9	2.0	5.9	2.0	7.6	ns		
t _{XZBIDIR} (3)		6.1		7.5		9.7	ns		
t _{ZXBIDIR} (3)		6.1		7.5		9.7	ns		
t _{OUTCOBIDIR} (4)	0.5	3.9	0.5	4.9	-	_	ns		
t _{XZBIDIR} (4)		5.1		6.5		-	ns		
t _{ZXBIDIR} (4)		5.1		6.5		-	ns		

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

(3) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(4) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 38 through 44 show EPF10K50E device internal and external timing parameters.

Table 38. EPF10K50E Device LE Timing Microparameters (Part 1 of 2) Note (1)								
Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{LUT}		0.6		0.9		1.3	ns	
t _{CLUT}		0.5		0.6		0.8	ns	
t _{RLUT}		0.7		0.8		1.1	ns	
t _{PACKED}		0.4		0.5		0.6	ns	
t _{EN}		0.6		0.7		0.9	ns	
t _{CICO}		0.2		0.2		0.3	ns	
t _{CGEN}		0.5		0.5		0.8	ns	
t _{CGENR}		0.2		0.2		0.3	ns	
t _{CASC}		0.8		1.0		1.4	ns	
t _C		0.5		0.6		0.8	ns	
t _{CO}		0.7		0.7		0.9	ns	
t _{COMB}		0.5		0.6		0.8	ns	
t _{SU}	0.7		0.7		0.8		ns	

Table 43. EPF10K50E External Timing Parameters Notes (1), (2)									
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit		
	Min	Мах	Min	Max	Min	Max			
t _{DRR}		8.5		10.0		13.5	ns		
t _{INSU}	2.7		3.2		4.3		ns		
t _{INH}	0.0		0.0		0.0		ns		
t _{оитсо}	2.0	4.5	2.0	5.2	2.0	7.3	ns		
t _{PCISU}	3.0		4.2		-		ns		
t _{PCIH}	0.0		0.0		-		ns		
t _{PCICO}	2.0	6.0	2.0	7.7	-	-	ns		

 Table 44. EPF10K50E External Bidirectional Timing Parameters
 Notes (1), (2)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR}	2.7		3.2		4.3		ns	
t _{INHBIDIR}	0.0		0.0		0.0		ns	
t _{OUTCOBIDIR}	2.0	4.5	2.0	5.2	2.0	7.3	ns	
t _{XZBIDIR}		6.8		7.8		10.1	ns	
tZXBIDIR		6.8		7.8		10.1	ns	

Notes to tables:

(1) All timing parameters are described in Tables 24 through 30 in this data sheet.

(2) These parameters are specified by characterization.

Tables 45 through 51 show EPF10K100E device internal and external timing parameters.

Table 45. EPF10K100E Device LE Timing Microparameters Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{LUT}		0.7		1.0		1.5	ns		
t _{CLUT}		0.5		0.7		0.9	ns		
t _{RLUT}		0.6		0.8		1.1	ns		
t _{PACKED}		0.3		0.4		0.5	ns		
t _{EN}		0.2		0.3		0.3	ns		
t _{CICO}		0.1		0.1		0.2	ns		
t _{CGEN}		0.4		0.5		0.7	ns		

Table 59. EPF10K.	200E Device	LE Timing	Microparam	eters (Part	2 of 2) N	ote (1)	
Symbol	-1 Spee	d Grade	-2 Spee	peed Grade -3 Speed Grade		Unit	
	Min	Мах	Min	Max	Min	Max	
t _H	0.9		1.1		1.5		ns
t _{PRE}		0.5		0.6		0.8	ns
t _{CLR}		0.5		0.6		0.8	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns

Table 60. EPF10K200E Device IOE Timing Microparameters Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{IOD}		1.6		1.9		2.6	ns	
t _{IOC}		0.3		0.3		0.5	ns	
t _{IOCO}		1.6		1.9		2.6	ns	
t _{IOCOMB}		0.5		0.6		0.8	ns	
t _{IOSU}	0.8		0.9		1.2		ns	
t _{IOH}	0.7		0.8		1.1		ns	
t _{IOCLR}		0.2		0.2		0.3	ns	
t _{OD1}		0.6		0.7		0.9	ns	
t _{OD2}		0.1		0.2		0.7	ns	
t _{OD3}		2.5		3.0		3.9	ns	
t _{XZ}		4.4		5.3		7.1	ns	
t _{ZX1}		4.4		5.3		7.1	ns	
t _{ZX2}		3.9		4.8		6.9	ns	
t _{ZX3}		6.3		7.6		10.1	ns	
t _{INREG}		4.8		5.7		7.7	ns	
t _{IOFD}		1.5		1.8		2.4	ns	
t _{INCOMB}		1.5		1.8		2.4	ns	

Table 66. EPF10K50S Device LE Timing Microparameters (Part 2 of 2) Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{CGENR}		0.1		0.1		0.1	ns		
t _{CASC}		0.5		0.8		1.0	ns		
t _C		0.5		0.6		0.8	ns		
t _{CO}		0.6		0.6		0.7	ns		
t _{COMB}		0.3		0.4		0.5	ns		
t _{SU}	0.5		0.6		0.7		ns		
t _H	0.5		0.6		0.8		ns		
t _{PRE}		0.4		0.5		0.7	ns		
t _{CLR}		0.8		1.0		1.2	ns		
t _{CH}	2.0		2.5		3.0		ns		
t _{CL}	2.0		2.5		3.0		ns		

Table 67. EPF10K50S Device IOE Timing Microparameters Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{IOD}		1.3		1.3		1.9	ns	
t _{IOC}		0.3		0.4		0.4	ns	
t _{IOCO}		1.7		2.1		2.6	ns	
t _{IOCOMB}		0.5		0.6		0.8	ns	
t _{IOSU}	0.8		1.0		1.3		ns	
t _{IOH}	0.4		0.5		0.6		ns	
t _{IOCLR}		0.2		0.2		0.4	ns	
t _{OD1}		1.2		1.2		1.9	ns	
t _{OD2}		0.7		0.8		1.7	ns	
t _{OD3}		2.7		3.0		4.3	ns	
t _{XZ}		4.7		5.7		7.5	ns	
t _{ZX1}		4.7		5.7		7.5	ns	
t _{ZX2}		4.2		5.3		7.3	ns	
t _{ZX3}		6.2		7.5		9.9	ns	
t _{INREG}		3.5		4.2		5.6	ns	
t _{IOFD}		1.1		1.3		1.8	ns	
t _{INCOMB}		1.1		1.3		1.8	ns	

Table 69. EPF10K50S Device EAB Internal Timing Macroparameters Note (1)								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Мах	Min	Max		
t _{EABAA}		3.7		5.2		7.0	ns	
t _{EABRCCOMB}	3.7		5.2		7.0		ns	
t _{EABRCREG}	3.5		4.9		6.6		ns	
t _{EABWP}	2.0		2.8		3.8		ns	
t _{EABWCCOMB}	4.5		6.3		8.6		ns	
t _{EABWCREG}	5.6		7.8		10.6		ns	
t _{EABDD}		3.8		5.3		7.2	ns	
t _{EABDATACO}		0.8		1.1		1.5	ns	
t _{EABDATASU}	1.1		1.6		2.1		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	0.7		1.0		1.3		ns	
t _{EABWEH}	0.4		0.6		0.8		ns	
t _{EABWDSU}	1.2		1.7		2.2		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	1.6		2.3		3.0		ns	
t _{EABWAH}	0.9		1.2		1.8		ns	
t _{EABWO}		3.1		4.3		5.9	ns	

Table 70. EPF10K50S Device Interconnect Timing Microparameters Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Мах			
t _{DIN2IOE}		3.1		3.7		4.6	ns		
t _{DIN2LE}		1.7		2.1		2.7	ns		
t _{DIN2DATA}		2.7		3.1		5.1	ns		
t _{DCLK2IOE}		1.6		1.9		2.6	ns		
t _{DCLK2LE}		1.7		2.1		2.7	ns		
t _{SAMELAB}		0.1		0.1		0.2	ns		
t _{SAMEROW}		1.5		1.7		2.4	ns		
t _{SAMECOLUMN}		1.0		1.3		2.1	ns		
t _{DIFFROW}		2.5		3.0		4.5	ns		
t _{TWOROWS}		4.0		4.7		6.9	ns		
t _{LEPERIPH}		2.6		2.9		3.4	ns		
t _{LABCARRY}		0.1		0.2		0.2	ns		
t _{LABCASC}		0.8		1.0		1.3	ns		

Figure 31. FLEX 10KE I_{CCACTIVE} vs. Operating Frequency (Part 2 of 2)

Configuration & Operation

The FLEX 10KE architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The FLEX 10KE architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. The process of physically loading the SRAM data into the device is called *configuration*. Before configuration, as V_{CC} rises, the device initiates a Power-On Reset (POR). This POR event clears the device and prepares it for configuration. The FLEX 10KE POR time does not exceed 50 µs.

When configuring with a configuration device, refer to the respective configuration device data sheet for POR timing information.

During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

SRAM configuration elements allow FLEX 10KE devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 85 ms and can be used to reconfigure an entire system dynamically. In-field upgrades can be performed by distributing new configuration files.

Before and during configuration, all I/O pins (except dedicated inputs, clock, or configuration pins) are pulled high by a weak pull-up resistor.

Programming Files

Despite being function- and pin-compatible, FLEX 10KE devices are not programming- or configuration file-compatible with FLEX 10K or FLEX 10KA devices. A design therefore must be recompiled before it is transferred from a FLEX 10K or FLEX 10KA device to an equivalent FLEX 10KE device. This recompilation should be performed both to create a new programming or configuration file and to check design timing in FLEX 10KE devices, which has different timing characteristics than FLEX 10K or FLEX 10KA devices.

FLEX 10KE devices are generally pin-compatible with equivalent FLEX 10KA devices. In some cases, FLEX 10KE devices have fewer I/O pins than the equivalent FLEX 10KA devices. Table 81 shows which FLEX 10KE devices have fewer I/O pins than equivalent FLEX 10KA devices. However, power, ground, JTAG, and configuration pins are the same on FLEX 10KA and FLEX 10KE devices, enabling migration from a FLEX 10KA design to a FLEX 10KE design.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit_reg@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending

applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation

100